
Chapter 2

Axioms and Tools (Part A)

This chapter covers the mathematical foundations of the fundamental concepts in
quantum mechanics. We will introduce and discuss the axioms, as formulated by Paul
Dirac and John von Neumann. These axioms establish the mathematical framework of
quantum mechanics, which is primarily based on linear algebra. A solid understanding
of these concepts is essential for solving quantum mechanical problems throughout the
rest of the course.

2.1 Axiom 1: State Vectors
In quantum mechanics, a physical state—for example, the spin of an electron—is
represented by a state vector in a complex vector space. The dimensionality of this
vector space, in general, is unrelated to the physical dimension of the system under
exam (say, the familiar 3-dimensional space of classical mechanics coordinates, for
example) but instead is an abstract space. In Stern-Gerlach–type experiments where the
only quantum-mechanical degree of freedom is the spin of an atom, the dimensionality is
determined by the number of alternative paths the atoms can follow when subjected to
a SG apparatus; in the case of the silver atoms of the previous section, the
dimensionality is just two, corresponding to the two possible values sz can assume.
Later, we will consider the case of continuous degrees of freedom—for example, the
position (coordinate) or momentum of a particle—where the number of alternatives is
infinite, in which case the vector space in question is known as a Hilbert space.

Following Dirac, we call a vector in this space a ket and denote it by |ÂÍ. This state ket
is postulated to contain complete information about the physical state; everything we
are allowed to ask about the state is contained in the ket. For finite-dimensional spaces,
quantum states obey familiar linear algebra properties.

We will now introduce the mathematical space in which kets "live", the Hilbert space. A
Hilbert space is a vector space over the complex numbers C. Vectors in this space are
conventionally called kets and denoted by |ÂÍ . The dual of a ket is called a bra and is
denoted by ÈÂ|. In the following we denote the dual correspondence with ¡, and the
following relations are postulated

|ÂÍ ¡ ÈÂ| , (2.1.1)
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thus kets correspond to bras. When a constant c multiplies a ket, then the dual
correspondence is the bra times the complex conjugate of the constant cú

c |ÂÍ ¡ ÈÂ| cú . (2.1.2)

For finite-dimensional spaces, kets correspond to column vectors (n ◊ 1 matrices), given
some representation. Bras correspond to row vectors ( 1 ◊ n matrices).

In this Hilbert space, we can define the inner product ÈÂ|„Í the maps an ordered pair of
vectors (in this case to a complex number), and that has the properties:

(a) Positivity: ÈÂ|ÂÍ > 0 for |ÂÍ ”= 0

(b) Linearity: È„| (a |Â1Í + b |Â2Í) = a(È„|Â1Í + b È„|Â2Í

(c) Symmetry: È„|ÂÍ = ÈÂ|„Íú, where the star symbol denotes complex conjugation.

Notice again that all these three properties are very natural for complex vectors, once
the inner product is identified with the dot product ÈÂ|„Í = Ą̂† · „̨, where the symbol †
corresponds to conjugate transpose of the vector.

A quantum state can be consider a ray, which is an equivalence class of vectors that di�er
by multiplication by a nonzero complex scalar. For any nonzero ray, we can by convention
choose a representative of the class, denoted |ÂÍ, that has unit norm:

ÈÂ|ÂÍ = 1 (2.1.3)

and all other states obtained multiplying this state by an arbitrary non-zero constant
represent the same physical state:

c |ÂÍ © |ÂÍ (2.1.4)
Since every ray corresponds to a possible state, given two states |„Í , |ÂÍ, another state
can be constructed as the linear superposition of the two:

|ÂÕÍ = a |„Í + b |ÂÍ . (2.1.5)

Notice that the global phase of the state is irrelevant, thus ei– |ÂÕÍ © |ÂÕÍ. The relative
phase in this superposition is however physically significant. For example, the state
a |„Í + b |ÂÍ is the same ray as ei–(a |„Í + b |ÂÍ) but it is di�erent from (a |„Í + ei–b |ÂÍ).

