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Corrigé 12 : Dynamique relativiste

1 Collision relativiste à l’équerre
Une particule de masse au repos m0 et de vitesse v1 =
v ex entre en collision avec une particule de masse
au repos 2m0, de même vitesse scalaire v2 = v ey,
mais sur une trajectoire perpendiculaire à celle de la
première particule (voir dessin ci-contre). Juste après
la collision, les deux particules forment une nouvelle
particule, qu’on appellera « particule composite », de
quantité de mouvement P12. Cette particule compo-
site se décompose, après un certain temps, en deux
photons de mêmes énergies. L’angle entre la trajec-
toire des deux photons vaut 2φ.
(a) Quel est le module de la quantité de mouvement P12 de la particule composite ?

On calcule d’abord la quantité de mouvement de chaque particule incidente,

P1 = γm0 v1 et P2 = 2γm0 v2, (1)

où le facteur γ est le même pour les deux particules. La quantité de mouvement de la
particule composite, par conservation de la quantité de mouvement du système, est

P12 = P1 + P2 = γm0(v1 + 2 v2) (2)

dont le module vaut
‖P12‖ = P12 =

√
5γm0v. (3)

(b) Quelle est la masse au repos M012 de cette particule composite ?
Les énergies des particules incidentes sont

E1 = γm0c2 et E2 = 2γm0c2. (4)

Pour trouver la masse de la particule composite, on calcule d’abord son énergie,

E12 = E1 + E2 = 3γm0c2. (5)

En utilisant E2
12 = M2

012c4 + P 2
12c2, on obtient

M012 = 1
c2

√
E2

12 − P 2
12c2 = γm0

c

√
9c2 − 5v2 = 3γm0

√
1 − 5

9
v2

c2 . (6)

(c) Que vaut l’angle φ ?
Les deux photons sont identiques, et donc ils ont la même quantité de mouvement (en
module) et ils se partagent l’énergie disponible :

p1 = p2 = p et E1 = E2 = E12
2 . (7)

La relation E = pc, valable pour les photons, implique p = 3γm0c/2. Finalement, par
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conservation de la quantité de mouvement, on obtient

P12 =
√

5γm0v = 3γm0c cos φ = ‖p1 + p2‖ =⇒ cos φ =
√

5
3

v

c
. (8)

2 Choc relativiste
On considère deux particules élémentaires (1 et 2), de masses
au repos m1 = m2 = m, se dirigeant l’une vers l’autre dans un
référentiel R lié au laboratoire. Dans R, la première particule
se déplace à une vitesse relativiste v1 = v1 ex, v1 > 0, et la
deuxième particule se déplace à une vitesse relativiste v2 =
−v2 ex, v2 > 0, où ex est le vecteur unitaire le long de l’axe x.
On introduit également le référentiel R′ lié à la particule 1, c’est-
à-dire que la particule 1 est au repos dans R′. On définit deux
événements A et B dont on connait les propriétés suivantes :

— événement A : la particule 1 se trouve en tA = xA = 0
(dans R) et t′

A = x′
A = 0 (dans R′),

— événement B : la particule 2 se trouve en tB = 0 (dans
R) et x′

B > 0 (dans R′).
Exprimer tous les résultats en fonction de v1, v2, m, x′

B et la
vitesse de la lumière, c.

R

xA xB

v1 v2

R'

xA' xB'

v1' v2'

R''

xA'' xB''

v1'' v2''

(1)

(2)

(3)

v1

u

Figure 1

(a) Déterminer xB et t′
B. Est-ce que les deux événements A et B sont simultanés dans R′ ?

Déterminer également la vitesse v′
2 de la particule 2 dans le référentiel R′.

