Chapter 6
Wave Mechanics (Part B)

This is the second part of Wave Mechanics where we study simple one-dimensional
problems that admit bound states or scattering states or both.

6.1 Bound States

We now analyze a series of Hamiltonians that illustrate some of the general properties
of wave functions we have derived above, as well as show some remarkable properties of
the quantum world. We first consider a few examples of systems with bound states, thus
studying eigenstates of the Hamiltonian with energies £ < V(£o00). As we have discussed
previously, these are also physical states, since they can be normalized. We will consider
scattering states in a separate section.

6.1.1 Particle in a box

The first system we study here consists of a particle inside a one-dimensional box with
hard walls, that prevent the particle from escaping. We can model this situation with a

symmetric potential

0, —Lou<k
Vi)={ ~2=-"=7% (6.1.1)

oo, otherwise,

where we have called L the linear size of the box, as also shown in Fig. 6.1. Since the
potential is infinite at x — +o00, we expect to find only physically valid, bound states, as
also found for the harmonic-oscillator case.

Outside the box we must have |¥(x)[> = 0, since we have assumed that the potential is
infinite and the particle is not found outside. Inside the box the potential energy is zero,
thus the time-independent Schrodinger equation reads

h2 0?0
which can also be written
0*U 9
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—L/2 0 L/2 Tz

Figure 6.1: Potential of a particle in a box with hard walls. The potential energy is taken
to be infinite beyond the limits 0 < x < L.

where we have introduced k = v2m£E /h. From the general bound derived in the previous
section, the energy must be £ > 0 (here Vi, = 0). It follows that k is real and k > 0;
the solution to differential Eq. (6.1.3) is

U(x) = Asin kx + B cos kz, (6.1.4)

where A and B are two constants to be determined. From the discussion on the parity
operator, we know that the eigenfunctions are of two types in this symmetric potential,
namely

U, (z) = Beosk,x, (6.1.5)
U_(x) = Asink_x.
where B+ = h2k2 /2m are the energies of, respectively, even and odd states. We now fix

the free constants by imposing appropriate boundary conditions and the normalization of
the wave function. Specifically, continuity of the wave function implies

Wi(-L1/2) =0, (6.1.7)
v.(L/2) =0. (6.1.8)
These conditions yield
Bcos(k+L/2) =0, (6.1.9)
Asin(k_L/2) =0, (6.1.10)
which are satisfied if
L
k:+§ = (n+ + %)w, (6.1.11)
L
k_—=n_m, (6.1.12)
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thus
2n_m
o 6.1.13
L ? ( )
= (0, Z 4;) (6.1.14)
2 1
k+:M7 (6.1.15)
L
= (g, 3;) (6.1.16)
The solution with n_ = 0 can be discarded, since it corresponds to a null wave function.
Overall, the allowed values of k are therefore
nm
k, = —, 6.1.17
. (6.1.17)
n=12,..., (6.1.18)

yielding a discrete spectrum. With even/odd n we recover, respectively, spatially odd and
even wave functions. This quantization of k£ implies the quantization of energies, which
we label with the integer index n:

h2k?

E, = o (6.1.19)
m
h2m?

Thus a quantum particle in a box can take only discrete energy values, in radical contrast
with the classical case. In order to determine the normalization constants, we need to
impose the normalization condition, (U~ |¥~) = 1. For the odd states:

(U0 = /°° di |V ()2 (6.1.21)
L2
- 2/ d |0 (z)|? (6.1.22)
0
L)2
— oA? / dz sin® (kz) (6.1.23)
0
L/2
= AQ/ dx [1 — cos(2kx)] (6.1.24)
0
deI/
42 ar .. ' r_
—A /0 o l—cosa] (2 =2ka) (6.1.25)
A2 / : kL
=5 [z — sin2’|; (6.1.26)
A2
& 1.2
oF (kL) (6.1.27)
= Azg (6.1.28)

=1 (6.1.29)
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Hence A = /2/L. A similar procedure gives B = /2/L for the even solutions. In
summary, the eigenfunctions of the Hamiltonian are

2
\/;cos(mm), n odd,
U, (2) = (6.1.30)

2 .
\/;sm(mm:), n even,

These states vanish at the edges of the box and have n — 1 nodes (points where the
wave-function vanishes inside the box), as illustrated in Fig. 6.2.

