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Une particule de masse au repos my et de vitesse vi =
ve, entre en collision avec une particule de masse
au repos 2mg, de méme vitesse scalaire vo = vey,
mais sur une trajectoire perpendiculaire a celle de la
premiére particule (voir dessin ci-contre). Juste apres
la collision, les deux particules forment une nouvelle
particule, qu'on appellera « particule composite », de mo =

Corrigé 12 : Dynamique relativiste

Collision relativiste a I’équerre

quantité de mouvement P15. Cette particule compo-

site se décompose, aprés un certain temps, en deux V2

photons de mémes énergies. L'angle entre la trajec-
toire des deux photons vaut 2¢. 2mo

(a) Quel est le module de la quantité de mouvement P2 de la particule composite ?

On calcule d’abord la quantité de mouvement de chaque particule incidente,
P1 = YmMo Vi et P2 = 27m0 Vo, (1)

ou le facteur v est le méme pour les deux particules. La quantité de mouvement de la
particule composite, par conservation de la quantité de mouvement du systeme, est

Py = Py + Py = ymo(vy + 2 vy) (2)

dont le module vaut

IP12] = Pr2 = VBymyu. (3)

Quelle est la masse au repos Mj,, de cette particule composite ?

Les énergies des particules incidentes sont
Ei = ymoc® et Ey = 2ymoc?. (4)
Pour trouver la masse de la particule composite, on calcule d’abord son énergie,
E1y = E1 + Fy = 3ymgc. (5)

En utilisant B3, = Mouc + P%4c?, on obtient

5 2
Mo, = ,/ — P22 = 0 /9¢2 50% = Bymoy[1— o= (6)

9c

Que vaut I'angle ¢ ?

Les deux photons sont identiques, et donc ils ont la méme quantité de mouvement (en
module) et ils se partagent 1’énergie disponible :

FE
pr=p2=p et FEy=Fy= 212 (7)

La relation E = pe, valable pour les photons, implique p = 3ymgc/2. Finalement, par



conservation de la quantité de mouvement, on obtient

Vhu

Piy = V5ymov = 3ymoccos ¢ = |[p1 +p2|| = cosd = -~ (8)

2 Choc relativiste
On consideére deux particules élémentaires (1 et 2), de masses

au repos mi1 = mg = m, se dirigeant |'une vers |'autre dans un
référentiel R lié au laboratoire. Dans R, la premiére particule
se déplace a une vitesse relativiste vi = vie;, v1 > 0, et la
deuxieme particule se déplace a une vitesse relativiste vy =
—vg €z, U2 > 0, ol e, est le vecteur unitaire le long de I'axe .
On introduit également le référentiel R’ lié a la particule 1, c'est-
a-dire que la particule 1 est au repos dans R’. On définit deux
événements A et B dont on connait les propriétés suivantes :
— événement A : la particule 1 se trouve enty = x4 =0
(dans R) et t/; = 2’y = 0 (dans R’),
— événement B : la particule 2 se trouve en tg = 0 (dans
R) et 23 > 0 (dans R').
Exprimer tous les résultats en fonction de vy, v9, m, x’B et la
vitesse de la lumiere, c.
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(a) Déterminer xp et t’;. Est-ce que les deux événements A et B sont simultanés dans R’?
Déterminer également la vitesse v, de la particule 2 dans le référentiel R,

Les deux événements A et B sont représentés sur les deux panneaux supérieurs de la figure 1
pour les deux référentiels R et R’. En utilisant les transformations de Lorentz,

U1 U1
rg =m(zp —wntg) =mzp et th=m <tB — 02m3> =N 3%8, 9)

avec
1

Nn=—7——
\/1—vf/c?

c’est-a-dire,

/ 2

X v v

B ! 1 / 1
xp=—=2ap\|l——5 et tp=—-7n—5r=

- B 2 B v 2

On constate que t’y # t'4. Les événements A et B étant simultanés dans R, ils ne le sont
donc pas dans R’. On cherche désormais & transformer une vitesse v = dx/dt dans R en

une vitesse v’ = dz’/dt’ dans R,

(10)

(%
——=Tpg. 11
CQ‘TB ( )

U,_iﬂ_ yi(de —vi dt) dx/dt — vy . v—n (12)
dt y(dt —vidz/c?) 1 — (vi/c?)dx/dt 1 —wvvi/c?
On peut donc exprimer la vitesse v, = —v) e, en fonction de vy = —vg e, :
’ U1 + V2
= 13
277 + v1v2/c? (13)

(b) On définit I'événement C' comme l'instant auquel la particule 1 et la particule 2 entrent en
collision. Déterminer les coordonnées t et z¢ de I'événement C' dans le référentiel R. Faire de



méme pour les coordonnées ¢ et z;. dans R'.