2.2 Operators
Operators are the natural companion of state vectors. They are the tool used to do all
physically meaningful manipulations of a quantum state. In the following, we denote
operators with Â, to distinguish them from scalars. An operator acts on a ket from the
left,

Â |ÂÍ = |ÂÕÍ (2.2.1)
resulting into another ket |ÂÕÍ. In the familiar case of finite-dimensional vector spaces,
operators are nothing but matrices acting on vectors in some representation. Thus, the
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action of a matrix onto a vector results into another vector. In the more general case of
Hilbert spaces, observables are linear maps taking vectors to vectors:

Â : |ÂÍ ‘æ Â |ÂÍ (2.2.2)

In general when an operator acts on a ket, it produces a distinct ket. However, there are
special cases in which the application of an operator leads to a constant times the initial
ket. Those are known as eigen-kets |AnÍ and have the following property

Â |A1Í = a1 |A1Í
Â |A2Í = a2 |A2Í
Â |A3Í = a3 |A3Í

· · ·
Â |AnÍ = an |AnÍ ,

where the action of the operator is to return the same ket multiplied by a scalar an,
which are complex-valued in general. Those are eigenvalues of the operator Â, and the
corresponding states |A1Í , |A2Í , |A3Í , . . . , |AnÍ are the eigen-kets. Again, for
finite-dimensional spaces the notion of eigen-ket is strictly equivalent to that of
eigen-vectors in linear algebra.

2.2.1 Adjoints and Hermitian Operators
The adjoint of the operator is denoted as Â† and is defined by the dual relationship

Â|ÂÍ ¡ ÈÂ|Â†|, (2.2.3)

for all states |ÂÍ. A special class of operators is that of Hermitian operators Â, for which
Â = Â†. As we will clarify in the following, Hermitian operators in quantum physics play
an important role in the measurement process, as they represent observable quantities.

For a Hermitian operator, the following property is satisified:

È„|Â|ÂÍ = ÈÂ|Â|„Íı .

We show this by using the symmetry property of the inner product
È„|Â|ÂÍ = È„|ÂÂÍ = ÈÂ|Â|„Íı. Then, by the definition of adjoint, we have that the dual
of |ÂÂÍ ¡ ÈÂ|Â† = ÈÂ|Â|, thus È„|Â|ÂÍ = ÈÂ|Â†|„Íı. If Â = Â† then
È„|Â|ÂÍ = ÈÂ|Â|„Íı.

Another important aspect of Hermitian operators is their spectrum. In particular, the
eigenvalues of a Hermitian operator Â are real valued. We also find that the eigen-kets
of Â corresponding to di�erent eigenvalues are orthogonal. We prove these two claims
together. Consider the eigensystem of Â

Â|AiÍ = ai|AiÍ, (2.2.4)
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and its dual equivalent
ÈAj|Â† = ÈAj|aı

j = ÈAj|Â . (2.2.5)

In the second equality, we used the fact that the operator is Hermitian. Multiplying Eq.
(2.2.4) on the left by ÈAj| and Eq. (2.2.5) on the right by |AiÍ, and subtract the results
we get

ÈAj|AiÍ(ai ≠ aı
j) = 0. (2.2.6)

When i = j (the two eigenvectors represent the same state), we must have ai = aı
i ,

hence the eigenvalues are real. In the case i ”= j, we have that ÈAj|AiÍ = 0, under the
assumption that the eigenvalues are real and di�erent (ai ≠ aj) ”= 0. The two
eigenvectors are orthogonal.

In the following we will assume that the eigen-kets of operators are taken to be
orthonormal, i.e. satisfy the condition

ÈAj|AiÍ = ”ij. (2.2.7)

Notice that this condition can always be enforced, because of the orthogonality condition
of the previous theorem and because, as we have seen before, the normalization of each
|AiÍ is arbitrary (we can thus take it to be 1).