Wn(x)

—Lf2 L2

Figure 6.2: Energy eigenstates of a particle in a box with hard walls. The wave function
is shown for 0 < x < L; it vanishes elsewhere.

From the general theory we also know that a solution of the time-dependent Schrédinger
equation can be written as a linear superposition of these basis states (since the
Hamiltonian is time independent), thus

U(x, t) = i cn(t) Uy (), (6.1.31)

=1

3

where the time-dependent coefficients ¢, (t) are determined by the initial conditions,
cn(t) = (U, | W (t = 0)) e~ Ent/A) (6.1.32)

and the initial amplitudes (¥, |V(¢ = 0)) are obtained with the usual inner-product rules
introduced earlier. For instance, if the initial state is known to be an even function in
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position space, ¥(x,0) = ¥(—z,0), only the even n coefficients are non-zero and

(0, | (¢ / dz U, (z) ¥(z,0) (6.1.33)

L/2
\/>/ ) dx cos mTL> U(z,0). (6.1.34)
L/2

6.1.2 Finite potential well

We now generalize the previous case and consider a finite potential well, described by

L
%a T < a0
L 2 L
L
‘/07 T > 57

so that three distinct spatial regions (I, II, III) exist, as sketched in Fig. 6.3.

A

V(x)

>

—L/2 0 L/2 x

Figure 6.3: Potential of a particle in a ﬁnite well. The potential energy vanishes inside
the box (region II) and equals V; outside —£ < 2 < L (regions I and III).

We concentrate on bound-state solutions, i.e. E < V4. The Schrodinger equation in the
three regions reads

L
U (x) + k20 (z) =0, || <=

2 (6.1.36)
U (z) — p?W(x) =0, |z|> 5
where we have defined
k= +v2mE/h, (6.1.37)

p=1/2m(Vo — E)/h. (6.1.38)
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The solutions in the three regions are therefore
L
Nyef*, T < 3
. L L
U(z) = { Nyjcos(kx) + Ny, sin(kx), 5 <x< 5 (6.1.39)
L
Nypre™??, =5

where we have discarded the non-normalisable exponentials in regions I and II. Because
the potential is everywhere finite, continuity of ¥ and of its derivative imposes the four

conditions
V)(—L/2) =¥ (-L/2)
W(—L/2) = W}(~L/2)
Ui(L/2) = Wir(L/2)
‘I'/H(L/2) = ‘I’IIU(L/2)
Even solutions
We first consider the even case,
U(z) = ¥(-z),

which implies Ny;;r = Ny and Nj; = 0. Equations (6.1.40) reduce to

Nre PE? = Nyjcos(kL/2)
Nipe PP? = Npjksin(kL/2)

which yield the transcendental relation

ﬂ_tn<kL>
k—a 5 )

Recalling
k=~v2mE /h,
p=+/2m(Vo — E) /A,
we observe
2 k2= My B oV — BYE = 2y o g2
Pk = T (B2 4 (Vo= B)’ +2(Vo - B)E| = S5V = &,

where ko = Vov/2m/h. Since p/k > 0, Eq. (6.1.43) can be recast as

(6.1.40)

(6.1.41)

(6.1.42)

(6.1.43)

(6.1.44)
(6.1.45)

(6.1.46)
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2
P~ _ . of kL
K2 !
—-——1l=—=-1 6.1.48
k2 cos?(kL/2) ( )
so the allowed k values satisfy
k kL
Tl 008(2) , (6.1.49)
kL
tan(2> > 0. (6.1.50)
1.0 1
0.8
0.6 —— cos(kL/2)
sin(kL/2)
—— kiko
0.4 1
0.2 1
0.0 . . . . .
0 niL 2n/L 3n/L amiL ko,  SmiL

k

Figure 6.4: Graphical solution of the non-linear equations (6.1.49) (blue) and (6.1.53)
(orange). Intersections with the straight line k/ko (green) give the allowed k-values. In
this example there are three even solutions and two odd solutions.

