Chapter 2

Axioms and Tools (Part B)

2.1 Axiom 2: Measurement

We now come to one of the most fundamental, yet counterintuitive (because it wildly
departs from the classical world) axioms of quantum mechanics, related to how a
measurement is performed.

2.1.1 Measurement Outcomes

Quite generally, a measurement is a process in which information about the state of a
physical system is acquired by an observer. An observable is a property of a physical
system that in principle can be measured. Such property could be for example
momentum and spin components, etc. In quantum mechanics, it is postulated that an
observable is represented by an Hermitian (also known as self-adjoint) operator acting
on the vector space of quantum states. The fundamental axiom of quantum mechanics
(that cannot be proven) is that the measurement of an observable A prepares an
eigenstate of the hermitian operator 121, and the observer learns the value of the
corresponding eigenvalue.

In essence, let us assume that we have a certain quantum system described by a ket [},
whose expansion in the eigen-kets of A reads

) = Zci |Ai) (2.1.1)

where, as shown before, the expansion coefficients (amplitudes) are ¢; = (A;[1)). We also
assume here that the state [1)) is a ray chosen to be normalized, thus 3, |¢;]? = 1.

The measurement axiom means that when we measure the operator fl, the state [¢)
immediately collapses into one of the possible eigenstates |A;) of fl, and the result of that
specific measurement will be the associated eigenvalue, a;. The most important aspect of
the measurement process is that which of the several eigen-kets is obtained is determined
only probabilistically. Specifically, we say that the outcome a; for the measurement is
obtained with a priori probability

Prob(a) = | (Al) ” = (6] 4) (Ail) = [eif?, (2.1.2)
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known as Born’s probability rule, introduced by Max Born in 1926. We can immediately
verify that the probability defined by Born’s rule is a correct probability, in the sense that
it is correctly normalized:

> Prob(a;) =3 |al® = (¥lv) =1, (2.1.3)

where the last equality comes from the normalization condition of the state |¢).

2.1.2 Repeated measurements

If many identically prepared systems are measured, each described by the same state
|1}, then the expectation value of the outcomes is what you would expect from standard
probability theory, namely

(4) =Y a;Prob(a;) =
= Z (] 40) (Aly) =
= Z (WA A) (Aily) =
= <w\fi; |A) (Aill) =

= (V|4 . (2.1.4)

The latter equation is one of the most important equations of quantum mechanics, since
it relates the average result for repeated measurements to the quantity (1| A|v), known
as the “expectation value” of the corresponding operator.

It should be understood here that by “repeated measurement” we mean, strictly, preparing
the state |1¢) several times, and each time measuring the observable A. Each observation
k=1,2,..., M will result in a random result 1, € {ay,...,a,}. An experimental observer
can then estimate (A) with the simple mean

(A) = 22> s (2.1.5)

and in the limit M — oo this will coincide with the computed expression (1| A[¢)).

A dramatically different scenario is instead obtained if we prepare the state [¢)) only
once, and we perform a measurement over the same state over and over again. In this
case, after the first measurement, the state will collapse to a corresponding random
eigen-ket, say

’¢> measurement ’Az> ’ (216)
with probability P, = |{A;|¢) |?, and resulting in the value a; for the measurement

outcome. However, since the new state resulting from the measurement is just an
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eigenstate of the measurement operator, we have that the new state has ¢, = 1, thus if
we measure the operator A again, the result of the measurement will be again a;, with
probability 1, a deterministic measurement!

2.2 Compatible and Incompatible Observables

Two observables A and B are said to be compatible when their commutator [fl, B] =
AB — BA is vanishing, i.e. [A, B] = 0. Otherwise, if the commutator is non-zero, then
these operators are referred to as incompatible. Consider the Pauli matrices o,, o, defined

as:
01 1 0
Oy = (1 O)’ o, = <O _1> : (2.2.1)

These two matrices (when multiplied by h/2) represent physical quantities (the x,z
components of the spin operator). It can be shown (exercise) that these two operators
0,0, are incompatible, since

6,6,] = 2i (? _OZ) = 2i6,. (2.2.2)

where &, is the y component of the spin operator. Identifying which operators are
compatible and which not has an important consequence, which we will show.

