
Quantum Mechanics I
Week 10 (Solutions)

Spring Semester 2025

1 Find the particle...
A. Consider the infinite square well that extends in the interval 0 < x < L. A particle is
in the n-th eigenstate of the Hamiltonian. What is the probability of finding the particle
in the region 0 < x < aL, where the parameter a takes a value in the interval 0 < a < 1.
Compare your results with that in Classical Physics, focusing on larger values of n.
The probability of finding the particle in the region 0 < x < aL is simply given by:

Pn(a) =

∫ aL

0

dxψ∗
n(x)ψn(x)

where ψn(x) are the wavefunctions of the infinite square well,

ψn(x) =

√
2

L
sin knx, kn =

nπ

L
.

We carry out the spatial integral as follows

Pn(a) =
2

L

∫ aL

0

dx sin2 knx =

=
2

L

∫ aL

0

dx
[1− cos 2knx

2

]
=

=
2

L

[1
2
x− sin 2knx

4kn

]aL
0

=

= a− sin(2nπa)

2nπ
.

Clearly, when a = 1, the probability Pn is equal to one. To provide further insights, we
consider the classical analogue of this problem. In classical physics, we would be allowed
to specify E since it is just the kinetic energy that the particle has inside the well, and
it can be a positive quantity. The particle would just bounce around inside the well
without ever changing its speed (assuming the walls were perfectly elastic and there was
no friction). Therefore, the probability to find the particle in the interval x and x+ dx is
constant, and thus

Pcl(a) = a.

We first plot the probability distribution for a few eigenstates of the infinite square well
problem in Figure 1. The wavefunctions are presented in alternative units:

ψ̃n(x̃) =
√
2 sin(nπx̃)
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where ψ̃n = ψn

√
L and x̃ = x/L, such that

∫
dx̃ ψ̃2

n(x̃) = 1. As n increases, the number
of nodes in the wavefunction increases.
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Figure 1: The probability densities of the infinite square well problem for n = 1, n = 2
and n = 20.

We now plot Pn(a) in Figure 2 as a function of a for the eigenstates of the infinite square
well we considered above, along with the classical expectation.
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Figure 2: The probability to find the particle within the interval 0 < x < aL as a function
of the parameter a for n = 1, n = 2 and n = 20.

The probability Pn(a) oscillates around the classical value. In the limit of large n, the
amplitude of the oscillations decreases towards zero, and we have:

lim
n→∞

Pn(a) = Pcl(a). (1.1)

B. For the ground state of the simple harmonic oscillator, calculate the probability that
the coordinate x takes a value greater than the amplitude of a classical oscillator of the
same energy.

Hint: The following integral may be useful:

1√
π

∫ ∞

1

e−ξ2 dξ = 0.0785.

We first find the classical turning points by considering the total energy of the oscillator,

E =
p2

2m
+

1

2
mω2x2.
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The total energy remains constant due to energy conservation, since we consider a lossless
system. At the highest points (turning points), the kinetic energy is zero, and thus

E =
1

2
mω2A2,

where A is the amplitude of the oscillation. By a simple rearrangement, we find:

A2 =
2E

mω2
.

For n = 0, E0 = ℏω/2 and thus A0 =
√
ℏ/mω. We will compute the following integral

I =

∫ ∞

An

dxψ∗
n(x)ψn(x),

and the final probability will be given by two times this integral, i.e. Pncl = 2I, because
the ground state is symmetric with respect to the origin, as evident from:

ψ0(x) =

(
1

ℓ20π

)1/4

e−x2/2ℓ20 , ℓ0 =

√
ℏ
mω

.

This is true for any eigenstate since the product ψ∗
n(x)ψn(x) is even for any n. For the

ground state, the lowering limit of the integral I is simply A0 = ℓ0, thus:

I =

√
1

πℓ20

∫ ∞

ℓ0

e−x2/ℓ20 dx

=

√
1

πℓ20
ℓ0

∫ ∞

1

e−ξ2 dξ

=
1√
π

∫ ∞

1

e−ξ2 dξ.

= 0.0785,

where in the last equality we used the hint provided. Thus the overall probability to find
the particle outside the classical region is Pncl = 2I = 0.157.

C. Consider the problem of the harmonic oscillator and the corresponding wavefunctions:

ψn(x) =

(
1

πℓ20

)1/4
1√
2nn!

