Chapter 4

Continuous Degrees of Freedom

In the previous Chapters we have focused on the theoretical description of discrete degrees
of freedom. These typically arise in the case of spin wave functions, when measurements
only result in a discrete and finite set of possibilities. There are however very important
cases in which observables are intrinsically continuous, even in the quantum case. This
is the case for example of quantities such as position and momenta of particles. While it
is always possible to think about these cases as specific limit of finite-dimensional vector
spaces, it is more natural to extend the previous formalism to account for intrinsically
continuous degrees of freedom.

4.1 Bra-Ket formalism for Continuous Degrees of
Freedom

The formalism in this case is very close to what already discussed about finite vector
spaces. We consider for example some continuous degree of freedom described by the
operator &, so that it possesses a set of eigenvalues £ and eigenvectors |£) satisfying:

1) =¢'¢) (4.1.1)
notice that in this case there will be infinitely many kets |¢’) satisfying this relationship,
each of those with some associated eigenvalue.

Other than this important distinction, we also need to generalize our formalism to
accommodate for orthonormality relationships and closure relationships that are well
suited for continuous variables. Table 4.1 summarizes the main correspondences, that
should be fairly intuitive to understand.

Since, in general, the variable £ associated to the eigen-kets is continuous, we can identify
the expansion coefficients of an arbitrary quantum state in this basis as a complex-valued
function (also known as “wave function” or “state function”):

V() = (€lv) (4.1.2)

with the property of being L2, integrable, i.e. it can be correctly normalized in a way
that
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Property Discrete case Continuous case
Operator A é
Eigenvalues 121|A1> = a;|A;) é’§/> = ¢'¢)

Completeness > A4 =1 Jag'lgye =1

State Expansion W) =32 [A) (A |0) | W) = [dE'|E) ()
State Normalization > ]<§z‘\p>]2 =1 fdf/|<f,|‘1'>‘2 =1

Orthonormality (Aj|A;) = 045 (€'g") =o(¢ = ¢")

Operators Matrix Elements <Ai|fl]Aj) = 0;;0; <€'!é\f"> =6 —¢")¢

Table 4.1: Correspondence between discrete and continuous kets formalism.

LG (4.1.3)
Notice that this property is a fundamental property of wave functions, and it is a direct
consequence of the Born rule P(¢) = |¥(£)|?. For example if we had to compute the

probability Ps of measuring a value £ within the interval £ € (&, &y + J), we would use
the standard rule of probability theory:

§o+o
Pil&o) = [ dEIWEQ)P ~ 510 (11.4)

Notice that this also marks a slight but important difference with respect to the case of
discrete variables, since the amplitude | (§|¥) |* is not the probability of obtaining the
measurement value &, as it would be in the discrete case, but rather the probability
density of obtaining &y. Strictly speaking, for a continuous variable the probability of
obtaining exactly & is infinitesimally small in the window § around it, thus it is zero in
the limit 6 — 0. In most of the applications we will never compute point-wise probability
densities to evaluate physical quantities, but rather integrals over finite windows of values.

4.2 The Position Operator

Let us now focus on the common case in which we are interested in measuring or just
characterizing theoretically the position of a given particle (say, an electron). For
simplicity, we first focus on the case in which the particle is constrained to be in one
dimension. In this case, the eigen-kets are just one-dimensional coordinates:

2|2y =2 |2 (4.2.1)

As much as done when considering the measurement postulates for spin systems, a very
similar situation is found when considering continuous variables. Specifically, we can
imagine that we can measure the position of our particle taking a snapshot of it. Every
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time we take a picture of this particle, we will see a spot in our picture at a given position
2’, and the wave-function collapses into the corresponding eigenstate

T — [2/) (2’|, (4.2.2)

We can easily extend this description also to higher dimensions, i.e., we lift the constraint
of having purely one-dimensional particles. In this case the wave-function is therefore a
complex-valued function of the vector r = (z,y, 2):

(x,y, z|¥) = V(z,y, 2), (4.2.3)

where we have postulated that U is an eigenstate of all coordinates. This hypothesis is
verified experimentally. As a result of the discussion in the previous Chapter, this implies
that position operators commute:

[,9] =0, (4.2.4)
#,2] =0, (4.2.5)
(9,2 =0 (4.2.6)

4.3 The Translation Operator

In addition to the concept of position for a quantum particle, the other major observable
concerning particles in continuous space is the momentum. In order to derive a consistent
form for the momentum operator, we first need to introduce the concept of translation
operator, since this will be instrumental in defining the form that the momentum operator
takes in quantum mechanics.