Les deux événements A et B sont représentés sur les deux panneaux supérieurs de la figure 1
pour les deux référentiels R et R′. En utilisant les transformations de Lorentz,

x′
B = γ1(xB − v1tB) = γ1xB et t′

B = γ1

(
tB − v1

c2 xB

)
= −γ1

v1
c2 xB, (9)

avec
γ1 = 1√

1 − v2
1/c2

, (10)

c’est-à-dire,

xB = x′
B

γ1
= x′

B

√
1 − v2

1
c2 et t′

B = −γ1
v1
c2 xB = −v1

c2 x′
B. (11)

On constate que t′
B 6= t′

A. Les évènements A et B étant simultanés dans R, ils ne le sont
donc pas dans R′. On cherche désormais à transformer une vitesse v = dx/dt dans R en
une vitesse v′ = dx′/dt′ dans R′,

v′ = dx′

dt′ = γ1(dx − v1 dt)
γ1(dt − v1 dx/c2) = dx/dt − v1

1 − (v1/c2) dx/dt
= v − v1

1 − vv1/c2 . (12)

On peut donc exprimer la vitesse v′
2 = −v′

2 ex en fonction de v2 = −v2 ex :

v′
2 = v1 + v2

1 + v1v2/c2 . (13)

(b) On définit l’événement C comme l’instant auquel la particule 1 et la particule 2 entrent en
collision. Déterminer les coordonnées tC et xC de l’événement C dans le référentiel R. Faire de
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même pour les coordonnées t′
C et x′

C dans R′.
Dans R, les particules 1 et 2 doivent parcourir respectivement une distance d1 = xC − xA =
xC et d2 = xB − xC . On peut donc poser

d1
v1

= d2
v2

=⇒ xC(v1 + v2) = xBv1 =⇒ xC = xB
v1

v1 + v2
= x′

B

v1
v1 + v2

√
1 − v2

1
c2 , (14)

où on a remplacé xB à l’aide de l’équation (11). À l’aide de l’équation précédente, le temps
tC est

tC = d1
v1

= xC

v1
= x′

B

v1 + v2

√
1 − v2

1
c2 . (15)

Dans R′ on calcule les coordonnées en utilisant les transformations de Lorentz :

t′
C = γ1

(
tC − v1xC

c2

)
= γ1

xC

v1

(
1 − v2

1
c2

)
= x′

B

v1 + v2

(
1 − v2

1
c2

)
, (16)

x′
C = γ1(xC − v1tC) = 0. (17)

Le même résultat peut être obtenu en considérant que la particule 2 doit parcourir une
distance d′ = x′

B − x′
A = x′

B dans R′. Puisque la particule 1 est au repos dans R′, il suit
que x′

C = x′
A = 0. Pour la coordonnée temporelle, on a que

t′
C = t′

B + d′

‖v′
2‖

. (18)

On substitue t′
B à l’aide de l’équation (11), d′ par x′

B et v′
2 par l’expression (13),

t′
C = −x′

B

v1
c2 +x′

B

1 + v1v2/c2

v1 + v2
= x′

B

v1 + v2

(
1+ v1v2

c2 − v2
1

c2 − v1v2
c2

)
= x′

B

v1 + v2

(
1− v2

1
c2

)
. (19)

À partir de maintenant, on suppose que v1 6= v2 = 0, c’est-à-dire que la particule 2 est au repos
dans le référentiel R avant la collision.
(c) Soit R′′ le référentiel du centre de masse des deux particules, dans lequel la somme de leurs

quantités de mouvement est nulle. Déterminer u, la vitesse de R′′ par rapport à R. Montrer
que dans le cas v1 � c on retrouve le résultat de la mécanique classique.
La situation dans le référentiel R′′ est représentée sur le dernier panneau de la figure 1.
En utilisant la formule des transformations des vitesses (12) et en notant u la vitesse de
translation entre R et R′′,

v′′
1 = v1 − u

1 − v1u/c2 et v′′
2 = −u. (20)

Dans R′′, la somme des quantités de mouvement doit être nulle, c.-à-d. mγ1v′′
1 = −mγ2v′′

2 ,
et donc

v′′
1√

1 − v′′2
1 /c2

= − v′′
2√

1 − v′′2
2 /c2

. (21)