Hn(ξ)e
−ξ2/2

where ℓ20 = ℏ/mω and ξ = x/ℓ0, andHn(ξ) is the Hermite polynomial. Plot the probability
density for n = 5, 20, 100 on separate diagrams and the corresponding classical probability
function. Comment on your results. Hint: Use a software such as Python or Mathematica
for the plots.
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The probability of finding the oscillator in any spatial interval [x, x + dx] is given by
P (x)dx. In particular, it is expressed as the ratio of the time taken dt by the oscillator
to travel across this interval to the time for one traversal T/2, i.e.

P (x)dx =
2dt

T
, (1.2)

where T is the period of the oscillation. Using v = dx/dt, we write

P (x)dx =
2dx

vT
. (1.3)

To find this probability, we need to determine v. The position of the oscillator has the
following generic form:

x(t) = A sin(ωt+ ϕ),

where A, ϕ are determined by some initial conditions. The first derivative with respect to
time gives the velocity:

v(x) = ±ω
√
A2 − x2.

Thus, the probability is identified as:

P (x) =
2

vT
=

1

π
√
A2 − x2

.

We consider only the positive solution since P (x) will always be positive due to the
symmetry of the system. The amplitude A is obtained by considering the total energy of
the system at the turning points, i.e. E = 1

2
mω2A2, and energy is conserved. Thus, the

amplitude is found as:

A2
n =

2En

mω2
.

where En are the energies of the (quantum) harmonic oscillator.

Now consider the quantum harmonic oscillator, whose wavefunctions are given

ψn(x) =

(
1

πℓ20

)1/4
1√
2nn!

Hn(ξ)e
−ξ2/2

where ℓ20 = ℏ/mω and ξ = x/ℓ0. The probability density, as usual, is given by the Born
rule:

Pn(x) = |ψn(x)|2.

For the following plots, we consider reduced units. In particular, length is measured in
units of ℓ0, the wavefunction ψn(x) becomes ψ̃n(x) = ψn(x)

√
ℓ0 (in accordance to the

normalization condition) and hence P̃n(x) = Pn(x)ℓ0.
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Figure 3: The classical and quantum probability functions for (a) n = 5, (b) n = 20 and
(c) n = 100.

The probability to find the particle outside the classical limits is non-zero, and this
apparent for the small n case. Also notice that the probability to find the particle
within the classical limits vary depending on the number of nodes, while in the classical
limit remains roughly uniform (away from the edges). For large n, we observe a
resemblance to the classical case. We should emphasize on one important distinction,
namely that in the classical case we are talking about the distribution of positions over
time for one oscillator while in the quantum case, we are talking about the distribution
over an ensemble of identically prepared systems.

2 Current Conservation Implies Unitarity of Transfer
Matrix

Consider a step function potential V (x) = V Θ(x) and particles of energy E > V incident
on it from both sides simultaneously. The wave function is

ψ(x) =

{
Aeikx +Be−ikx, x < 0

Ceiqx +De−iqx, x > 0

where k ≡
√
2mE/ℏ2 and q ≡

√
2m(E − V )/ℏ2.

(a) Determine two relations among the coefficients A,B,C, and D from the continuity
of the wave function and of its derivative at the point x = 0.

We use the boundary conditions at x = 0. From the continuity of the wavefunction,
we find:

A+B = C +D,

while from the continuity of the first derivative, we find:

ik(A−B) = iq(C −D).

(b) Determine the matrix U defined by the relation(√
q C√
k B

)
=

(
U11 U12

U21 U22

)(√
k A√
q D

)
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Show that U is a unitary matrix.

Using the relations we derived from the boundary conditions in the first question,
we can show, by simple algebraic manipulation, the following relations:

√
q C = −

(
1− q/k

1 + q/k

)
√
q D +

(
2
√
q/k

1 + q/k

)
√
k A,

√
k B =

(
2
√
q/k

1 + q/k

)
√
q D +

(
1− q/k

1 + q/k

)√
k A.

In these, we have expressed the amplitudes of the outgoing waves B,C in terms of
the incoming ones A,D. Now, from these two relations, we can construct the matrix
U :

U =
1

1 + q/k

(
2
√
q/k −1 + q/k

1− q/k 2
√
q/k

)
.

Unitarity requires U †U = 1, which in terms of the matrix elements, this is shown
as follows(

U∗
11 U∗

21

U∗
12 U∗

22

)
·
(
U11 U12

U21 U22

)
=

(
|U11|2 + |U21|2 U∗

11U12 + U∗
21U22

U∗
12U11 + U∗

22U21 |U12|2 + |U22|2
)

=

(
1 0
0 1

)
and thus,

|U11|2 + |U21|2 = |U12|2 + |U22|2 = 1, U∗
11U12 + U∗

21U22 = U∗
12U11 + U∗

22U21 = 0.