2.2.2 Representing state kets with eigen-kets
Choosing an operator Â and forming its eigen-kets is in general a very important
conceptual and practical step needed to represent arbitrary ket states. We will use
eigen-kets of operators as base kets to expand arbitrary kets, as much as for an
Euclidean space one uses orthogonal unit vectors (coordinates) to represent an arbitrary
vector. We provide an example for the latter. Consider an arbitrary vector R̨. We may
choose to represent it in cartesian coordinates as follows

R̨ = xx̂ + yŷ + zẑ (2.2.8)

where x̂i represent the basis and x, y, z are the projections to this basis. We may choose
to reprepsent this vector in an alternative basis, eg the spherical coordinates basis:

R̨ = Rr̂ (2.2.9)

Both provide valid representations for the vector R̨, however typically one of them
might be more convenient to use. We will demonstrate this later.

Let us now go back to the arbitrary vector space.A ket |ÂÍ can be represented as a linear
combination of eigen-kets of some operator Â in this way:

|ÂÍ =
ÿ

i

ci |aiÍ , (2.2.10)

where the complex-valued coe�cients ci are to be determined. Multiplying the above
equation with Èaj| and using the orthonormality condition Èai|ajÍ = ”ij, we obtain:
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ci = Èai|ÂÍ . (2.2.11)

The expansion coe�cients ci (often referred to as amplitudes of the state on the eigen-kets
of Â) are then formally computed as an inner product of a bra Èaj| with the state ket |ÂÍ.
We also notice that the normalization of the state reads:

ÈÂ|ÂÍ =
ÿ

ij

ÈAj|cú
jci|AiÍ =

ÿ

i

|ai|2 (2.2.12)

thus an equivalent condition for the state to be normalized is that ÈÂ|ÂÍ = q
i |ci|2 = 1.

We can also re-write the expansion of as

|ÂÍ =
ÿ

i

|AiÍ ÈAi|ÂÍ (2.2.13)

From the above result, we deduce a very important relationship called completeness
relation or closure and reads ÿ

i

|AiÍ ÈAi| = 1̂ (2.2.14)

This relation holds for arbitrary |ÂÍ. Interestingly, the operator P̂i = |AiÍ ÈAi| is called
the projection operator, and it acts on the state ket |ÂÍ. It projects an arbitrary state
vector onto an eigenket i of Â.

Exercise 1.1 Show that the projection operator is idempotent, meaning when operated
by itself it remains unchanged, i.e. P̂ 2 = P̂ .

2.2.3 Matrix Representation
The projection operator previously introduced is also important to highlight the direct
connection between operators and matrices. Specifically, given an arbitrary operator B̂,
we can insert the completeness relation twice:

B̂ =
ÿ

i

|AiÍ ÈAi| B̂ =
ÿ

ij

|AiÍ ÈAi| B̂ |AjÍ ÈAj| (2.2.15)

and identify B(i, j) ©
e
Ai|B̂|Aj

---Ai|B̂|Aj

f
as the matrix element of the operator B̂ in the

basis of the eigenkets i and j of Â. We can then explicitly write B̂ as a N ◊ N matrix
with elements

B̂ =

Q

ccccca

ÈA1|B̂|A1Í ÈA1|B̂|A2Í · · · ÈA1|B̂|AnÍ
ÈA2|B̂|A1Í ÈA2|B̂|A2Í · · · ÈA2|B̂|AnÍ

... ... . . . ...
ÈAn|B̂|A1Í ÈAn|B̂|A2Í · · · ÈAn|B̂|AnÍ

R

dddddb
, (2.2.16)

where we have assumed that the dimensionality of the vector space is finite and equal to
n. For example, for our spin 1

2 case, we have that the dimensionality is n = 2.
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This explicit matrix representation also allows to better clarify the concept of Hermitian
conjugate (adjoint) operator Â†, since the result of È„|B̂|ÂÍ = ÈÂ|B̂|„Íı is true if B̂ is an
Hermitian operator) directly translates into a condition for the matrix elements

Bij = Bı
ji , (2.2.17)

thus for finite-dimensional Hilbert spaces an Hermitian operator is nothing but an
Hermitian matrix.

