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21 mars 2025

Pré-corrigé 5 : Ondes stationnaires

1 Ondes stationnaires dans une colonne d’eau

Un long cylindre vertical de rayon R et de longueur L, ouvert a son extrémité supérieure, est rempli

d'une colonne d'eau de hauteur k. La hauteur de la colonne d'air est notée H = L. — h. Une pompe

de débit ) permet d'ajuster h. Un diapason, dont la fréquence propre est v, est placé au sommet du

cylindre. Dans un premier temps, on suppose que I'eau est un milieu opaque (qui ne permet pas la

transmission d'ondes sonores).

(a) Déterminer les hauteurs de la colonne d'air H,, pour lesquelles on observe une résonance associée
au n° mode propre de I'onde sonore du diapason. On note u,;; la vitesse de propagation des
ondes sonores dans |'air.

Solution :

(2n+1)

H, =
4y

Uair, Nn=0,1,2,...
(b) A I'aide de la pompe, on fait monter le niveau d'eau. Déterminer le temps At séparant deux
instants ou le cylindre entre en résonance avec le diapason.

Solution :

TR?uy;
At = —2% —9237s.
2Qv >

Dans un second temps, on ne considére plus I'eau comme étant un milieu opaque. On considére
d’abord une onde progressive incidente sinusoidale d'amplitude §? et de fréquence w. A l'interface
entre I'eau et I'air, I'onde incidente se décompose en une onde réfléchie, se propageant dans I'air, et
une onde transmise dans |'eau.

(c) En posant les conditions de continuité de I'amplitude du déplacement et de la pression a
I'interface, dériver les amplitudes ¢° et &Y des ondes transmises et réfléchies en fonction de
['amplitude incidente 5?. On note Kajr et Keau les coefficients de compressibilités des milieux
respectifs.

Solution :

o KeauKeau — KairKair .
& = & = R¢;
KeauFeau + KairKair
2KairKair

& = §i=T¢

KeauFeau 1 KairFair

Finalement, on s'intéresse a la possibilité d'observer des ondes stationnaires qui se développent dans

I'eau et I'air.

(d) Déterminer les conditions nécessaires pour qu'une onde stationnaire soit présente dans les deux
milieux en fonction des nombres d'onde k,j- et keau, des coefficients de compressibilité x,; et
Keau, de H ainsi que L.

Solution :

Kairkair SIN(Kair (L — H)) sin(keauH) — Keaukeau €08(kair (L — H)) cos (keauH)
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Timbre d’un instrument a cordes

Dans cet exercice, on propose d'étudier les vibrations d'une corde de longueur L dans les cas ou elle
est initialement pincée ou frappée. On considére la corde sujette a une tension 7" et de masse linéique
u. La corde est fixe a chacune de ses extrémités.

Pour commencer, on considére une corde pincée en son milieu, c’est-a-dire que la corde est initialement
de forme triangulaire, avec le sommet situé a égale distance des extrémités fixes. Le sommet est
déplacé de A par rapport a la position au repos de la corde.

(a)

(d)

Déterminer la forme générale de la solution de I'équation d'onde. Identifier les modes propres
du systeme.

Solution :
La solution générale i(x,t), apres imposition des conditions aux bords, est donnée par une
somme de modes propres :

P(a,t) = i Un(z,t), avec Yp(x,t) = sin(knx)[by, cos(knut) + ¢, sin(kyut)].
n=0

Imposer que la solution de I'équation d'onde trouvée au point (a) satisfasse les conditions
initiales, en déduire que

O 8A(-1) . 2n+ Dz
1/1(x,t:O):Z(2n_(F1))27T281n(( t}) >

n=0

Solution :
On trouve que ¢, = 0 (condition initiale sur 91 /0t), et avec n € N, que by, = 0 (condition
initiale symétrique par rapport au centre de la corde) et

. BAC)"
LT op 4 122

Dériver I'évolution temporelle du déplacement de la corde. Quelle est I'intensité de I'onde sur la
corde en fonction du temps?

Solution :
L’évolution temporelle de la corde pincée en son centre est :

Y(x,t) = mi::ﬂ (287;4&:11))22 Sin((2m Zl)ﬁm> cos<(2m—;1)7mt>.

L’intensité de la corde est donnée par :

I(t) = Z I (1),

m=0

ou l'intensité de chaque harmonique I,,(t) est donnée par :

it = [ mon (5]

Refaire les points (a)—(c) en considérant une corde pincée au 1/3 de sa longueur.



Solution :
L’amplitude de la corde pincée au 1/3 de sa longueur est donnée par :

= t
Pz, t) = nz::l bn sin(nzx> cos<m;u ),

avec

sin(nm/3) — (nm/3) cos(nm/3)

o sin(2mn/3) — (2mn/3) cos(2mn/3)
2n?m?

by = 6A —(-1)

On aimerait également étudier le cas d'une corde frappée plutét que pincée, comme pour un piano
par exemple. Initialement, la corde est supposée étre a sa position d'équilibre, mais sur un intervalle
de longueur a centré en L/2, une vitesse initiale vy est donnée aux éléments de la corde. Cette
condition se traduit en

oY

P(x,0) =0 et n

0 sinon.

_{m size[(L—a)/2,(L+a)/2,

t=0

(e) Dériver I'évolution temporelle de la corde frappée.

Solution :

4vgL ) <(2m + 1)71'@) sin( (2m + 1)7ra:> sin<(2m + 1)7rut)

dat)= > ()" 2m + 1)272u " oL L L

m=0

3 Corde dans un milieu visqueux

On considére une corde de longueur L et de masse linéique i dans un milieu visqueux. Les bords de
la corde sont considérés comme étant fixes. Chaque élément infinitésimal de corde dz est soumis a
une force de frottement infinitésimale dF = —Avdx, ou A > 0 est le coefficient de frottement par
unité de longueur. La corde est soumise a une tension 7. La vitesse de propagation de la perturbation
est notée u.

(a) Montrer que I'équation d'onde, en tenant compte des frottements, s'écrit :
P ANdY 0%
— +t = =u"—.
otz p ot Ox?
(b) En utilisant la méthode de séparation de variables, dériver les modes propres d'une corde dans

un milieu visqueux. Discuter de I'évolution temporelle des différents régimes observés pour ces
modes propres.

Solution :

VA, €R (sur-critique) : ¥y (z,t) = e M sin(knx)(Ae\/Et + Be_\/E‘t)7
VA, =0 (critique) : ¢y, (z,t) = e Msin(kyz)(A + Bt),
VA, € iR (sous-critique) : (1) = e sin(k’na?)(Ae“‘/T”lt + Be*i‘\/Ain‘t)7
ot A, =A% — k2u?, A = \/2u et k,, = nn/L.

(c) Obtenir la relation de dispersion w = w(k).



Solution :

K= +itw
7!

u
(d) En considérant w € C et k € R, que peut-on dire sur |'évolution temporelle d'un paquet d'onde ?

Solution :
Comparer la fréquence angulaire obtenue en question (c¢) avec les régimes identifiés en (b).