We start by considering an infinitesimal translation operator, T(ér) parameterized by a
certain 3-dimensional infinitesimal translation ér = (dx, dy, dz), whose job is to translate
a certain eigen-ket of the position operator:

T(0r)|r) = |r 4 or). (4.3.1)

The action of this operator is quite simple, since it takes a certain eigen-ket of the position
operator, |r), and returns another eigen-ket of the position operator, [r' + dr’). From this
expression we also see that |r’) is not an eigen-ket of the translation operator, since it is
transformed into another eigen-ket and not into itself.

Applied on an arbitrary state, |¥), the action of the infinitesimal translation operator is

T(61)| W) = T(6r) /dry (4.3.2)
/ drT(51)|r) ¥ () (4.3.3)

— / dr|r + or)¥(r) (4.3.4)
:/dr|r)\11(r—5r), (4.3.5)

where in the last line we have considered the change of variable r — r — dr, that does
not affect the value of the integral, since we are already integrating over the full space.
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This expression also shows that, in position space, the effect of the translation operator
is effectively ¥(r) — ¥(r — dr).

We can already derive several interesting properties of the operator T, just looking at how
the state transforms under its action. Specifically, we should have that the translated state
|W’) = T(6r)|W), is still correctly normalized, i.e.

(U0 = (O[T (6r)T'(6r)| ) (4.3.6)
= (U|¥). (4.3.7)

This condition is satisfied if the translation operator is unitary:
Tt ()T (0r) = 1. (4.3.8)

The second property we expect from this operator is that it can be arbitrarily composed,
in the sense that subsequent translations of dry, drs, drs, ... must be equivalent to a single
translation of the sum vector:

T(6r1)T(0r2)T(0rs) ... = T(6ry 4 0ry + drs +...). (4.3.9)

Furthermore, if we translate a certain system back to its original position, this operation
should be equivalent to applying the inverse transformation:

T(—or) = T7'(0r), (4.3.10)

where 7! denotes the inverse of the operator.
The last property that we can intuitively expect is that in the limit of vanishing
translations the operator 1" should strictly reduce to the identity
lim T'(dr) = 1. (4.3.11)
|or|—0
As we have already seen for the case of the time evolution operator, and as a consequence

of Stone’s theorem, all these conditions are satisfied if we take the infinitesimal translation
operator to be described by the following unitary operator

T(6r) = ¢ KT (4.3.12)

where K is a vector operator K = (f(z, f(y, KZ) where each of the individual components
are Hermitian operators. Here, the exponential of the operator has exactly the same
meaning it would have for finite vector spaces, and it is again understood in terms of its
Taylor expansion:

From this expansion, we immediately see that Eq. (4.3.11) is verified. The unitarity
assumption is also quick to verify, since it is an elementary property of the exponential of
an operator that eX" = (eX)f, thus

Tt (o1) = £/ Kor (4.3.14)
— KT (4.3.15)
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where in the last line we have used the fact that K is Hermitian. The composition property
is also a consequence of the exponential structure

o KO —iK Gy | —iK(81402t) (4.3.16)

Y

as well as the inversion property

2 iK-or
T(—dr) = ™",
eiK-ér —iK-r

Tt (—6r)T(6r) =

Commutation relations of K

The operator K introduced earlier is Hermitian and thus qualifies as a physical observable
according to the fundamental axioms of quantum theory. An essential question is whether
this observable is compatible with measurements of the position operator. To address this,
we compute the commutator [K, ] and check whether it vanishes.

