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Pré-corrigé 7 : Interférences et diffraction

1 Anneaux de Newton
Une lentille optique plan-convexe, posée sur un miroir parfait, est illuminée
par une onde monochromatique. On suppose que l’épaisseur d(r) de la couche
d’air sous la lentille est négligeable par rapport au rayon de courbure de
la lentille R, c’est-à-dire d � R. La figure ci-contre représente la lentille
plan-convexe reposant sur le miroir.
(a) En utilisant la limite d � R, montrer que d ≈ r2/(2R). Avec cette

approximation, montrer les ondes réfléchies et réfractées d’une onde
incidente verticale restent elles-mêmes verticales.

(b) Décrire le comportement d’un faisceau incident réfléchi aux différentes interfaces. On négligera
les réflexions multiples. Expliquer qualitativement pourquoi un observateur placé au-dessus
de la lentille observe des interférences qui se manifestent par des anneaux concentriques
alternativement sombres et clairs appelés « anneaux de Newton ».
Solution :

miroir

lentille

E1 E2

(c) Déterminer le rayon rm du me anneau sombre ainsi que la loi décrivant l’augmentation du rayon
entre deux anneaux sombres consécutifs.
Solution :

rm =
√

mλR

(d) Quelle est l’aire séparant deux anneaux sombres ? Dépend-elle de m ?
Solution :
L’aire séparant rm et rm+1 est donnée par :

Am = π(r2
m+1 − r2

m) = πλR = cst.

(e) Déterminer la loi décrivant le rayon r′
m de l’interférence constructive.

Solution :

r′
m =

√(
m + 1

2

)
λR
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2 Interféromètre de Fabry-Perot
Un interféromètre de Fabry-Perot est un instrument optique composé
de deux surfaces partiellement réfléchissantes. Il permet de laisser passer
uniquement les longueurs d’onde de la lumière incidente qui sont en
résonance avec la cavité optique formée par les deux surfaces. On désire
caractériser la figure d’interférences de cet interféromètre en assimilant
les surfaces aux deux interfaces d’une lame de verre de largeur d et
d’indice de réfraction n. Pour simplifier l’analyse, on considère une onde
monochromatique incidente sur la lame avec un angle incident θi par
rapport à la normale. Le rayon incident est réfracté avec un angle θr.
(a) À l’aide d’un diagramme, expliquer comment se comporte un rayon lumineux incident traversant

la lame de verre. Considérer des réflexions multiples et montrer qu’un rayon entrant engendre
plusieurs rayons sortants (ayant traversé la lame). Déduire la différence de phase ∆φ(θr) en
fonction de θr entre deux rayons sortants successifs.
Solution :
La différence de chemin optique est donnée par :

δ = 2nd cos θr.

La différence de phase δ est donc donnée par :

∆φ = 4πnd

λ
cos θr.

(b) On suppose que la réflectivité de l’interface verre-air est égal à R < 1. Calculer l’amplitude sn(∆φ)
de chaque réfraction en sortie de l’interféromètre. En déduire l’amplitude totale stot en fonction
de l’amplitude incidente si.
Solution :
Amplitude totale de l’onde transmise stot :

stot = (1 − R)si

1 − Rei∆φ
.

(c) Montrer que la transmittance est donnée par :

T (θr) =
[
1 + 4R

(1 − R)2 sin2 ∆φ(θr)
2

]−1
.

(d) Donner les conditions pour avoir une transmittance maximale et dessiner la transmittance pour
un angle θr fixe en fonction de ∆φ, puis de λ. Que remarque-t-on ? En déduire une application
de l’interféromètre de Fabry-Perot.
Solution :
Les maxima de la transmittance ont lieu quand :

∆φ

2 = mπ =⇒ λm = 2nd cos θr

m
.

3 Pression de radiation
On présente deux approches afin de dériver l’expression de la pression de radiation. On considère une
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onde électromagnétique plane progressive,

Ei = Re
[
E0,ie

i(kx−ωt) ey
]

= E0,i cos(kx − ωt) ey,

se propageant depuis x < 0 dans le vide et incidente sur un miroir plan, métallique et parfaitement
conducteur en x = 0, ce qui implique donc que le champ électrique s’annule à l’interface, E(x = 0) = 0.
Ceci implique donc une onde électromagnétique réfléchie,

Er = Re
[
E0,re−i(kx+ωt) ey

]
= E0,r cos(kx + ωt) ey.

(a) Déterminer l’amplitude E0,r en fonction de E0,i. Donner une expression pour les champs
électrique et magnétique Etot et Btot résultants pour x < 0. Pour l’onde incidente, calculer la
moyenne temporelle du vecteur de Poynting 〈Si〉 = 〈Ei ×Bi〉/µ0, ainsi que la densité volumique
d’énergie moyenne 〈uv,i〉 de l’onde électromagnétique.
Solution :
On a E0,r = −E0,i. Le champ électrique est donné par :

Etot = 2E0,i sin(kx) sin(ωt) ey.

Le champ magnétique est :

Btot = 2E0,i

c
cos(kx) cos(ωt) ez.

La densité volumique d’énergie moyenne de l’onde électromagnétique est donnée par :

〈uv,i〉 = 1
2ε0E2

0,i.

La moyenne du vecteur de Poynting s’écrit :

〈Si〉 = c〈uv,i〉 ex.

(b) Déterminer la charge surfacique σ et le courant surfacique Js en x = 0.
Solution :
La charge surfacique est nulle, σ = 0. Le courant surfacique est donné par

Js = 2cε0E0,i cos(ωt) ey.

(c) L’expression de la force résultante est donnée par :

dF = 1
2(σ Etot + Js × Btot) dS, (∗)

où dS est un petit élément de surface. Donner une explication pour le facteur 1/2. En déduire
que l’onde exerce une pression P sur le miroir dont on calculera la valeur moyenne 〈P 〉 en
fonction de la densité volumique moyenne d’énergie 〈uv,i〉 de l’onde incidente, puis de la densité
volumique moyenne d’énergie 〈uv,tot〉 de l’onde totale.
Solution :

〈P 〉 = 〈dF〉
dS

· ex = ε0E2
0,i = 2〈uv,i〉 = 〈uv,tot〉

2

Dans un second temps, l’expression de la pression de radiation peut également être dérivée en
considérant la nature corpusculaire de la lumière.
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(d) En utilisant la relation de l’énergie d’un photon Eγ = c‖pγ‖, déterminer l’expression de la
pression de radiation 〈P 〉 produite en fonction de la puissance émise Pw et de la distance r de
la surface considérée par rapport à la source.
Solution :

〈P 〉 = Pw

2πr2c

(e) Déterminer le rayon limite Rlim d’une sphère métallique pour lequel celle-ci pourrait être éjectée
du système solaire, en tenant compte de la pression de radiation. On suppose que le Soleil émet
un rayonnement d’une puissance Pw. La section efficace de la sphère est donnée par πR2.
Solution :

R > Rlim =
√

2GcMm

Pw
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