Further notice that the representation of the operator Â itself in its eigen-ket basis is
nothing but a diagonal matrix, whose elements are the eigenvalues, i.e., Aij = ”ijai. It
also immediately follows that Â = q

i ai |AiÍ ÈAi|.

To end this section, we will demonstrate with an example how Dirac’s notation is a
powerful way of writing expressions involving linear operators. Consider the case of an
operator D̂ = B̂Ĉ. The matrix elements, expressed in the eigenbasis of Â, can be obtained
using again the completeness relation:

Dij = ÈAi|B̂Ĉ|AjÍ =
= ÈAi|B̂1̂Ĉ|AjÍ =

= ÈAi| B̂
3 ÿ

k

|AkÍ ÈAk|
4

Ĉ |AjÍ =

=
ÿ

k

ÈAi| B̂ |AkÍ ÈAk| Ĉ |AjÍ =

=
ÿ

k

BikCk,j , (2.2.18)

which correspond to the usual notion of matrix multiplication.

2.2.4 Finding eigen-kets
The explicit representation of operators in terms of matrix elements is also very useful to
explicitly find eigen-kets and eigenvalues, given a certain operator. Let us consider again
the matrix elements of the operator B̂ in the Â basis, namely: Bij © ÈAi|B̂|AjÍ. The
eigenvalue equation is

B̂ |BkÍ = bk |BkÍ , (2.2.19)
for the unknown bk and |BkÍ. We can rewrite this as

B̂
ÿ

j

|AjÍ ÈAj|BkÍ = bk |BkÍ

∆ ÈAi| B̂
ÿ

j

|AjÍ ÈAj|BkÍ = bk ÈAi|BkÍ

∆
ÿ

j

ÈAi|B̂|AjÍ ÈAj|BkÍ = bk ÈAi|BkÍ

which in matrix notation is
Q

cca

ÈA1|B̂|A1Í · · · ÈA1|B̂|AnÍ
... . . . ...

ÈAn|B̂|A1Í · · · ÈAn|B̂|AnÍ

R

ddb

Q

cca

ÈA1|BkÍ
...

ÈAn|BkÍ

R

ddb = bk

Q

cca

ÈA1|BkÍ
...

ÈAn|BkÍ

R

ddb . (2.2.20)
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The eigenvalues are found, as in standard linear algebra, as solutions of the characteristic
equation

det
1
M̂ ≠ bkÎ

2
= 0 , (2.2.21)

and once the bk are found, we solve the homogeneous linear system

(M̂ ≠ bkÎ)v̨k = 0 , (2.2.22)

for the unknown vectors v̨k. This procedure is found in any standard linear algebra book.

Exercise 1.2 Diagonalize the following matrices:

B1 =
A

2 1
1 4

B

, B2 =
A

0 0
0 1

B

.

Exercise 1.3 Consider the matrix

� =

Q

ca
0 0 1
0 0 0
1 0 0

R

db .

(a) Is it Hermitian?

(b) Find its eigenvalues and eigenvectors.

(c) Construct the matrix U , where its columns correspond to the eigenvectors you found
earlier.

(d) Show that U †�U is diagonal. What are the diagonal elements? Are they familiar
to you?

Exercise 1.4 Consider the matrix

� =
A

cos – sin –
≠ sin – cos –

B

,

where – is a real number.

(a) Show that it is unitary.

(b) Show that the eigenvalues are e±i–.

(c) Find the corresponding eigenvectors, and show that they are orthogonal.