First, consider the action of an infinitesimal translation followed by the position operator:

'T(0r)|r') = #'|r’ + or), (4.3.21)
= (r' + or)|r' + or). (4.3.22)

Next, consider the action of the position operator followed by the translation:

T(6r)t'|t') = v'T(or)|r'), (4.3.23)
=r'|r' + or). (4.3.24)

Subtracting these two results yields:

&, T(6r)]|r') = or|r’ 4 or), (4.3.25)
= or|r’) + O((dr)?). (4.3.26)

Since this equation must hold for all kets |r'), we conclude that the commutator identity
is:

£, T(6r)] = orl. (4.3.27)

Remark: In many cases, we omit the identity operator | from the right-hand side for
simplicity. However, it should be noted that a commutator of two operators is always
itself an operator.

From the definition of the translation operator in terms of K, we have:

A A

£, 1 —iK - or] = —i[t, K - 0r], (4.3.28)
= or. (4.3.29)
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Component-wise relations: For the z-component:

&, K] =1, (4.3.30)
and, more generally: A
[Fo, K| = 10ap- (4.3.31)

4.4 'The Momentum Operator

Here, show deinition of momentum operator as well as the momentum operator
representation. , and hte momentum operator in the position basis.

4.4.1 The Momentum Operator

Similarly to the time evolution case, where we identified the operator O with the
Hamiltonian H through a unit rescaling H = hO, we can perform a similar analysis for
K. In analogy to classical mechanics, the generator of spatial translations is identified
with the momentum operator p. From a dimensional perspective, this identification is
achieved by setting:

p = 1K, (4.4.1)

which implies the commutation relations:
(o, Pg] = thdap- (4.4.2)

The factor h is essential not only for dimensional reasons but also for recovering classical
mechanics in the appropriate limit and explaining experimental results from atomic
physics.

4.4.2 Correspondence Principle

Dirac remarked that the commutation relations:

[Fa, 5] = 0, (4.4.3)
[Pa D] = 0, (4.4.4)
[Fa, Ds] = ihdags, (4.4.5)

are formally analogous to the classical Poisson bracket relations between position and
momentum. These relations naturally arise in the Hamiltonian formalism of classical
mechanics. The correspondence principle is expressed through the replacement:

1

['7 ']classical — %[7 ']7 (446)

where the classical Poisson bracket of two functions A(r, p) and B(r,p) is defined as:

[A7 B]Classical = Z

«

<8A oB  0A 83) . (4.4.7)

e Opa  Opa Oy
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For classical mechanics, the relation:

[Tou pﬁ]classical - 5&67 (448)

when combined with Eq. (4.4.6), directly reduces to the canonical quantum commutation
relations.
This analogy also extends to the dynamics of observables, where a classical observable

A(r, p) satisfies:
d
%A(rv p) = [A7 H]classicaly (449)

where H is the classical Hamiltonian. The Hamiltonian satisfies the canonical equations
of motion:

H
r= gp = [I‘, H]classicala

oH
= —— — H . 4.4.1
P aI‘ [p, ]classmal ( 0)

From this, we see that Eq. (4.4.9) corresponds formally to Heisenberg’s equation of motion,
provided the replacement in Eq. (4.4.6) is made.

4.4.3 Position Representation

We now discuss key properties of the position representation, specifically how quantum
states are expanded in the basis of the position operator. To simplify, we first consider
the one-dimensional case, avoiding unnecessary bold symbols and indices. As seen earlier
in this chapter, an arbitrary state can be expanded in a continuous basis as:

) = /dx|x><x]\11), (4.4.11)

— / di|z)(@). (4.4.12)

Overlaps between states in the position representation are given by integrating over space:
(W) = / d (®]z) (x| V), (4.4.13)

- / dr®* () V(). (4.4.14)

Matrix elements of an operator A in this representation are:

(D|A|W) :/dx<q>|x><x|A|xp>, (4.4.15)
— / drda' (®|z) (x| Ale') (2’| W), (4.4.16)
- / drdr' ®* () Az, 2/ )W(2"). (4.4.17)

These results follow directly from the completeness relation for kets defined on continuous
variables. Eq. (4.4.17) demonstrates that, for an arbitrary operator, we must evaluate its
matrix elements (r|A|z") = A(z,2’) in the position representation.
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A simplification occurs when the operator A is diagonal in this basis. This happens for
operators of the form flf = f(&), where f is an arbitrary analytic function of the
coordinates (e.g., f(#) = a2? — b2, etc.). By expanding f in a Taylor series, it is
straightforward to verify that:

[A;, 2] =0, (4.4.18)

indicating that A ¢ is diagonal in the position basis. Consequently:
Afla) = f()la)., (1.4.19)
and the matrix elements of the operator in this basis are:
(z|Af2y = 6(z — ') f(z) . (4.4.20)
In this special case, the matrix elements of the operator between two general states

simplify to:
(@A) = /da:tb(x)*f(x)\ll(x). (4.4.21)

4.4.4 Momentum Operator in the Position Basis

To compute the matrix elements of the momentum operator in the position basis, we
focus on one spatial dimension and consider only the z-component of the momentum,
p.. This computation is fundamental for determining expectation values of momentum,
kinetic energy, etc.

Starting with the action of the translation operator on an arbitrary ket |U) for a small
displacement d,:

e RSy — [ dal ' ypa’ ), (4.4.22)
where ¢ (x) = (z|¥). Expanding ¢ (2’ — §,) in a Taylor series gives:
8 /
D@ — 8,) = b(a') — b, gg )y o), (4.4.23)
so that: 5
(z]|e” 0 | W) = o(z) — 6, lg;@ + 0(5?). (4.4.24)
Using the definition of the translation operator, we also write:
e ) = (T —iK,0, ) [ W) + O(52), (4.4.25)
which implies: .
(le™ o) = () — 26, (w]p.| V) + O(82) (4.4.26)
Equating Eq. (4.4.24) and Eq. (4.4.26) to first order in d,, we find:
(2lpa] 0 = —in 2L (4.4.27)

or
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This result shows that the effect of the momentum operator is to take the derivative of
the wave function (up to a factor of —ih). For the specific case where |¥) = |z}, such
that ¢¥(z) = (x|2') = é(x — 2’), we obtain:

0
po|2') = —ih— —a'). 4.4.2
(alpala’) = ~ih-d(z — ) (1.4.28)

Thus, the matrix elements of the momentum operator between arbitrary states |®) and
|W) in the position basis are:

(®|p, | W) = —ifi / dxd:c’@*(:c)(ié(a: — )W), (4.4.29)
. ., L 0V(x)
— ik / drd* (2) = 2 (4.4.30)

Arbitrary analytic functions of the momentum can also be obtained, using the
corresponding Taylor series, and knowing that each power of the momentum performs a
derivative with respect to the coordinates. An important higher order function is just
the square of the momentum, giving rise to the kinetic energy Er = p*/2m, for a
massive particle. In this case,

(@12 19) = [ da’ (2l 9o |2') (/) | ) =

= (—ih)? /da:’ (aaxd(x — x’)) (({;;w(x/)) _

2 82

4.5 Momentum representation

Until now we have worked solely with eigenstates of the position operator, however it
is interesting to look at the eigenstates of the momentum operator as well. These are
defined by the usual eigenvalue relation:

plp)=plp) , (4.5.1)

and can be useful, for example, if we wanted to represent a certain wave function in this
basis. In order to avoid cluttering the notation, in this section we will omit the lower
index x to characterize the x component of the momentum, thus it is assumed, starting
from the equation above, that p = p,. Since in the previous discussion we have already
derived the action of the momentum operator on an arbitrary ket, we can rewrite the
eigenvalue equation as

(z|plp) = p(zlp) = —ihi (z|p) . (4.5.2)

We therefore see that the eigenfunctions of the momentum satisfy this simple differential
equation

. 0

(plzlp) = —iho—(zlp) - (4.5.3)
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It is easy to see that we are after an exponential form:
(x|p) = Ne'n (4.5.4)
where N is a normalization that should be fixed imposing the usual constraint:

(p | >=5( ), (4.5.5)
/ dz (p|z) (') = 5(p — p). (4.5.6)

We can explicitly write the L.h.s. of this equation and notice that it is just a representation
of the delta function:

N2 / dre T = |N[22rhio(p — p'). (4.5.7)

We therefore conclude that N = ﬁ is a good normalization (there is an arbitrary phase
to be picked in choosing N and the convention is just to take N to be real and positive).