Suppose that A and B are compatible observables, and the eigenvalues of A are non-
degenerate. Then the matrix representation of B is diagonal in the basis of A, thus
(Ai| B|A;) = 6,;b;, where the lower script A here denotes that the matrix elements are
with respect to the eigenkets of A. Let us prove this claim. Using the fact that Aand B
commute, we have

(Ai|[A, B)|A;) = (AJAB — BA|A;)) =
= (a; — a;) (Ai| B|A;j) =
~0, (2.2.3)
thus (Ai|§|Aj> must vanish for i # j.

Importantly, from this proof we find that [4;) and |B;) are eigen-kets of both A and B.
This can shown using the fact that B is diagonal in the A-eigenbasis, thus the
decomposition

B= > il Ai) (Al (2.2.4)

holds, which immediately implies that if we apply this operator to an eigen-ket of fl, we
get

BlAj) = Zbi |Ai) (AilAj) =

= b |4;) . (2.2.5)
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Thus, |A;) is an eigen-ket of B, and we also identify the diagonal matrix elements as the
eigenvalues b;. In general, when a certain ket is an eigen-ket of more than one operator,
we typically denote it as |A;, B;) or, often, with a collective name |K;).

Fundamental consequence of the commutativity of observables is therefore that the
measurement, process in this case is familiarly similar to what would happen in the
classical case. For example, imagine again a state |¢), and that we measure the
observable A, then the result of the measurement will yield some random value a; and
the state will collapse into the corresponding eigenstate |A;). Measuring now B will
result in the value b;, with probability 1 (recall that |A;) is also an eigenvalue of B).
Further measuring A would again return a;, thus the measurement done with B has not
destroyed (or affected in any way) the state of the system, as per the observable B is
concerned. This is a familiar situation in classical mechanics, in the sense that we can
expect to be able to measure different quantities (say, velocity and position of a particle,
for example) without changing the state of the system itself. This notion however breaks
dramatically when considering non-commuting observables.

Non-commuting observables A, B satisfy the commutation relation [A, E] # 0. In this
case, A and B do not share a set of common eigen-kets in general. Let us proof this
claim. Suppose that the converse is true, i.e. that we can find a set of common eigen-kets.
Then we have that L A

and also L A

Since AB |A;, B;) = BA |A;, B;) for all eigen-kets ¢, then this implies AB = BA, which is
in contradiction of the assumption.

2.3 The Uncertainty Principle

In Subsection 2.1.2, we have analyzed the case of repeated measurements, and came to
the conclusion that expectation value of a given operator over many experiments is given
by: R

(4) = (¥[Aly) . (2.3.1)
In addition to the expectation value, we can also compute the variance associated with

the measurement of the operator. To this end, we introduce the displacement operator
defined as:

AA=A—(MNT, (2.3.2)
such that the expectation value of its square is the variance:
A~ A\ 2 ~ ~
(AA%) = WI(A—(A) ) ) = (@IA) = WIA])° . (23.3)

This variance really measures how much the outcome of a given measurement is different
from its average, exactly following the definition of variance in statistics. For example, if
you take the case in which |¢)) is an eigenstate of A (say |A;)), it easy to see that

(AA?) = (A| 22| A;) = (AJAJA)® = a? = (a:)* =0, (2.3.4)
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thus we recover the fundamental measurement postulate, telling us that if we repeatedly
measure an eigenstate, we always find the same result (we have zero variance).

The uncertainty principle is an important result connecting the amount of intrinsic
uncertainty (variance) associated with the measurement of two observables. It states
that, for two observables A and B, we have:

1 A A2
2 2
(AA?) (AB?) > 0 ([A, B])|" . (2.3.5)
Before proving it, let us discuss the consequences of this inequality. There are two cases:

1. The two observables commute, thus [A,E] = (0. In this case, then there is no
intrinsic limit on the precision we can attain when measuring the two observables
on the same state. (AA%AA?) and (AB?AB?) can be as small as we want.

2. The two observables do not commute, thus [121, E] # 0. In this case, there is an
intrinsic limit on the precision we can attain when measuring the two observables.

In order to prove Eq. (2.3.5), we first need two intermediate results. Firstly, the
Cauchy—Schwarz inequality:

(ale) (BI8) = [{a]B) 1%, (2.3.6)

which is a generalization of the triangle inequality to other metric spaces with a given
inner product. Let us proof this inequality.

The inequality can be proven in a variety of ways. Here we consider the ket
IC) = |a) +AB), (2.3.7)

obtained as a linear combination, with complex A, of the two given kets. The norm of
this ket is obviously positive, thus

(CAICx) = (ala) + (BIB) IAI” + (@l B) A" + (Bla) A
>0.