By carrying out the calculations for the unitary matrix of interest, we can easily
show that indeed these relations are satisfied and thus U is unitary!

(c) Write down the probability current conservation and show that it is directly related
to the unitarity of the matrix U .

The probability current densities in the left-hand region are

J
(−)
i =

ℏ k
m

|A|2, J (−)
r = − ℏ k

m
|B|2.

where the subscripts i, r denotes incident and reflected waves. Similarly, in the
right-hand region, we have

J
(+)
i = − ℏ q

m
|D|2, J (+)

r =
ℏ q
m

|C|2.

These expressions are shown by considering the definition of the probability current
as

J =
ℏ
m
Im
{
ψ∗dψ

dx

}
.

Current conservation is expressed as

J
(−)
i + J (−)

r = J
(+)
i + J (+)

r ,
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and substituting the current expressions we found earlier for the incident and
reflected waves in the two regions (left and right), we find:

q |C|2 + k |B|2 = k |A|2 + q |D|2.

Expressing C and B in terms of the matrix U from the previous question, we have:

q |C|2 + k |B|2 = (|U11|2 + |U21|2) k |A|2 + (|U12|2 + |U22|2) q |D|2+
+
√
k q AD∗ (U∗

11 U12 + U21 U
∗
22

)
+
√
k q A∗D

(
U11 U

∗
12 + U22 U

∗
21

)
= k |A|2 + q |D|2,

where we have used

|U11|2 + |U21|2 = |U12|2 + |U22|2 = 1, U∗
11U12 + U∗

21U22 = U∗
12U11 + U∗

22U21 = 0.

This immediately implies the unitarity relations. Thus, current conservation is
directly related to the unitarity of U .

(d) Consider the case in which incident particles move only from the left to the right,
not from the right to the left (however, reflected particles in the region x < 0 will
travel from right to left). Use the results found in the previous exercise to calculate
the transmitted and reflected currents as a function of the incident current.

In the case in which incident particles are only moving from the left to the right,
we must have D = 0. The coefficients B and C, then, represent respectively the
amplitudes of the reflected beam and of the transmitted beam. If D = 0, the
continuity equations reduce to

A+B = C ,

ik(A−B) = iqC .
(2.1)

The solution is:
B =

k − q

k + q
A , C =

2k

k + q
A . (2.2)

Let us now calculate the current propagating in the region x > 0. In this region,
there are only transmitted particles travelling from the left to the right. The current
is

Jt(x) =
ℏ

2mi

(
ψ∗dψ

dx
− ψ

dψ∗

dx

)
=

ℏ|C|2

2mi

(
e−iqx d

dx
eiqx − eiqx

d

dx
e−iqx

)
=

ℏq|C|2

m
.

(2.3)

This is a particular case of the result found before. The transmitted current is
therefore Jt = ℏq|C|2/m.

The incident current, instead, is

Ji =
ℏk|A|2

m
. (2.4)
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Thus the ratio between the transmitted and the incident currents is

T =
Jt
Ji

=
q|C|2

k|A|2
=

4qk2

k(k + q)2
=

4qk

(k + q)2
. (2.5)

This is the "transmission coefficient" across the barrier. For a single incident electron
of momentum k, it represents the probability that the electron will pass across the
barrier. The reflected current is |Jr| = ℏk|B|2

m
so the "reflection coefficient" is:

R =
|Jr|
Ji

=
|B|2

|A|2
=

(k − q)2

(k + q)2
. (2.6)

One can verify that R+T = 1, which is required by the conservation of probability:
Ji − |Jr| = Jt.

3 Positive square potential
An electron with energy E collides against a square potential barrier

V (x) =


0 x < −a
V −a < x < a

0 x > a

, V > 0 . (3.1)

Assume that the motion is one-dimensional (only along the x axis) and that the incident
electron travels from left to right.

(a) Show that the possible solutions of the time-independent Schrödinger equation in
the regions x < −a and x > a are linear combinations of ψl,r(x) = e±ikx and
calculate the corresponding momentum k as a function of the energy E. Similarly,
write the forms of the stationary-state wavefunctions for |x| < a.