Dans R, les particules 1 et 2 doivent parcourir respectivement une distance d; = x¢c — x4 =
rc et do = xg — x¢. On peut donc poser

d1 d2 V1 V1 2)2
— =— = zc(v1 +v2) =zpV1 = TC =178 = 2’ 1—-1 (19
1 V2 U1 + v2 U1 + U2 c

ou on a remplacé xg a 'aide de I’équation . A T'aide de 'équation précédente, le temps
U placé a I'aide de I’équation (11). A Daide de 1’équation p dente, le temp

tc est
d x x v?2
to=—="Y=_"B /11 (15)
U1 U1 V1 + Vg c

Dans R’ on calcule les coordonnées en utilisant les transformations de Lorentz :

2 / 2
mIc Tc 1)1 :L'B Ul
¢ %(C c2 ) 7101( cQ) v1+v2< 02)’ (16)

e =y (xo —vite) = 0. (17)

Le méme résultat peut étre obtenu en considérant que la particule 2 doit parcourir une
distance d' = 23 — 2’y = 25 dans R'. Puisque la particule 1 est au repos dans R/, il suit
que z = x'y = 0. Pour la coordonnée temporelle, on a que
dl
te =t + ——. (18)
[[vall

On substitue t; a l'aide de I'équation (11), d’ par =5 et v} par I'expression (13),
2 2

2 / /
1 14+ vve/c x VivVs U V1 V9 x v
tc = -2+ / =B _[1+ 5 ——;— 5 | = B ——; . (19)
c V1 + V2 V1 + V2 c C c V1 + V2 c

A partir de maintenant, on suppose que v; # vy = 0, c'est-a-dire que la particule 2 est au repos

dans le référentiel R avant la collision.

(c) Soit R” le référentiel du centre de masse des deux particules, dans lequel la somme de leurs
quantités de mouvement est nulle. Déterminer u, la vitesse de R” par rapport a R. Montrer
que dans le cas v; < ¢ on retrouve le résultat de la mécanique classique.

La situation dans le référentiel R” est représentée sur le dernier panneau de la figure 1.
En utilisant la formule des transformations des vitesses (12) et en notant u la vitesse de
translation entre R et R”,

V1T —Uu
1= — et vh = —u. (20)
1 —wvu/c
Dans R”, la somme des quantités de mouvement doit étre nulle, c.-a-d. my,v] = —myavY,
et donc . Y
v v
! =— 2 . (21)
"2 /.2 "2 /.2
1 —=v%/c \J1—v5%/c
Cette derniére égalité n’est possible que si v = —v¥. En mettant (21) au carré
b q 1 2 )
n2,.12 "2, 12
2 V17U2" o U1V "o 2
Ul - 702 — 'U2 - 702 — Ul — 'UQ . (22)



On impose donc v} = u dans I’éq. (20) pour obtenir

2 62 2

—s=u = U —2—u+c" =0 = u=—|[1£4/1—-—=]. 23
1 —vju/c? vy + v 2 (23)
En imposant |u| < ¢, on obtient
2 2
c v
u=—|1—4/1--L 24
o 2 (24)

Si on avait considéré une approche non relativiste, on aurait obtenu que v{ = vy — u et
vy = —u, et donc u = v1/2 puisque v} + v§ = 0. On peut vérifier que I'expression (24)
considérée dans la limite ol v1 < ¢ est en accord avec le résultat non relativiste. On fait un
développement limité de la forme /1 —z ~ 1 — x/2, et on a donc

c? v? U1

qui correspond au résultat non relativiste.

Apres la collision, les deux particules se déplacent respectivement a des vitesses vy, et vo,
dans le référentiel R, avec ||vi 4|l = ||v2,q| (voir figure 2, apres la collision). On suppose que la
masse au repos de chacune des deux particules reste inchangée pendant la collision. Déterminer
I'angle « que fait la vitesse vy, avec I'axe x dans R.
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Figure 2 : Représentation de la collision dans le référentiel R.
La quantité de mouvement dans R avant le choc est donnée par
P = P1 + P2 = m7y1v1 €. (26)
Apres le choc, on a
Pa = MYqVa(COS avey + sinaey) + my,v.(cos e, — sinaey) = 2my,v, cos ey,  (27)

avec

1

Vg = [[Viall et va= W’
a

ol on a imposé que I'angle que fait la deuxiéme particule avec 'axe x est —a pour conserver
la quantité de mouvement le long de I'axe y. L’énergie du systeme avant la collision est