0Odd solutions
For odd parity one has

U(x) =—V(—z). (6.1.51)
For odd parity, ¥(z) = —¥(—x), Egs. (6.1.40) become

Nye PH?2 = — Nypsin(kL/2
{ ! irsin(kL/2) (6.1.52)

Nipe P2 = Nyjkcos(kL/2)
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and the transcendental condition to be satisfied is

= |sin(kL/2)

~ 1.
e , (6.1.53)

tan(kL/2) < 0. (6.1.54)

The non-linear equations (6.1.49) and (6.1.53) can be solved numerically. Graphically,
each solution corresponds to an intersection of the straight line k/ky with the trigonometric
curves cos(kL/2) (even) and sin(kL/2) (odd). Figure 6.4 illustrates a case where three
even and two odd bound states exist.

Example wave functions for the even solutions are displayed in Fig. 6.5. Note that each
bound-state wave function has finite support in the classically forbidden regions |z| > L/2;
the exponential tails reflect the finite probability of finding the particle outside the well.
Classically a particle with £ < Vj cannot escape, whereas quantum mechanically it can
tunnel through the barrier.

—_— n=1
n=3
1.0 A — n=5
0.5 A
x
=< 0.0
>
_05 -
-1.01
-2L -L —L/2 0 L/2 L 2L

Figure 6.5: Example of spatially even stationary states for the finite-well potential. The
three curves correspond to the same value of Vj used in Fig. 6.4.

6.1.3 Delta potential
V(z) = —ad(zx), (6.1.55)
with a > 0 the time-independent Schrodinger equation for the delta well is

_ﬁaQ\If(:v)
2m  Ox?

—ad(x)V(x) = EV(z). (6.1.56)
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We restrict to bound states, hence E' < 0. For x # 0 the potential is zero, so the solutions
are exponential. Defining p = /2m/|E|/h,

U_(z)=Ae " 4 Be", z <0, (6.1.57)
U (z)=Fe x>0, (6.1.58)

where normalisability forces A = 0 (otherwise ¥ — oo as x — —o0). Continuity at = = 0
gives B = F.

Next we apply the derivative—discontinuity condition obtained by integrating Eq. (6.1.56)
across an infinitesimal interval around z = 0:

_ 2m [te 2ma
(0T —¥'(07) = Tz | V(x)¥(z)dr = — 2 U(0). (6.1.59)
Using Eqgs. (6.1.57)—(6.1.58):
U'(0") = —pB, U'(07) = +pB,
so Eq. (6.1.59) becomes
2ma
and therefore
mao
Finally, using p = 1/2m|FE|/h we find the single bound-state energy
2
mao
E=- . 6.1.62
2h? ( )
The corresponding normalised wave function is
olz mao
U(z) = pe ol p= T (6.1.63)
Using (6.1.61) fixes the energy through the only admissible value of p:
m
p=ags, (6.1.64)
2
mao
E=- : 1.
57,2 (6.1.65)

Hence this potential admits only a single bound state. With the constant B determined
by normalization, the wave function is

T(z) = % e omlal/i?. (6.1.66)
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6.2 Scattering states

We now analyze solutions of the Schrodinger equation that are not normalizable, yet play
an important role in understanding quantum dynamics.

6.2.1 Wave packets

Consider the Hamiltonian of a free particle

N ]52
=5 (6.2.1)
whose eigenstates are the momentum eigenkets with energies p?/2m
A p2
Hlp) =5 —1p), (6.2.2)
where
eipa:/ﬁ
(zlp) = : (6.2.3)

The difficulty with these eigenstates is that they solve the time-independent Schrodinger
equation but are not square-normalizable, and therefore are not physical states. However,
we have seen that a generic solution of the time-dependent Schrédinger equation for a
time-independent Hamiltonian is

[W(t)) = e H/0 | p(0)) . (6.2.4)

For the free-particle Hamiltonian the time evolution is particularly simple in momentum
representation:

Pl /dp (plpy e (|0 (0)) (6.2.5)
= /dp/ e—zp/Zt/2mh (5(}? _p/) <p/|\11(0>> (6.2,6)
— e*ip%/?mh (p|\I/(O)> ' (627)

In coordinate representation the expressions are more involved but follow directly from
the momentum eigenkets in the 2-basis. Using (x|p) = e?*/"/7/27h we have

(@w(t)) = [ dp (alp) (pl¥(0) (6.28)
pr/ —ip?t/2mh
= [dp S ' (p|(0)) (6.2.9)
sz/h )
= /dp e P tﬂmh/da:’ (p|z")y W(a',0) (6.2.10)
= ﬁ/d:ﬂ’\ﬂ(z’,(})/dpeip(x_x/)/h e ip*t/2mh (6.2.11)
m
m —z7r/4/ [ m(:z: —Z ) :|
Sy dx' W (z',0) exp| i STt : (6.2.12)