Cette dernière égalité n’est possible que si v′′
1 = −v′′

2 . En mettant (21) au carré,

v′′2
1 − v′′2

1 v′′2
2

c2 = v′′2
2 − v′′2

1 v′′2
2

c2 =⇒ v′′2
1 = v′′2

2 . (22)
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On impose donc v′′
1 = u dans l’éq. (20) pour obtenir

v1 − u

1 − v1u/c2 = u =⇒ u2 − 2 c2

v1
u + c2 = 0 =⇒ u = c2

v1

1 ±

√
1 − v2

1
c2

. (23)

En imposant |u| < c, on obtient

u = c2

v1

1 −

√
1 − v2

1
c2

. (24)

Si on avait considéré une approche non relativiste, on aurait obtenu que v′′
1 = v1 − u et

v′′
2 = −u, et donc u = v1/2 puisque v′′

1 + v′′
2 = 0. On peut vérifier que l’expression (24)

considérée dans la limite où v1 � c est en accord avec le résultat non relativiste. On fait un
développement limité de la forme

√
1 − x ≈ 1 − x/2, et on a donc

u ≈ c2

v1

(
1 − 1 + v2

1
2c2

)
= v1

2 , (25)

qui correspond au résultat non relativiste.
(d) Après la collision, les deux particules se déplacent respectivement à des vitesses v1,a et v2,a

dans le référentiel R, avec ‖v1,a‖ = ‖v2,a‖ (voir figure 2, après la collision). On suppose que la
masse au repos de chacune des deux particules reste inchangée pendant la collision. Déterminer
l’angle α que fait la vitesse v1,a avec l’axe x dans R.

v1

v1,a

v2,a

α

avant la collision après la collision

1 2
1

2

x x

y y

Figure 2 : Représentation de la collision dans le référentiel R.
La quantité de mouvement dans R avant le choc est donnée par

p = p1 + p2 = mγ1v1 ex. (26)

Après le choc, on a

pa = mγava(cos α ex + sin α ey) + mγava(cos α ex − sin α ey) = 2mγava cos α ex, (27)

avec
va = ‖v1,a‖ et γa = 1√

1 − v2
a/c2 , (28)

où on a imposé que l’angle que fait la deuxième particule avec l’axe x est −α pour conserver
la quantité de mouvement le long de l’axe y. L’énergie du système avant la collision est

E = E1 + E2 = mγ1c2 + mc2 = mc2(1 + γ1), (29)

et après la collision,

Ea = E1,a + E2,a = mγac2 + mγac2 = 2mγac2. (30)

En utilisant la conservation de la quantité de mouvement et de l’énergie, on peut écrire

mγ1v1 = 2mγava cos α et mc2(1 + γ1) = 2mγac2. (31)
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La deuxième relation donne

γa = 1 + γ1
2 =⇒ 1 − v2

a

c2 =
( 2

1 + γ1

)2
=⇒ va = c

√√√√1 −
( 2

1 + γ1

)2
. (32)

En utilisant la conservation de la quantité de mouvement, on peut donc écrire

γ1v1 = 2γava cos α = (1 + γ1)va cos α =⇒ cos α = γ1
1 + γ1

v1
va

, (33)

où on a remplacé γa à l’aide de l’éq. (32).

cos α = v1

γ1 + 1
γ1

c

√√√√1 −
( 2

1 + γ1

)2


−1

= v1
c

[(
1 + 1

γ

)2
− 4

γ2
1

]−1/2
= · · ·

· · · = v1
c

[
1 + 2

γ1
− 3

γ2
1

]−1/2
= v1

c

1 + 2

√
1 − v2

1
c2 − 3

(
1 − v2

1
c2

)−1/2

, (34)

et donc on a

α = cos−1

 v1/c√
1 + 2

√
1 − v2

1/c2 − 3(1 − v2
1/c2)

. (35)

Remarque 1 : On peut voir que dans la limite 0 < v1 � c on a

α ≈ cos−1

 v1/c√
1 + 2[1 − v2

1/(2c2)] − 3(1 − v2
1/c2)

 = cos−1

 v1/c√
2v2

1/c2

 = π

4 , (36)

ce qui correspond au résultat de la mécanique classique pour une collision élastique. La
relation non relativiste est obtenue par résolution de la conservation de la quantité de
mouvement et énergie cinétique, mv1 = 2mva cos α et mv2

1/2 = mv2
a, ce qui correspond bien

à la limite v1 � c des relations (31).