=mc*(1+ ), (29)

(28)

E=FE +FE;,= m’ylc2 + mc?

et apres la collision,
Eq = E1 4+ E2q = my,c® + myac® = 2mryac®. (30)
En utilisant la conservation de la quantité de mouvement et de ’énergie, on peut écrire

myv1 = 2mygugcosa et mc (14 y1) = 2my,cP. (31)



La deuxiéme relation donne

14+m v? < 2 >2 < 2 )2
Ya 9 = 2 1+ = Vg =¢C T+m (32)

En utilisant la conservation de la quantité de mouvement, on peut donc écrire

71U
=2 =(1 = = — 33
Y11 YaVa cOs @ = (1 4+ 71 )vg cOs cos o — (33)
ou on a remplacé v, a 'aide de I'éq. (32).
1 9 \2 N2 412
e o (I R (S
M L+m c Y 7
~1/2
9 —~1/2 2 2
_“{H—ﬂ =4 1+2\/1—”2§—3< —”5) . (34)
M i c c c
et donc on a
a=cos ! u/e (35)
\/1 +24/1 =02 /c? — 3(1 —v¥/c?)
Remarque 1 : On peut voir que dans la limite 0 < v; < ¢ on a
o~ cos™! u/e = cos ! Uli/c = za (36)
\/14—2[1—1)%/(202)]—3(1—7}%/02) \/ 203 /2 4

ce qui correspond au résultat de la mécanique classique pour une collision élastique. La
relation non relativiste est obtenue par résolution de la conservation de la quantité de
mouvement et énergie cinétique, mv; = 2muv, cos « et mv% /2= mvg, ce qui correspond bien
a la limite v; < ¢ des relations (31).

Remarque 2 : On peut aussi déterminer 'angle o” que fait la particule 1 avec l'axe x
dans R”. En effet, on sait que, aprés la collision, les deux particules ont la méme composante x
de la vitesse dans R. Par conséquent, elles doivent aussi avoir la méme composante = de la
vitesse dans R”. Mais dans R” la somme de la quantité de mouvement des deux particules
est nulle. Il suit que, apres la collision, la composante x de la vitesse des deux particules
est également nulle, ce qui implique que leur vitesse est perpendiculaire a 'axe x, et donc
o =+7/2.

3 Bataille relativiste

Dans le but d'attaquer une tour fortifiée, des attaquants ont mis au point un canon capable de
rouler et de tirer a des vitesses relativistes. Dans le référentiel de la tour, le canon roule avec une
vitesse v, 7 constante en direction de la tour et lorsqu'il fait feu, il se trouve a une distance dr de la
fortification. Toujours dans le référentiel de la tour, I'angle de tir 87 est tel que le boulet, qui a une
vitesse de module v, 7 et une masse au repos mg, touche le haut de la tour. On néglige les effets
de la gravité et de toute autre force (frottements, etc.). Exprimer tous les résultats en fonction des

paramétres 07, dr, vp T, Mo, Ve, de la vitesse de la lumiere, ¢, et ¢ =1/,/1 — ng/cQ.



(a) Calculer la hauteur hp de la tour dans son référentiel. Puis, calculer le temps que met le boulet
pour arriver a son objectif dans le référentiel de la tour, Aty, et dans celui du canon, Atc.
De plus, calculer la distance horizontale parcourue par le boulet jusqu'a la tour vue dans le
référentiel du canon, d¢.

Puisque la distance dr et I'angle de tir 87 sont définis dans le référentiel de la tour, la
hauteur de cette derniére est
hr = dptan Op. (37)

Dans le référentiel de la tour, on peut définir deux événements. Le premier est I'instant du
tir que l'on caractérise par les coordonnées (tg, zg) = (0,0). Le second est I'arrivée du boulet
sur la tour, (t1,21) = (Atr,dr). Comme la vitesse du boulet est définie dans le référentiel
de la tour, le temps qu’il met pour 'atteindre est

dr dp

Aty = =
r Uy, T,z Uy, T COS GT ’ (38)

ou v, 1,5 représente la vitesse du boulet en direction de la tour.
Notons que le méme résultat peut étre obtenu en considérant la hauteur de la tour,

hr _ dr tan O _ dr

Aty = (39)

Up, T sin 9T N Ub, T sin GT N Uy, T COS 9T '

Dans le référentiel du canon, on peut procéder de la méme maniere en utilisant la transformée
de Lorentz sur les deux événements définis précédemment. Ainsi, on trouve que le premier
événement est aussi (t(, ) = (0,0) et le deuxiéme est donné par (¢}, 2}) = (Atc, de) avec