The time-independent Schrödinger equation reads:

− ℏ2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x) . (3.2)

For x < −a and x > a, where the potential V (x) is zero, these equations reduce to

− ℏ2

2m

∂2

∂x2
ψ(x) = Eψ(x) . (3.3)

The general solution of this equation can be written as a linear combination of e±ikx

where
ℏ2k2

2m
= E . (3.4)

For |x| < a, similarly, we have ψ = e±iqx where ℏ2q2/(2m) = (E−V ). If V > E, the
solutions for the momenta become imaginary. In this case, the wavefunction can be
written as ψ = e±|q|x where ℏq2/(2m) = −(E − V ).
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(b) Since for V > 0 the potential is repulsive, the potential should not admit any
bound states. Show this explicitly by demonstrating that there are no solutions
with negative energy to the time-dependent Schrödinger equation. (Use parity to
write the solutions as even or odd).

To demonstrate the absence of bound states, suppose that we had a bound-state
solution. Then we could write a solution in the form

ψ(x) = Z


ekx x < −a
A cosh(qx) −a < x < a

e−kx x > a ,

(3.5)

for states even under parity, or in the form

ψ(x) = Z


−ekx x < −a
A sinh(qx) −a < x < a

e−kx x > a

. (3.6)

Here Z are normalization factors needed to make
∫∞
∞ |ψ|2 = 1.

The continuity conditions on the wavefunctions and its derivative imply{
e−ka = A cosh(qa)

−ke−ka = Aq sinh(qa)
,

{
e−ka = A sinh(qa)

−ke−ka = Aq cosh(qa)
, (3.7)

for even and off wavefunctions respectively. Taking the ratio of these equations
gives however q tanh(qa) = −k and q/ tanh(qa) = −k. The equations have no
solutions because q tanh(qa) and q/ tanh(qa) are always positive, whereas −k is
always negative.

(c) Consider an electron incident from the left to the right. Show that the electron has
a nonzero probability of being transmitted across the barrier even if its energy is
smaller than V (E < V ) (the "tunnel" effect). Calculate the transmission
probability as a function of E and V . Hint: For E < V the wavefunction in the
region |x| < a is of the form Ae−qx + Beqx. In the final result, analyze the limit in
which the potential barrier is very wide.

The full wavefunction can be taken in the form

ψ(x) = Z


eikx + re−ikx x < −a
Ae−qx +Beqx |x| < a

teikx x > a

, (3.8)

with Z a normalization factor. The coefficients r, A, B, and t have to be determined
from the condition that the wavefunction and its derivative are continuous at the
interfaces x = −a and x = a. q and k are related to the total energy E via
E = ℏ2k2/(2m) and E = −ℏ2q2/(2m) + V .

At x = −a we find {
e−ika + reika = Aeqa +Be−qa

ik(e−ika − reika) = −q(Aeqa −Be−qa) .
(3.9)
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At x = a we find instead:{
teika = Ae−qa +Beqa

ikteika = −q(Ae−qa −Beqa)
. (3.10)

From the second set of relations we get

Ae−qa =
1

2

(
1− ik

q

)
teika , Beqa =

1

2

(
1 +

ik

q

)
teika . (3.11)

Substituting in the first set of equations we find:{
e−ika + reika = 1

2

(
1− ik

q

)
teika+2qa + 1

2

(
1− ik

q

)
teika−2qa

ik
(
e−ika − reika

)
= −1

2
(q − ik)teika+2qa + 1

2
(q + ik)teika−2qa .

(3.12)

Combining the two relations gives

e−ika =
1

4

[(
1− ik

q

)
eika+2qa +

(
1− ik

q

)
eika−2qa

+

(
1 +

iq

k

)
eika+2qa −

(
1− iq

k

)
eika−2qa

]
t ,

(3.13)

or equivalently

e−2ika =
1

4

[(
2 +

iq

k
− ik

q

)
e2qa +

(
2 +

iq

k
− ik

q

)
e−2qa

]
t . (3.14)

The transmission coefficient, determining the ratio between the transmitted and the
incident current, is

T = |t|2 =

∣∣∣∣∣∣ 4(
2 + iq

k
− ik

q

)
e2qa +

(
2 + iq

k
− ik

q

)
e−2qa

∣∣∣∣∣∣
2

. (3.15)

When the barrier is very wide we can neglect the term proportional to e−2qa in
comparison with that proportional to e2qa. We then obtain

T =
16e−4qa∣∣∣2 + iq

k
− ik

q

∣∣∣2 =
16q2k2e−4qa

4k2q2 + (q2 − k2)2
=

16q2k2e−4qa

(q2 + k2)2

=
16E(V − E)

V 2
e−4qa .