This inequality holds for all values of A, and the Cauchy-Schwarz inequality is found
considering A = — (a|f) / (B|3), since we have

(alay = LD (238

B16)

which proves the original inequality (notice that the case in which (/|5) = 0 can be easily
proven separately).
Using the Cauchy—Schwarz inequality, with

o) = AA ), [B) = AB ) (2.3.9)

we get

(AA2|AA%) (AB?|AB?) > | (V| AAAB) [ (2.3.10)
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where we have used the fact that the displacement operators are Hermitian. We now
evaluate the R.H.S. noticing that for two arbitrary Hermitian operators we have

A A 1A A 1 A A
0102 = 5[01, OQ] + *{01,02}. (2311)

We also notice that
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= 5 ((01102) = (0201} + (00n) = (0uf01)') -
t ({{01.0:})) = 5, (({01.02}) = ({01.02))') =
- 5 (002) + (00 = (0)0n) = (0:/0.)') -

[wIaBaAw) = 3 {[(1a4 AB)[ +[(1a4 a8} =

_ jl {J(A.B)[ + [(1a4,a8y)[ ], (2.3.12)

thus omitting the second term, we get the uncertainty inequality.

2.4 Change of Basis

Non-commuting operators define a set of distinct eigen-kets and eigenvalues that can be
independently used to describe the same physical system. For example, consider two
operators A and B with eigenvalues a;, b; and eigen-kets |A;) , |B;). We therefore have the
usual eigenvalue relations:

with the orthonormality conditions
(AilA;) = dij,  (BilBj) = di; . (2.4.2)

Since they both form a complete basis for our vector space, it means that an arbitrary
ket state can be written in the either of the two orthonormal bases {|A;)} and {|B;)} as
follows

V) = Z |A;) (AslY) = ch |Aj) (2.4.3)
V) = Z | Bj) (Bjly) = Zdj |B;) - (2.4.4)
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Notice that the physical state here is exactly the same, what changes is just how we are
mathematically representing it. In quantum physics, it is very often necessary to relate
different representations, thus we require a map from one basis to the other. This is
again something that is standard in linear algebra, however it is worth recalling it here
using the bra-ket formalism.

The main result is that there is a unitary operator U that connects the two representations.

More specifically, .
By =UA) (2.4:5)

and unitarity here means that
UUt =00 =1. (2.4.6)
The operator U in bra-ket notation takes a very elegant form

U =318 (Al , (2.4.7)

which can be verified computing the explicit action of this operator on both the eigenstates
of A and B. For example, we have:

U |A;) Z|B (Aj|A) = |B)) , (2.4.8)

and the inverse transformation is found using the conjugate operator

Ut |B;) Z|A (B|B;) = |A,) , (2.4.9)

where in both cases we have used the orthonormality conditions.
It is also straightforward to verify that the operator is unitary, using the completeness

relations for B:
Ut = (Z\Bj> (A]-\) (Z’Ak) <Bk’>

= ZIB (Aj|Ar) (Byl
= Z | Bj) (Bl
=17, (2.4.10)

and A:

)(DBk ()

(2
Z (Bj| Br) (Al
51
7

(2.4.11)
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In the basis of 121, we can also work out the matrix elements of the operator U:

(AilU14;) = (A (2}; | Br) <Ak|> [4;) = (Al Bj) , (2.4.12)

there the matrix elements are just the amplitudes, or scalar product, between the two
sets of eigenstates. Similarly, the matrix elements of U in the B basis are

(BI0B) = (B, (Z 4 <Bk\) B,) = (BJlA,). (2.4.13)

thus
(AilU145) = (B0 B))" . (2.4.14)

2.4.1 Transforming States

Given an explicit form for the transformation matrix, U , we are therefore in position to
solve the problem of finding the coefficients (amplitudes) of a given state in a certain basis
(say, |B;)), once its coefficients in another basis, say |A;), are known. We have

2.4.2 Transforming Operators

Similar rules can be derived to transform matrix elements of operators, when passing
from one representation to another. For example, we can derive rules to obtain matrix
elements of a certain operator in two different bases:

(Ai|0]A;) — (B;|O|B;) .
This is (we insert 2 identities):
(Bi|O|B;) = (B;] > | 41) (Al OY |Ar) (Ax| By) =
! k
=" (Bi|A) (A4|0|Av) (Ax|B;) =
Lk

= > (AlUT1A) (AO]Ax) (AxlTIA;)), (2.4.15)

lk

which can be written also as a matrix multiplication

A A

Ow) = U{4yOun Uiy (2.4.16)
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2.4.3 What’s changing? States or operators?

