Chapter 6
Wave Mechanics (Part A)

In the previous Chapter, we have seen how to solve a paradigmatic model (the harmonic
oscillator) using an algebraic technique based (essentially) only on commutators, both for
the stationary states and for the dynamics of the system. In this Chapter we explore
instead more directly Schrodinger’s equation in real space.

6.1 Schrodinger’s wave equation

We have seen that the Hamiltonian of a particle subjected to an external potential reads

H= ﬁ—kV(x). (6.1.1)

2m
In the following we look into solutions of Schrodinger’s equation in position representation,
thus time-dependent amplitudes:

(x|U(t)) = U(x,t). (6.1.2)
The amplitudes satisfy the usual equation:
L0 ~
ih = (aW(0) = (al AW (), (6.1.3)

and recalling that
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we have the famous Schrodinger’s wave equation:
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As we have discussed in the Chapter on time evolution, the solution to this equation takes
the formal solution:

U(z,t)+ V(z)¥(x,t). (6.1.4)

@ U()) = (e 1 7 [w(0) (6.1.5)
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where we have used the fact that the Hamiltonian is time independent. Since the

exponential of the Hamiltonian acts trivially on the eigenstates of the Hamiltonian |¢g):
i 1B

e gy =e h ' op), (6.1.6)

It is very useful to solve for them explicitly, giving rise to the so-called time-independent
Schrodinger equation:

(@|H|pp) = E(z|¢p) (6.1.7)
which in functional form is equivalently written as the following differential equation:
h?* 02
~ 5 g2 98(@) + V(@) ép(z) = Eép(x). (6.1.8)

The generalization of these equations to three dimensions is straightforward, as it is
sufficient to recall that the kinetic energy in three dimensions is the sum of the three
cartesian components; thus
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2m <8x2 T oy? + 82’2> + V(z,y,2), (6.1.9)
o,
=g Ve TV (6.1.10)

and a three-dimensional wave function W(r,t) satisfies the corresponding Schrodinger
equation with this Hamiltonian.

6.1.1 Probability flux

We have seen that a fundamental postulate of quantum mechanics is that physical wave
functions are always normalized; thus:

(WO)w() = 1. (6.1.11)

Similarly to the dynamics of fluids, this conservation law implies the existence of a
continuity equation associated to the conservation of the integral of the probability
density, p(z,t) = |[¥(z,t)|>. In order to find out explicitly the form of the continuity
equation, we work out the time derivative of the probability density:

gt|\1/(x,t)\2 _ (W) Uz, ) + Wz, 1) (aq’g’“), (6.1.12)

and substituting the time derivative of the wave function with Schrédinger’s equation we
have

1

2 924s* 2 92
L w( K axpﬂ

0
i/ 2:{ - =
8t| (z.1)] ih [ 2m Ox? 2m Ox?

ih [ (0T . (0%
—‘mnKaﬁ)W“@(&ﬁ)

ih 0 [ /OU* )
ol (o) - v (&)




CHAPTER 6. WAVE MECHANICS (PART A) 3

We then have the following continuity equation

)
(@) = 0, (6.1.13)

where we have defined the probability current

T(z,t) = ;Z[(Wa(;”) Uz, t) — U (x, 1) (Wﬂ (6.1.14)

Eq. (6.1.13) is a continuity equation in the sense that it is similar to what is used in
hydrodynamics to express the conservation of mass, whereas in this context it is derived
assuming conservation of probability. The continuity equation also expresses a local
conservation law for the probability. If we integrate the square modulus of the wave
function in a finite interval [a, b], we have

2 [ ds = Jart) — bt 6115

thus the probability in the region delimited by a and b increases or decreases as a result
of the flux differences at the two extremes.