(3.16)

The tunneling probability is exponentially small for large a, but is never exactly
zero. There is always a finite probability that the electron passes through the
barrier, despite E < V .
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4 The Double-Delta potential
Consider a potential consisting of two delta functions:

V (x) =
ℏ2 g1
2m

δ(x+ a) +
ℏ2 g2
2m

δ(x− a). (4.1)

where g1, g2 are constants.

In this problem, we will consider the two boundary conditions at x = ±a, namely the
continuity of the wavefunction and the first derivative. However, because the potential
is singular at these points, the first derivative is not continuous, and an additional term
arises. The discontinuity condition reads:

ψ′(x0 + ϵ)− ψ′(x0 − ϵ) =
2m

ℏ2

∫ x0+ϵ

x0−ϵ

V (x)ψ(x) dx. (4.2)

and it was derived in the lecture. Here, x0 is the point at which the potential becomes
singular and ϵ > 0 is a very small quantity.

(a) Find the bound-state spectrum in the case g1 = g2 < 0. Hint: Since the potential is
even, look for even and odd solutions.

In the case of equal (attractive) couplings, i.e. g1 = g2 ≡ − g2 < 0, the system is
parity-even and we can exploit this symmetry to look for even and odd solutions.

An even candidate wave function is (E = − ℏ2k2/(2m)),

ψ+(x) =


Ae k x, x < − a,

B cosh
(
k x
)
, − a < x < a,

A e− k x, x > a,

where we have chosen the hyperbolic cosine function which is an even function with
respect to the origin. From the continuity and discontinuity conditions, we obtain:

B =
Ae− k a

cosh
(
k a
) , 1 + tanh

(
k a
)
=
g2 a

k a
. (4.3)

In Figure 4, we plot the left- and right-hand sides of the second condition. We can
read off that there is always one (even) solution. We can also verify the intersection
(of the LHS and RHS functions) from the two limiting cases of each side:

lim
ka→0

LHS = 1, lim
ka→∞

LHS = 2

and
lim
ka→0

RHS = ∞, lim
ka→∞

RHS = 0.

For low ka the RHS is greater, while for larger ka the LHS is. Thus, we must expect
that the two curves will intersect no matter the value of g2a.
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Figure 4: Solutions for even bound states for (a) g2a = 1, (b) g2a = 2 and (c) g2a = 5.

An odd candidate wave function is

ψ−(x) =


−Ae k x, x < − a,

B sinh
(
k x
)
, − a < x < a,

A e− k x, x > a,

where now we have chosen the hyperbolic sine function which has odd parity. From
the continuity and discontinuity conditions, we obtain:

B =
Ae− k a

sinh
(
k a
) , 1 + coth

(
k a
)
=
g2 a

k a
. (4.4)

The graphical solution of the last condition is given in Figure 5. It is clear that an
odd solution does not always exist. In order to guarantee the presence of a bound
state with odd-parity wave function we need a strong enough attractive coupling.
It can be seen from the plot that g2 > 1/a is required.
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Figure 5: Solutions for odd bound states for (a) g2a = 1, (b) g2a = 2 and (c) g2a = 5.

We cannot tell from the limiting cases of ka → 0 and ka → ∞ whether they will
cross or not, since for the former limit, both functions tend to infinity. However,
the possibility of intersection will be dictated by the value of g2a of the RHS. It
must be large enough so that it will decay slower than the LHS, and thus achieve
an intersection.
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(b) Do the same in the case of g1 = − g2 > 0.

This choice of parameters correspond to an asymmetric potential

V (x) =
g2 ℏ2

2m

[
δ(x+ a) − δ(x− a)

]
.

The candidate bound-state wave function is:

ψ(x) =


Ae k x, x < − a,

B e k x + C e− k x, − a < x < a,

D e− k x, x > a,

(4.5)

Solving the algebraic system from the continuity and discontinuity conditions at
x = ±a, we get the energy eigenvalue condition

e 4 k a =
g4

g4 − 4 k2
.

which, in terms of ξ ≡ k a and λ2 ≡ g4 a2, is

e4ξ =
1

1− 4ξ2/λ2
, (4.6)

and can be solved graphically as in the previous cases to show that one bound state
exists. We demonstrate this one solution in Figure 6 by plotting the LHS and RHS
of Eq. (4.6).
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Figure 6: Bound state solutions to the asymmetric potential for (a) g2a = 1, (b) g2a = 2
and (c) g2a = 3. Only one of the two branches of the RHS of Eq. (4.6) is shown.