Thus in real space the initial wave function is convolved with the time-dependent kernel
explim(z — 2/)?/2ht]. If the initial state is normalized then it remains normalized at
all later times; the non-normalizable kets (z|p) merely serve as a mathematical tool for
constructing the solution.
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6.2.2 Group velocity

The evolving free-particle wave packet depends on the specific initial momentum-space
amplitude ®(p) = (p|¥(0)):

pz—*t /h
U(x,t) /dp ) D (p). (6.2.13)

Assume ®(p) is a smooth function sharply peaked around p with width Ap. Expanding
the energy E(p) = p*/2m about p we obtain

p
Elp) — 2.14
(p) =5~ (6.2.14)
=2
D
~ ot -D)+ o(Ap?) (6.2.15)
= E(p) + E’(p) (0 —p) + O(AP), (6.2.16)
where E'(p) = p/m. Substituting (6.2.16) into (6.2.13) and writing p = s + p gives
—zE )t/h
V)~ S / dpe (B @0 p)t>/hq>(p) (6.2.17)
_ZE t/h z (s+p)z—E'( )st)/h
= dse'\"""" (s +p 6.2.18
i E’(ﬁ)ﬁ—E(ﬁ))t/h
e ( i(s+p) <x—E’(ﬁ)t)/ﬁ _
= dse P(s+ 6.2.19
N e 621
i(E'@p-E®) )i/
e ip (z—E’(ﬁ)t) /h
= dpe ® 6.2.20
N (v) (6:2:20)
_ - on)un Wz — E'(p)t,0). (6.2.21)

This expression is particularly interesting because it tells us that the form of the time-
evolved wave packed (apart from a phase factor) is approximately equal to the initial
state but in the moving frame z/(t) = = — E’(p)t. The packet’s peak therefore moves with
velocity

vg = E'(p) (6.2.22)
= SL, (6.2.23)

called the group velocity; it coincides with the classical velocity of a free particle whose
momentum is p. The approximation leading to Egs. (6.2.22)—(6.2.23) remains valid
provided quadratic corrections to the energy are negligible, i.e.

t
Ap? — < 1 6.2.24
P <1, ( )

thus for time scales given by the inverse of the momentum spread of the initial state

mh
< (6.2.25)
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6.2.3 Step potential

Next we analyze the step potential

0, z<0
Viz)={ "7 (6.2.26)
Vo, x>0,

which supports only scattering states. We consider the two cases £ > Vj and E < V4.
In both, the stationary-state solutions extend to x — —oo and are non-normalizable;
nonetheless they form a useful basis for constructing physical (normalizable) wave packets,
exactly as for the free particle. Before addressing dynamics we first detail those stationary
states.

Stationary states for E > Vj
Define

ky = V2mE/h, (6.2.27)
ko = /2m(E — V) /h. (6.2.28)

In both spatial regions the time-independent Schrodinger equation takes the form

U (z) + kiU _(z) =0, r <0, (6.2.29)
U (z) + K3V (z) =0, x>0, (6.2.30)
so the general solutions read
U_(z) = Ae’™®  Be~hiT, (6.2.31)
V. (z) = Ce™™ + De*7, (6.2.32)

We have four constants (A, B,C, D) to fix (aside from the energy F). Physically we
are interested in an initial wave packet incident from the left (z = —oo) with positive
momentum, i.e. travelling toward the step at x = 0. Therefore we keep only left-to-right
propagation in region II by setting D = 0. Continuity of the wave function at z = 0 then
yields

A+B=C. (6.2.33)

The continuity of the derivative at x = 0 gives
ik1 A — ik B = ik C, (6.2.34)

and combining Egs. (6.2.33) and (6.2.34) we obtain

B ki —ky

2 2.