Since the probability current expresses the flow of probability density in time, we might
intuitively expect that it is also related to the momentum of the particle, as much the
mass current in a fluid is related to the velocity of the fluid. In his first works, Schrodinger
was actually led to conjecture that each point in space one could identify this current with
the actual velocity field of the particles, however this leads to complications in the theory
and contradictions with the experiments. The connection between the probability flux
and the momentum is only valid on average, i.e. when considering expectation values of
the momentum operator. To show this, we recall that the average momentum is given by:

b)) = — m/ dr U (z, 1) 6\116()?15) (6.1.16)
x,t)

O (

- ih/dxlll(x,t) (6.1.17)

ox

where in the last line we have used the fact that the expectation value of the operator is
always real, thus (p(t)) = (p(t))*. We can then conclude that

/de(:p,t) — <p7§j)>, (6.1.18)

thus showing that only on average the current is equal to the particle’s velocity.

6.2 General Properties of Wave Functions

We now want to establish a few general properties of the solutions of Schrodinger’s wave
equation. We concentrate, for simplicity, on the one-dimensional case, but all the results
presented here are easily generalized to three dimensions.
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6.2.1 Normalization

The first condition we have already seen, is that physically valid wave functions must be
normalizable, thus

+00
/ dr |U(z)? = 1, (6.2.1)

which is a strict requirement due to the probabilistic interpretation of the wave-function
squared. It should be remarked, however, that Schrodinger’s equation generally admits
both normalizable solutions and un-normalizable solutions. In fact, the only requirement
we asked for eigen-kets of continuous variables is

(€18 = a6 =€), (6.2.2)
which is the completeness requirement of the basis but does not imply the normalization
condition of the eigen-kets (for discrete variables, instead, the two conditions are the
same). An important consequence is that, for example, the eigen-kets of the momentum
are not physically valid quantum states, since they are not normalizable! This is because
they correspond to the eigen-kets of the Hamiltonian of a free particle

N 232

H = o7y (6.2.3)
whose probability density of being in a certain position of space is expected to be
independent on the specific position. In turn, this implies that the particle, in principle,
could be anywhere in the universe with uniform probability. This is clearly an absurd
requirement, and it is also the reason why the wave function is not normalizable. In
general, however, free particles do not exist in Nature, since they are always confined by
some external potential or by the interactions with other particles. In this sense, we can
always think that there is an intrinsic scale L beyond which (x| > L) it is essentially
impossible to find the particle. This finite length scale makes the wave function
normalizable, as we will also show in the following examples.

While some solutions of the Schréodinger equation are not normalizable, thus unphysical,
they are still very much useful to analyze the dynamics of physical wave functions.

6.2.2 Continuity

On physical grounds, it is reasonable to expect that the probability density is a continuous
function of z, thus W(z) is also expected to be continuous. From a mathematical point
of view, if the potential V(z) is bound and analytic, the solutions of the Schrodinger’s
equation must also be continuous and analytical. The situation is a bit different if the
potential is singular. Roughly speaking, however, a discontinuity in the wave function
can lead to a finite energy E only if it is compensated by a potential V(z) ~ §'(z) that
cancels out the singularity due to the kinetic energy at the discontinuity. For example,
imagine that around = ~ 0 the wave function has a sign-like discontinuity ¥ (z) = sign(x),
then around the origin: A ,
h* 0 D)
~ o @\P(az) = - ' (x), (6.2.4)
thus only if the potential is V (z) = % 0'(x) can cancel out this singularity and lead to a
finite energy F.
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6.2.3 Continuity conditions of the Derivative

In order to establish whether the first derivative W’(z) of the wave function is continuous
or not at some point x = a, we integrate the Schrodinger’s equation around that region
with a small e:

[2lar [ g e+ VruE] = B [Taee, 025)

From this equation we see that there are, essentially, two important sub-cases.

1. V(a) is finite, thus [**°V(z) ¥(z) dz = O(e) and we can conclude that ¥'(a + ¢) =
U'(a — €) + O(e), thus the first derivative is continuous in z = a.

2. V(a) is infinite, singular, etc. (for example, V(z) = 0(z — a)), then the first
derivatives is not continuous, and the discontinuity in the derivative is fixed by the
equation above, thus

2m a+e€

UV'ia+e) — Via—e) = = V(z) ¥ (z)dx. (6.2.7)

We have therefore seen that a discontinuity in the wave function appears if the potential,
for example, V() ~ §(z). Later on we will see an example application with this idealized,
yet reasonable potential.