(c) Let us now look for scattering states. Consider the incidence (from the left hand
side) of particles of energy E > 0 at this potential. Show that the transmission
coefficient for arbitrary g1, g2 is:

T = |F |2 =

{[
1− g1g2

4 k2
(
1−cos(4 k a)

)]2
+
(g1g2
4 k2

sin(4 k a) +
g1 + g2
2 k

)2}−1

. (4.7)
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The wave function will be

ψ(x) =


eikx +B e− ikx, x < − a,

C eikx +D e− ikx, − a < x < a,

F eikx, x > a,

(4.8)

We consider now the boundary conditions at x = −a, x = a. First, we start by
considering the continuity of the wavefunction at x = −a, from which we find

µ−1 + µB = Cµ−1 +Dµ (4.9)

where µ = eika. We also impose the same condition at x = a and find:

Fµ = C µ+Dµ−1. (4.10)

We move on by considering the discontinuity equation at the two singular points:

ψ′(±a+ ϵ ) − ψ′(±a− ϵ ) = g2,1 ψ(±a). (4.11)

Thus, for the wavefunction of Eq. (4.8), the discontinuity condition at x = −a gives:

i k F µ − i k C µ+ i k D µ−1 = g2 F µ (4.12)

while the one at x = a gives:

i k C µ−1 − i k D − i k µ−1 + i k B µ = g1
(
µ−1 + µB

)
. (4.13)

From Eqs. (4.10) and (4.12), we obtain:

F = D
(

2 i k
g2

)
µ−2, C = i µ−2

(
2 k+i g2

g2

)
D (4.14)

Canceling B from the other two conditions, i.e. Eqs. (4.9) and (4.13), we find for
the coefficient D:

D = − 2 i µ−2 g2 k

g1g2 µ4 + (2 k + i g1)(2 k + i g2)
(4.15)

and finally for F we find:

F =
4 k2

µ4 g1g2 + (2 k + i g1)(2 k + i g2)
. (4.16)

The resulting transmission coefficient is

T = |F |2 =

{[
1−g1g2

4 k2
(
1−cos(4 k a)

)]2
+
(g1g2
4 k2

sin(4 k a) +
g1 + g2
2 k

)2}−1

. (4.17)
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(d) Consider the case g1 = −g2 and show that there exist special values of the energy
for which transmission is perfect and there is no reflection.

In the case g1 = − g2 ≡ g, the transmission coefficient simplifies to:

T =

{[
1 +

g2

4 k2
(
1− cos(4 k a)

)]2
+

g4

16 k4
sin2
(
4 k a

)}−1

.

It is obvious that for 4ka = 2nπ the transmission is perfect, i.e.

En =
ℏ2 n2 π2

8ma2
(n = 1, 2, . . . ) =⇒ T = 1, R = 0.

In Figure 7, the transmission is plotted as a function of ka for λ1 = g1a = 1 and
λ2 = g2a = −1. The first three solutions for perfect transmission are shown, and
these correspond to ka = π/2, π, 3π/2.
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Figure 7: The transmission as a function of ka for λ1 = −λ2 = 1 (orange solid line), with
the first three solutions (blue dashed lines) for perfect transmission.

(e) Compare the low-energy behavior (E → 0) and high-energy behavior (E → ∞) in
the three cases g1 = g2, g1 = −g2 and g1 ̸= 0, g2 = 0.

The qualitative behavior in all these three cases is the same. In detail, we have the
following results:

• For the case g1 = g2 ≡ g :

lim
k→0

{T} ∼ k2

g2
(
1 + a g2

) , lim
k→∞

{T} ∼ 1− g2

k2
cos2(2 k a).

• For the case g1 = − g2 ≡ g :

lim
k→0

{T} ∼ k2

g4 a2
, lim

k→∞
{T} ∼ 1− g2

k2
sin2(2 k a).
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• For the case g1 ≡ g ̸= 0, g2 = 0,

lim
k→0

{T} ∼ 4 k2

g2
, lim

k→∞
{T} ∼ 1 − g2

4 k2
.

In all of these cases, the transmission scales with the second power of k (with
different coefficients) for low k. On the other hand, in the high-k limit, the
transmission approaches unity, but in a different fashion for each of the three
cases. A highly energetic electron, incident from the left, will have a high
transmission probability.

In Figure 8, we visualize the three cases we examined above, and in which clearly
we can see their respective limits for low and high ka. The parameters λ1, λ2 are
defined as:

λ1 = g1a, λ2 = g2a.
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Figure 8: The transmission as a function of ka for different pair of values for (λ1, λ2).
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