We have seen that the unitary matrix corresponding to the rotation operator U can be
used either to transform states or to transform operators. The two points of view go as
follows:

1. On one side, there is only one observable (fl) and measurements of some other
observable (say, B) are obtained rotating the state vector to the corresponding new
references basis. In this case then one first prepares a state |1)g) = U |¢), and then

measures A on the new state, such that
(B) = (Y5l Alis) . (2.4.17)

2. On the other side, there is only one physical state (|¢))) and measurements of
different observables, for example of B, are found applying distinct measurement
operators on the reference state. Thus we have B = UTAU, and

(B) = (|Bly) . (2.4.18)

The two formulations are completely equivalent, and it is often the application that tells
us which way of thinking makes solving a certain problem easier. When studying time
evolution, we will see more prominently what the differences between these two
formulations can give us in terms of intuition on the physical systems. In that context,
we will identify the first viewpoint as Schrodinger’s view on quantum physics, and the
second one as Heisenberg’s viewpoint.

2.5 Analysis of the Stern—Gerlach experiments

Having introduced the most fundamental postulates of quantum mechanics, we are now in
position to resolve one unsatisfactory argument that we had to introduce at the beginning
of these lectures: the form of the eigenstates of the spin operators. First of all, it is very
important to realize that the kind of experiment we are analyzing here falls under the
second type described above (what we have called, repeated measurements). The reason is
that the SG apparatus does not measure the spin of an individual electron, but rather of a
large number of electrons at once. Schematically, we can think that independent electrons
pass through the analyzer and each of them is deflected either upwards or downwards.
What we are doing then is essentially equivalent to preparing the same state and measuring
many times.

A

2.5.1 The operator 5,

When we measure the z component of the spin in our SG apparatus, we postulate the
existence of a corresponding measure operator that we call S.. When the spin is measured
along the z direction, the system will then immediately collapse in one of the two eigen-
kets of this operator: |+) or |—), and the result of the measurement will be, respectively,
one of the two eigenvalues of the S, operator, thus either a, = +h/2 or a_ = —h/2. In
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o —

Figure 2.1: Experiment with two orthogonal SGZ and SGzZ filters each blocking their
down streams, followed by a SGZ device. The last device outputs two streams of equal
intensity.

order to find an explicit expression for the spin operators, we start observing that the
identity operator for a 2-dimensional finite vector space can be written as

L=4) (++1=) (=, (2.5.1)

and the representation of S, in the basis of its eigenvectors is just
N h
S = 5 (M) ([ =1=){=]) - (2.5.2)

The operator is also just a 2 x 2 diagonal matrix in this basis

. hf1 0
.= (0 _1> : (2.5.3)

and the notion of eigen-kets being wvectors is particularly clear when writing them as the
algebraic eigenvectors of this matrix, namely

) = (é) [y (2) | (2.5.4)

This also clarifies why we have previously remarked that kets are column vectors, whereas
bras are row vectors:

(+1=(1 0), (~I=(0 1). (2.5.5)

A

2.5.2 The operator S,

From Figure 2.1, we see that when a beam of type |S;;+) goes again through a S,
measurement, the beam is deflected in both directions, and we that the counts observed
in the SG experiment are equal: N(+) = N(—). This means that, in general,

1 1 .
S:m == — Sz; i Sza /> 2.5.6
524 = 5 1525 + e 1. ) (2:56)

where 9, is a real-valued phase that we will determine in a moment. You can verify that
this form is correct because:

1. When measuring S, in the last stage, we apply the operator S, thus the state
N 2
collapses to one of the two eigenstates of S,, with equal probabilities P(+) = ’%’ =

2
% and P(—) = ‘%6261 =

1
5
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Figure 2.2: Experiment with two SG devices aligned in the x and y directions, respectively
and blocking one component before entering the second device. All atoms emerge with
the unfiltered state. Notice that in this case atoms exiting the furnace arrive from the z
direction.