A ki +ky (6:2.35)
2

¢ i (6.2.36)

A:k’1+k’2'
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Further insight comes from the probability current

ih
£) = — | (9, UV — U*5, T 2.
Tt = o {(a,,, ) 0, } (6.2.37)
h
= " Im {\If axqf]. (6.2.38)
m
For the left region (z < 0),
h ) ) ) )
Jo(wt) = = Im{(A*e_““x + B M) (iky Ach® — z’lee—W)} (6.2.39)
_ Dk
! (yAE B?), (6.2.40)

while to the right of the step (z > 0)

hksy

Jo(m,t) = |(J\2 (6.2.41)

Because the stationary states satisfy the continuity equation d,.J+9;|¥|? = 0, the current
is time independent. Using Eqs. (6.2.35)—(6.2.36) one finds

hk B|?
Jo —1|A\ ( ’A ) (6.2.42)
ik ky — ko \2
ap(1- (Bzhy?) 2.4
AP — ( )
hk:1 ( Ak ko )
) 6.2.44
AP Ut o) ( )
and hk 2k 2
2 2 1
=224 . 24
J> m | | (k’1+/€2> (6 5)

thus J. = J.. It is convenient to decompose the left current into its incoming (J4),
reflected (Jp), and transmitted (Jo) parts, and to define the reflection and transmission
coefficients

Jg  |BJ? (kl — k2>2

R=22 = = <1, 6.2.46
A |A‘2 ki + ko - ( )

Jo  k|C]2 dkyky

— — 24
T RmIAP - Gt k) = (6.2.47)

Note that, in general, R and T" are defined as ratios of probability currents, not merely of
amplitudes. As expected,

R+T=1. (6.2.48)

Stationary states for E < V,

For E <V we replace the transmitted wave vector by the decay constant

po = /2m(Vy — E)/h, (6.2.49)
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so that

U_(z) = Ae™?® 4 Be 1T, x <0, (6.2.50)

0. (1) = CeP® 4+ De=P2®, z > 0. (6.2.51)

Normalizability requires C' = 0 (the solution must decay for x — 400). Continuity at
x = 0 yields

B ki —ips

= 6.2.52
A kl + Zp2 ’ ( )
D 2k,
i . 6.2.53
To evaluate the reflection coefficient we re-express the first ratio:
- = 6.2.54
P2 — iky
== = 6.2.55
p2 + iky ( )
2 | 1.2)pi0(E)
:%+Q€ (6.2.56)
(Pz + kl)e W(E)
= —e20(E), (6.2.57)
with
k1
d(F) = arctan— (6.2.58)

P2

t £ (6.2.59)
= arctan : 2.
Vo— FE

Notice that in this case the reflection coefficient is

B 2
:\—ew“”f (6.2.61)
=1 (6.2.62)

A unit reflection coefficient means no probability current is transmitted, though it does
not imply the probability of finding a particle beyond the barrier is strictly zero. Since
on the right we have a normalizable exponential tail, the current there vanishes:

h ;
$>=;%In{m>w;] (6.2.63)
h
::——;ﬁﬁl)|21In[p26_2p2x] (6.2.64)
= 0. (6.2.65)

Hence J. = J4 — Jg = 0 as well, so that

Ja=Jg,  Jo=0. (6.2.66)
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6.2.4 Wave packets

We can now form physical solutions of the time-dependent Schrodinger equation,
considering the time evolution of an initial wave function |¥(0)), which in momentum
space we denote by ®(p) = (p|¥(0)). We assume ®(p) is sharply peaked around a
certain value p (one may think, for instance, of a Gaussian wave packet in momentum
space with mean p; the precise functional form is not essential, provided the wave
function is peaked near p and suppressed elsewhere). Our analysis will focus on the two
cases in which the initial state is non-vanishing only for p < py or for p > pg, where p is
the characteristic momentum associated with the barrier.

po = \/2mVj, (6.2.67)

NoTAY
ko = Z‘ 0. (6.2.68)
D > Po
In general
Wz, t) = / dE e~ B (BW(0)) (x| E) (6.2.69)
0

but, since the initial state has no support for £ < Fy, we may write

/ “dE (Ae““f” T Be‘ik”’) e EEYE (BIW(0)), 2 <0,

U(a,t) =" | | (6.2.70)

/ dE (Ce=) e P (Blw(0)) x>0,
Eo
and changing the integration variable from energy to wavenumber we obtain

h2 oo ) ) )
— dky Ky (Ae““x + Be_lk”) e BRIV (), 2 <0,
m

Ut =1, o (6.2.71)
— [ dky ky Cett2® e BEUAG (), x>0,
m Jko

which we decompose into three contributions (incoming, reflected and transmitted):