We thus have that the eigenstates of the momentum operators are plane waves:

.px

e'n
Vorh

This also allows us to find the relationship between wave functions in different bases. For
example, a wave-function in real space, ¥ (z), has a representation ¢(p) in momentum
space:

(zlp) = (4.5.8)

(pl) = [ da k) (el (45.9)
/d:c Nors (4.5.10)
and vice-versa:
(wl) = [ dp( oIp) 1) (45.11)
/ P (4.5.12)

The correspondence between real-space and momentum-space wave-function is now
evident in its beauty: transforming a given quantum state between these two bases
requires performing (inverse and direct) Fourier transforms of the corresponding wave
functions. It should be stressed that all of these results have been obtained using the
few postulates of completeness for quantum states, and the connection between
translation operator and the momentum operator.

4.6 Quantum and classical particles

We are now already in position to make an intermediate summary of the results we have
obtained so far, and clarify the fundamentally different description of particles arising
from quantum mechanics. The summary is presented in Table 4.2.
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Classical Quantum
State Two vector quantities: r = | A ray in Hilbert space: the state
(,y,2) and p = (pz, Py P-) vector |W)

Quantities The values of r and p can be | |¥(r)]> and |¥(p)]> are
measured directly the probability densities of
observing a certain r or p

Uncertainty No constraint Heisenberg principle
Time Evolution | ¢ = [r, H]gassical, P = = %[f‘, ]:]}, p= %[f), f]]
[pv H]Classical

Table 4.2: Comparing the classical and quantum description of a particle.

4.7 Gaussian wave packet

In the following Chapter we will see how the wave functions can be obtained from first
principles, solving the Schroedinger equation. For the moment however, it is already
interesting to look at specific cases of wave functions that can help us familiarize with the
basic concepts of the theory.

An important example is called the gaussian wave packet and allows us, in a certain limit,
also to connect to the classical behavior we would expect from a point-like particle. The
wave function in position space takes the form:

1 g
kre=aa (4.7.1)

U (z;k,d) =
thus this state is parameterized by two constants £ and d we can vary at will. We will
drop the explicit parametric dependence on these two parameters in the following. First
important observation is that the Born probability density in real space is:

2

V()P = e (172)
thus it is a Gaussian centered at the origin and variance d?. This is the reason why we
referred to this before as a gaussian wave packet. The first consequence of this observation
is that the parameter d controls how localized the particle is around the origin. The
smaller d, the more localized the particle position will be, and a measurement of the
position operator will result in small variations across different measurements. On the
other hand, the larger d, the more delocalized it is, and an observation of the position
operator will result in wildly different values for x at each measurement outcome. The
expectation value of the position operator is 0 for symmetry reasons (it is also just the
mean of the Gaussian):

(@) = (U]2]0) = /d:z:x\klf(w)|2 —0. (4.7.3)

The spread of the measurement of z can be quantified by the expectation value of 2,
which in turn coincides with the variance of the gaussian:

(#) = /d:r; 22 (z)2 = d?. (4.7.4)
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Thus the intrinsic uncertainty related to the probabilistic nature of the measurement
process (quantum noise, if you wish) is given by

(A#?) = () — (2)" = d*. (4.7.5)

Again this expression should be interpreted in terms of many repeated measurements on
identical systems, imagining that each outcome for the measurement of x is recorded,
and that in the limit of a large number of measurements the variance of the observed x
approaches d?2. The expectation value of the momentum operator is conveniently
computed recalling that (z|p|¥) = —z'ha%\ll(x) thus

0
() = ([p|w) = —ih/dx\lf(:v)*a—\ll(x) = hik. (4.7.6)
x
The detailed derivation of the last line is left as an exercise. From this expression we see
that the parameter k£ also has a transparent physical meaning: it is the “average” wave
number The vector of the quantum particle described by this wave packet. One can also
show that
2

(1*) 4hd2 + B2, (4.7.7)

and thus the dispersion in momentum is found

2 h?
(Ap?) = ook (4.7.8)
From Egs. (4.7.5) and (4.7.7), we see that the Gaussian wave packet saturates the
Heisenberg indetermination principle:

A2 2 h’
<Am ><Ap > =1 (4.7.9)
That is why the gaussian wave packet is often called the minimum uncertainty wave
function, in the sense that it is not possible to find other states with less uncertainty, as
quantified by the Heisenberg bound. This also tells us that if we are in a limit in which
d — 0 there will be huge indeterminacy in the value of the momentum, and vice versa.
To form some intuition of this behavior, we can think that the more we try to spatially
squeeze the particle, the “hotter” it gets, with its kinetic energy increasing. While
useful, as all analogies with the classical world (in this case with thermodynamics) this
analogy too should be taken with a grain of salt. In the quantum case there is
absolutely no dynamics (yet) involved, and these rapid oscillations are just a result of
the intrinsic probabilistic nature of quantum mechanics.

This result also tells us that, as long as our classical observer has an experimental
resolution (intrinsic precision of the instrument) on the momentum significantly worse
than % (i.e., they are not able to resolve features below that scale), and as long as the
experimental resolution on the position is significantly worse than d?, both position and
momentum will appear to take constant values, every time their measurement is

performed. This tells us that in order to see quantum mechanical effects, it is often the
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case that we need to go at scales (both in space and momentum) that have for long been
not accessible to experimentalists before the beginning of the 20th century.

Exercise 4.1 Prove Egs. (4.7.6) and (4.7.7).
Exercise 4.2 Find the momentum representation of the Gaussian wave-packet state.

4.8 References and Further Reading

The discussion done in this Chapter is adapted from Sakurai’s “Modern Quantum
Mechanics” (Chapter 1, sections 1.6 and 1.7). A detailed treatment of the position and
momentum representations can be found also in Cohen-Tannoudji’s book (Chapter 2 in
general, and also complement DII).

Appendix 4.A: Dirac’s Delta Function

The only more subtle point in this correspondence concerns the introduction of Dirac’s
delta §(z), a generalized function that plays a very important role in the study of Hilbert
spaces. Here we just recall that Dirac delta can be seen as the limit of an infinitely tight
Gaussian:
5 1 22

xr) = lim e 202 4.8.1

(@) = limy s (18.1)
From this limiting expression, it follows directly that the delta function is an even function
of the argument z, §(z) = §(—z), and that it integrates to one

/fo drd(z) = 1. (4.8.2)

Another distinctive feature of the delta is that

[ O:O dz F(2)6(x) = F(0) (4.8.3)

which is quite natural when thinking of the delta as a very sharp gaussian, that is zero
almost everywhere but close to the origin. This property of course generalizes to arbitrary
arguments of the delta, that correspond to shifting the mean value of the corresponding
limiting gaussian:

/_ O:O dr F(2)8(z — o) = F(x0) (4.8.4)

Other important properties of Dirac’s delta can be found in math textbooks.

Exercise 4.3 Show that d(az) = 6(z)/|a|. Hint: Consider [ d(az)d(azx) and remember
that 6(x) = 0(—x).
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Exercise 4.4 Consider the Heaviside function defined as

1, 2>z

O(r — o) = { 0, < (4.8.5)

Show that §(z — 2') = LO(z — ).

Appendix 4.B: Fourier Transformation

In this Appendix we review some concepts of Fourier transformation.

The Fourier transform is a mathematical tool that expresses a function in terms of its
frequency (wavenumber) components. In quantum mechanics, it’s crucial for switching
between position and momentum representations. From basic Fourier analysis, given a
function f(z), its transform is defined as

3 1 o —ikx
F(k) = W/OO dz f(z)e ik (4.8.6)
and its inverse is given by
/ 1 o r ikx
1) = Gy /_OO dk f(k)e (4.8.7)

The more localized f(z) is, the more spread out f(k) becomes, and vice versa. We can
feed Eq. (4.8.7) into Eq. (4.8.6) and get

© /1 [oo .
re) = [ (2 | awete ff>> f(x) do (4.8.8)
—00 ™ J—00
Comparing this result with [dzd(x — xg) f(x) = x¢, we see that
1 oo .
o /_Oo dk e*@' =2 = §5(z' — z). (4.8.9)

This precisely demonstrates the spread in the f(k) which is infinite since this is a constant,
while the wavefunction in real space is entirely localized.
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