2. The state of Eq. (2.5.6) is a correctly normalized ket, indeed: (S,;+|S.;+) =1, as
it is easy to verify.

We can also find |S,; —) only using the postulates we have introduced above. Indeed, we
know that different eigen-kets of the same operator are orthogonal, thus we must have
(Su; +|Sz; —) = 0, as well as (S,; —|Sz; —) = 1, these two conditions fix the form of the
other eigen-ket:

1 1
= — S +) — —=€1 S, ). 2.5.7
)= 75154 = 55 1. -) 257
Now, it should be remarked that using only the results of Experiment 3, we cannot
determine the value of the phase factor d;, since the information we have from the
counts allows us only to reconstruct the square modulus of the amplitudes, and not the
amplitudes themselves. To find J; we need more information.

|Sm; -

A

2.5.3 The operator 5,

A similar analysis can be carried out for the y component of the spin, leading to:

1 1
|Sy; £) = 7 |52 +) £ EB@ 52 =) (2.5.8)
where we have introduced yet another phase factor, d5, to be determined. In order to
determine both phase factors, we consider the experiment as in Figure 2.2. This class of
experiments gives the same that was found before when considering the z and x directions,
and not surprisingly so, because of symmetry reasons. This however implies that

1
[ (803 +18y; +) [P = [ +19; =) P = 3, (2.5.9)
when blocking the z— component of the spin (as in Figure) and

1
(S =18y 4) [P = [ {Sa =8y =) [P = 5, (2:5.10)

when blocking the z+ component of the spin. These conditions allow to fix the phase
factors, indeed we find the condition
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2

1 1 1 1
S$7:|:Sv+ SZy+ :l:i —in 527_ X = Sz7+ "‘7 192 SZ,—
s t15,4) P = | (5 (5141 e (521) x (1800 + e [5:-))
1 1 2
(e
_ <1 4 Lt 61)) (1 n 161'(6261))
2 2 2
1
5 2.5.11
T2 (2.5.11)
This has a solution for 6, — §; = £7/2, since e*'> = 44, thus ‘%(1 + z)’Q = 3. While the

phase difference is physical, there is no way (but for conventional reasons) to fix separately
91 and d2. The usual convention is to take d; = 0 and do = /2, yielding:

1S, ) = f|sz;+>i\}§|sz;—>, (2.5.12)
15, 4) = \/_|SZ;+>:|:Z'\}§\SZ;—>. (2.5.13)

The corresponding operators are

S (lea+> <Sas§+| - |Sac§_> <SI)_D

(1823 4) (Sz; =] + 1823 =) (S +) (2.5.14)

l\.’)\b?‘l\l)

and

(|Syv+> <Sy§+| - ’Sy§ -) <Sy§ —)

l\D\DH\D\Dt‘

i (=192 +) (Sa; —| + S5 =) (Sas+]) - (2.5.15)

2.5.4 Pauli matrices

Putting together the results we have found for the three spin operators, we can finally
also compute the corresponding matrix representation of these operators. They read:

. R0 1
Sx_2(1 0), (2.5.16)
~ h{0 —i
-0 ). asn
. h{1 0
SZ:2<O _1>. (2.5.18)

The matrices that appear in these equations are very famous, and called Pauli matrices
0,0y, 0, such that S, = gaa.
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2.5.5 Measurements in different spin bases

We can compute the matrix elements of the transformation matrix connecting the S,
basis to the S, basis. The transformation operator is

H=Y"18,4) (S.11], (2.5.19)
=%+

and recalling that |S,;+) = % |S.;+) £ % |S.; —), we have that the transformation

matrix has the following matrix elements in the S, basis:

H= \}5 G _11> . (2.5.20)

This transformation matrix is of fundamental importance, for example, in quantum
computing and it is also known there as Hadamard gate. It has the property HAT =] ,
as we expect from the general properties of the transformation matrices. Measuring the
S, operator can be done then in one of two mathematically equivalent ways:

1. There is only one spin operator (5}) and measurements of the x component of the
spin are found rotating the state vector to the corresponding new references basis!.
In this case then one prepares a state |[¢,) = H [¢)), and then measures S, on the
new state, such that

(Se) = (]S, |s) -

2. There is only one state (|¢))) and measurements of different observables, for example

of S”a;, are found applying distinct measurement operators on the reference state.
Thus we have S, = H'S,H, as it can be easily checked, and

(Se) = (W1S.|0) .

Notice that rotating to the x basis, which by definition is a rotation in an abstract vector space, in
this special case corresponds to an actual physical rotation in real space of the SG device. This is a quite
special coincidence that happens almost exclusively for spin observables.
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