Uine (2, 1) + Uper(x, 1), 0,
U(z,t) o (2,8) + Vel 1), @ < (6.2.72)
‘Iltran(xqt)y x> 0,
with
Uine(z,t) = dky A(kﬂeim 671’E(k1)t/h¢(/€1), (6.2.73)
ko
ooz, t) = [ dky B(ky)e ™% e EEIVAG(F), (6.2.74)
ko
Upran (0, 8) = [ by O k)™ e~ EE) (), (6.2.75)
ko

where A(k), B(k), C (k) are smooth functions of momentum. The first term represents an
incoming wave packet whose group velocity, in the limit where ®(p) is sharply peaked
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around the momentum p, is obtained exactly as before; the packet maximum propagates
according to -
r="L¢ (6.2.76)

m
with constant speed p/m. Note, however, that W;,.(x,t) is defined only for x < 0; hence
this relation is meaningful only for ¢ < 0.

For W,ef(x,t) one has W (—x,t) in the same functional form as previously analysed for
wave packets, implying that

r=—-=—t, (6.2.77)

which now requires ¢ > 0; the term indeed corresponds to a packet that originates at the
barrier at ¢ = 0 and propagates backward after reflection.
Finally, since k3 + k2 = k? we have for the transmitted component

Utrans = 8k2E<k2)"}2 (6278)
_ k=(p) (6.2.79)
= 2.
=2 2
_ VTR (6.2.80)
m

This solution is valid for z > 0 and ¢ > 0; it therefore coexists with the reflected wave,
which travels in the opposite direction, while the transmitted packet propagates with the
positive velocity 1/p? — pi/m.

In conclusion, the incoming wave packet is partially reflected (with the same speed, in
modulus, as the incident packet) and the transmitted component continues beyond the
barrier with a reduced velocity.

P < Po

In the last case we take initial states with ®(p > py) = 0, so only eigenstates with £ < 1}
(i.e. evanescent solutions) participate. The time-dependent solution in momentum space
is then built exclusively from the stationary states derived for £ < Vj.

For £ < Vj we restrict attention to the region x < 0, where our previous approximate
methods still apply. There we have

o) {/ * dh (ezlﬂx _ eQuS(E)e—zkwc) e—zE(lﬂ)t/hq)(k,l)} ’ (6.2.81)
0 <0
so that
k . .
Wie(, 1) = /0 Y ey ket ER0UAG (1), (6.2.82)
Ui, 1) = — / " dley oy 20(B) ik =Bk (). (6.2.83)
0

The most important difference with respect to the previous case is that the coefficient
of the reflected wave (B in the preceding section) is no longer real; instead it is a pure
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phase, B/A = —e¥¥) Consequently the earlier analysis of the wave-packet velocity
must be modified, because one must expand 5(E (k:)) about py in addition to expanding
the energy:

E E'(k
20(FE) — kyx — (K1)t ~ const + 28;915(E)‘]_€k1 — kiz — Eik‘)t’ (6.2.84)
equivalent to the transformation
T — —x+ 28;{15(]2)‘]} = —z+ A, (6.2.85)
Recalling
5(E) = arct b (6.2.86)
= arctan 2.
Vo— E’
we have
ki
Ok, 0(F) = 0pd(E) —, (6.2.87)
Opo(E) = = [— 1> (6.2.88)
P T OVEW —B) = -
Hence
A, = 20p6(E)| L (6.2.89)
pmm
AL (6.2.90)
m
1
S U S N— (6.2.91)
m\ E(Vy — E)

where E = p?/2m. This yields the peak displacement of the reflected wave packet:

—r+ A, = —t, (6.2.92)

S

v=-L(-a) (6.2.93)

Thus the reflected packet moves back with the same speed as the incoming one, but after
a time delay A; > 0.

6.3 References and Further Reading

A general discussion of Schrodinger’s formulation of wave mechanics can be found in
Sakurai’s Modern Quantum Mechanics (Chapter 2, Secs. 2.4-2.5), although that
treatment omits some of the introductory details covered in these notes.
Cohen-Tannoudji’s text provides a comprehensive study of one-dimensional problems,
including both bound and scattering states; see in particular Chapter 1
(complements H1 and J1 are recommended).
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