6.2.4 Minimum Allowed Energy

The energy eigenvalue E can, in general, be an arbitrary number. However, for a given
potential V' (z) there is a minimum energy value that can be taken. Specifically, we must

have
E > min V(z) (6.2.8)

= Viin. (6.2.9)

This condition follows from the fact that the Hamiltonian contains two terms, and the
first one (the kinetic energy) is positive definite. In order to see this, consider

|®) = p|), (6.2.10)

then
(®|®) > 0 (6.2.11)
(U]p?| W) > 0. (6.2.12)

Thus for an eigen-ket of energy E we have

5= L s vwie > @ye

v

Viin. (6.2.13)
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Another very important bound, known as variational bound, is found when considering

the expectation value of the Hamiltonian over a generic state. In this case, and assuming

that the Hamiltonian has a discrete spectrum (Ey < E; < E,...) for simplicity, we have:
(H) = (V|H|¥)

Eo (Eo|U)? + B (E|¥)?* + ...

Eqy (Eo|¥)?

Ep.

AVARLY,

Therefore the expectation value of the energy on an arbitrary state cannot be lower than
the ground-state energy, Ey, and it is exactly equal to Ey only if |¥) = |Ep).

6.2.5 Bound states and scattering eigenstates

The solutions of the time-independent Schroedinger equation, |E), can be generally
classified into two kind of states, depending on the value of the energy. The main
criterion is

E < V(xo00), bound state
E > V(£00), scattering state

thus the type of possible eigenstates depends on the type of potential considered.
Physically speaking, bound states correspond to cases when the wave-function goes to
zero in the limit x — 400, thus we say that the particle is bound inside a certain finite
region of space. The harmonic oscillator is a clear case where this happens, since there
V(+o0) = 400, and we have seen that the wave-function vanishes exponentially when
approaching xr — £o0.

Scattering states are a very different beast, since in general they do not correspond to
physical states. The reason is that, since they are not required to vanish at © — £o00, they
are not normalizable. Nonetheless, albeit not being physical states, they are still valid
solutions of the time-independent Schrédinger equation and, as we will see in the following,
they play an important mathematical role in solving the time-dependent Schrodinger
equation.

6.2.6 Parity operator
We define the parity operator

I |z) = |- ) (6.2.14)
which transforms coordinates into their negative values, thus acting on wave-functions as:
(|| W) = ¥ (—z). (6.2.15)

The eigenvalues A of the parity operator and the corresponding eigen-kets |u,) are found
easily, since:

(2|TT|wy) = A (z|uy), (6.2.16)
(2| |uy) = A (| T|uy), (6.2.17)
(z|uy) = N (z|uy), (6.2.18)
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thus A = =41, and the eigenfunctions with positive/negative eigenvalue are all the
even/odd functions:

uy(—z) = uy (), (6.2.19)
u_(—z) = —u_(x). (6.2.20)

For potential energies that are spatially symmetric, (V(xz) = V(—x)) we can see that
the Hamiltonian commutes with the parity operator. This is easily seen considering the
matrix elements of the commutator in coordinate representation:

A1) = el 2 A v 1) - (8 2 4 v o)
= l(Zvw)i-a — ol (L4 v )i
_ ;; g;a(x + )+ V(z)d(z + ')+

27”;21 ;;5(_1; — )~ V(—a) 8z + )

+ -
= (V@) = V(-2)) d(x +2)
=0.

Thus when V(z) = V(—x), we can diagonalize the Hamiltonian and the parity operator
simultaneously, and the solutions of the Schroedinger’s equation at some energy F must
be also eigenvectors of the parity, thus they either satisfy

Up(z) = Up(—2), (6.2.21)

" Up(zr) =—VUp(—x). (6.2.22)

The harmonic oscillator is one example of potential that is symmetric, and indeed we
have seen that in that case the even eigenvalues n = 0,2,4,... correspond to spatially
even functions, whereas the odd ones n = 1,3,5,... correspond to spatially odd
functions. While we haven’t used this symmetry explicitly to solve the harmonic
oscillator, reflection symmetry (V(z) = V(—=)) is in general a very useful tool, since it
allows us to solve Schrédinger’s equation more easily, since we can treat even and odd
functions independently, as we will see in the examples below.
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