(%
de = veldr - v tr) =vedp (1- L), (40)
vy, T €OS O
Ve 1 Ve
Atc = (AtT - ’QTdT) = ’YCdT< - QT) (41)
c vp, T €OS O c

Alternativement, plutét que de transformer le temps, on aurait pu définir Ato dans le
référentiel du canon, Atc = dc/vp,0 0, en utilisant la transformation des vitesses (12) pour
exprimer v, ¢z,

Uy, T,x — Ve, T
Vb,Cox = PR (42)
1 — vy r0Ver/C
On a donc
d Ve T 1-— Vb T.xVeT 02
Atc — C — ,yCdT 1 _ C, ,4,x Ve, / —
Ub,C,x Uy, T,x Vb, T,x — Ve, T
1 U, T,xVc, T 1 Ve, T
Up Tz c vy, cos O c



(b) Calculer I'angle de tir 8¢ dans le référentiel du canon.

Dans le référentiel de la tour, 'angle d’inclinaison du canon est donné par 1’équation (37).
De manieére similaire, I’angle d’inclinaison dans le référentiel du canon est donné par

tanfo = —. (44)

Pour trouver les distances dans le référentiel du canon, on procede de maniere similaire a la
question (a). On définit les deux événements dans le référentiel de la tour (to, o, y0) = (0,0, 0)
et (t1,z1,y1) = (Atp,dp, hy) qui correspondent respectivement au tir du boulet et a son
impact sur la tour. On utilise ensuite les transformations de Lorentz pour passer dans le
référentiel du canon,

v
de = veldr - v tr) =vedp (1- ), (45)
vy, T COS O
ou on a utilisé I’éq. (38) pour Aty. Ce résultat correspond bien a I’éq. (40) de la question (a).
On note également que
h’C = hT: (46)

car le mouvement relatif des référentiels est perpendiculaire a I'axe y.
Ainsi, 'angle ¢ dans le référentiel du canon est donné par
ho B hr 1 tan O

tanfo = — = = . 47
“7 e yedr 1 —ver/vpre Yol — ver/(vpr cosfr)] 47)

Remarquons que le méme résultat peut étre obtenu en considérant la transformation des
vitesses. En effet, ’angle 0c peut également étre défini de la fagon suivante

Ub,Cy

48
Ub,Cx ( )

tan 0o =
En utilisant les transformations des vitesses, on peut relier les vitesses du référentiel du
canon a celles du référentiel de la tour. La transformation de vy ¢, a été discutée en (42).
Pour la composante verticale, on procede de maniére similaire a 1’éq. (12) en notant que
seul le temps se transforme :

dypc dyp, T _
dtc  yo(dtr —ver doyr/c?)
L dyp,r/dtr _ Vb, Ty (49)
ol = (ver/c?) dzyp/dtr) o (1 — vpraver/c?)

Ub,Cy =

Ainsi, 'angle de tir dans le référentiel du canon est donné par

2
tamn 0 — UbC _ U, Ty 1 —vraver/c
7 (1 —vpraver/c?) v —v
b,C.x il b, T,z Ve, T b, T,x e, T
tan O tan O

= . (50
Yo(I = ver/vere)  Yoll —ver/(vpr cosOr)] (50)

C’est bien le méme résultat que celui trouvé avec la méthode des transformations de Lorentz,
éq. (47).

(c) Calculer I'énergie cinétique relativiste du boulet dans le référentiel de la tour, Ej, 7, et dans celui



du canon, F c.

Dans le référentiel de la tour, ’énergie cinétique relativiste est donnée par

Eb,T = ("Yb,T — l)mOCQ, (51)

et Iénergie cinétique relativiste du boulet dans le référentiel du canon est donnée par

Eyc = (Yo.c — 1)moc?, (52)

ou vy =1/,/1— vaT/c2 et o =1/4/1— vic/cz.

Nous devons donc calculer la norme de la vitesse du boulet dans le référentiel du canon.
Par définition, la norme de la vitesse est donnée par "Ug,c = vic,x + vicyy. Afin d’obtenir le
résultat final en fonction des parametres demandés, il convient de remplacer les composantes
de la vitesse par leurs définitions (42) et (49). Un développement algébrique, ici élidé car
présentant peu d’intérét, donne

~1/2
(vp cos Op — v, T)2 + (vp sin 9T)2 ,
E = 1— > , , 1 ‘
b,C [( (c — Ve, TUp, T COS HT/C)z moc (53)