Remarque 2 : On peut aussi déterminer l’angle α′′ que fait la particule 1 avec l’axe x
dans R′′. En effet, on sait que, après la collision, les deux particules ont la même composante x
de la vitesse dans R. Par conséquent, elles doivent aussi avoir la même composante x de la
vitesse dans R′′. Mais dans R′′ la somme de la quantité de mouvement des deux particules
est nulle. Il suit que, après la collision, la composante x de la vitesse des deux particules
est également nulle, ce qui implique que leur vitesse est perpendiculaire à l’axe x, et donc
α′′ = ±π/2.

3 Bataille relativiste
Dans le but d’attaquer une tour fortifiée, des attaquants ont mis au point un canon capable de
rouler et de tirer à des vitesses relativistes. Dans le référentiel de la tour, le canon roule avec une
vitesse vc,T constante en direction de la tour et lorsqu’il fait feu, il se trouve à une distance dT de la
fortification. Toujours dans le référentiel de la tour, l’angle de tir θT est tel que le boulet, qui a une
vitesse de module vb,T et une masse au repos m0, touche le haut de la tour. On néglige les effets
de la gravité et de toute autre force (frottements, etc.). Exprimer tous les résultats en fonction des
paramètres θT , dT , vb,T , m0, vc,T , de la vitesse de la lumière, c, et γC = 1/

√
1 − v2

c,T /c2.
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(a) Calculer la hauteur hT de la tour dans son référentiel. Puis, calculer le temps que met le boulet
pour arriver à son objectif dans le référentiel de la tour, ∆tT , et dans celui du canon, ∆tC .
De plus, calculer la distance horizontale parcourue par le boulet jusqu’à la tour vue dans le
référentiel du canon, dC .
Puisque la distance dT et l’angle de tir θT sont définis dans le référentiel de la tour, la
hauteur de cette dernière est

hT = dT tan θT . (37)

Dans le référentiel de la tour, on peut définir deux événements. Le premier est l’instant du
tir que l’on caractérise par les coordonnées (t0, x0) = (0, 0). Le second est l’arrivée du boulet
sur la tour, (t1, x1) = (∆tT , dT ). Comme la vitesse du boulet est définie dans le référentiel
de la tour, le temps qu’il met pour l’atteindre est

∆tT = dT

vb,T,x
= dT

vb,T cos θT
, (38)

où vb,T,x représente la vitesse du boulet en direction de la tour.
Notons que le même résultat peut être obtenu en considérant la hauteur de la tour,

∆tT = hT

vb,T sin θT
= dT tan θT

vb,T sin θT
= dT

vb,T cos θT
. (39)

Dans le référentiel du canon, on peut procéder de la même manière en utilisant la transformée
de Lorentz sur les deux événements définis précédemment. Ainsi, on trouve que le premier
événement est aussi (t′

0, x′
0) = (0, 0) et le deuxième est donné par (t′

1, x′
1) = (∆tC , dC) avec

dC = γC(dT − vc,T ∆tT ) = γCdT

(
1 − vc,T

vb,T cos θT

)
, (40)

∆tC = γC

(
∆tT − vc,T

c2 dT

)
= γCdT

( 1
vb,T cos θT

− vc,T

c2

)
. (41)

Alternativement, plutôt que de transformer le temps, on aurait pu définir ∆tC dans le
référentiel du canon, ∆tC = dC/vb,C,x, en utilisant la transformation des vitesses (12) pour
exprimer vb,C,x,

vb,C,x = vb,T,x − vc,T

1 − vb,T,xvc,T /c2 . (42)

On a donc

∆tC = dC

vb,C,x
= γCdT

(
1 − vc,T

vb,T,x

)1 − vb,T,xvc,T /c2

vb,T,x − vc,T
= · · ·

· · · = γCdT
1

vb,T,x

(
1 − vb,T,xvc,T

c2

)
= γCdT

( 1
vb,T cos θT

− vc,T

c2

)
. (43)
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(b) Calculer l’angle de tir θC dans le référentiel du canon.
Dans le référentiel de la tour, l’angle d’inclinaison du canon est donné par l’équation (37).
De manière similaire, l’angle d’inclinaison dans le référentiel du canon est donné par

tan θC = hC

dC
. (44)

Pour trouver les distances dans le référentiel du canon, on procède de manière similaire à la
question (a). On définit les deux événements dans le référentiel de la tour (t0, x0, y0) = (0, 0, 0)
et (t1, x1, y1) = (∆tT , dT , hT ) qui correspondent respectivement au tir du boulet et à son
impact sur la tour. On utilise ensuite les transformations de Lorentz pour passer dans le
référentiel du canon,

dC = γC(dT − vc,T ∆tT ) = γCdT

(
1 − vc,T

vb,T cos θT

)
, (45)

où on a utilisé l’éq. (38) pour ∆tT . Ce résultat correspond bien à l’éq. (40) de la question (a).
On note également que

hC = hT , (46)

car le mouvement relatif des référentiels est perpendiculaire à l’axe y.
Ainsi, l’angle θC dans le référentiel du canon est donné par

tan θC = hC

dC
= hT

γCdT

1
1 − vc,T /vb,T,x

= tan θT

γC [1 − vc,T /(vb,T cos θT )] . (47)

Remarquons que le même résultat peut être obtenu en considérant la transformation des
vitesses. En effet, l’angle θC peut également être défini de la façon suivante

tan θC = vb,C,y

vb,C,x
(48)

En utilisant les transformations des vitesses, on peut relier les vitesses du référentiel du
canon à celles du référentiel de la tour. La transformation de vb,C,x a été discutée en (42).
Pour la composante verticale, on procède de manière similaire à l’éq. (12) en notant que
seul le temps se transforme :

vb,C,y = dyb,C

dtC
= dyb,T

γC(dtT − vc,T dxb,T /c2) = · · ·

· · · = dyb,T /dtT

γC [1 − (vc,T /c2) dxb,T /dtT ] = vb,T,y

γC(1 − vb,T,xvc,T /c2) . (49)

Ainsi, l’angle de tir dans le référentiel du canon est donné par

tan θC = vb,C,y

vb,C,x
= vb,T,y

γC(1 − vb,T,xvc,T /c2)
1 − vb,T,xvc,T /c2

vb,T,x − vc,T
= · · ·

· · · = tan θT

γC(1 − vc,T /vb,T,x) = tan θT

γC [1 − vc,T /(vb,T cos θT )] . (50)

C’est bien le même résultat que celui trouvé avec la méthode des transformations de Lorentz,
éq. (47).

(c) Calculer l’énergie cinétique relativiste du boulet dans le référentiel de la tour, Eb,T , et dans celui
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du canon, Eb,C .
Dans le référentiel de la tour, l’énergie cinétique relativiste est donnée par

Eb,T = (γb,T − 1)m0c2, (51)

et l’énergie cinétique relativiste du boulet dans le référentiel du canon est donnée par

Eb,C = (γb,C − 1)m0c2, (52)

où γb,T = 1/
√

1 − v2
b,T /c2 et γb,C = 1/

√
1 − v2

b,C/c2.
Nous devons donc calculer la norme de la vitesse du boulet dans le référentiel du canon.
Par définition, la norme de la vitesse est donnée par v2

b,C = v2
b,C,x + v2

b,C,y. Afin d’obtenir le
résultat final en fonction des paramètres demandés, il convient de remplacer les composantes
de la vitesse par leurs définitions (42) et (49). Un développement algébrique, ici élidé car
présentant peu d’intérêt, donne

Eb,C =
[(

1 − (vb,T cos θT − vc,T )2 + (vb,T sin θT )2

(c − vc,T vb,T cos θT /c)2

)−1/2

− 1
]
m0c2. (53)
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