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16 mai 2025

Corrigé 11 : Cinématique relativiste

1 Astronaute sur internet
Un astronaute à bord d’une fusée s’éloigne à une vitesse constante u de la Terre. Deux horloges
mesurent le temps depuis lequel l’astronaute a quitté la Terre. On note t le temps indiqué par l’horloge
terrestre et t′ celui donné par l’horloge de la fusée. L’astronaute désire surfer sur internet.
(a) L’astronaute clique pour se connecter ; on appelle cet évènement A. À cet instant, son horloge

de bord indique t′
A. À quelle distance de la Terre (dans le référentiel terrestre), se trouve-t-il

alors ? Quel temps tA est-il indiqué par l’horloge terrestre ? Commencer par placer les différents
événements sur un diagramme espace-temps.
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Figure 1

Soit S le référentiel lié à la Terre et S ′ le référentiel lié à la fusée. Les évènements dans S
et S ′ sont reliés par les transformations de Lorentz :(

x′

t′

)
= γ

(
x − ut

t − ux/c2

)
et, par relativité,

(
x
t

)
= γ

(
x′ + ut′

t′ + ux′/c2

)
, (1)

avec γ = 1/
√

1 − u2/c2. Dans S, la fusée avance à la vitesse u et la Terre est au repos. Dans
S ′, la Terre se déplace à la vitesse −u et la fusée est au repos. La situation est illustrée
sur le diagramme espace-temps ci-dessus. L’événement A (lorsque l’astronaute clique pour
se connecter) a pour coordonnées spatio-temporelles (t′

A, x′
A) dans S ′, avec x′

A = 0. On
exprime cet évènement dans S grâce à l’équation (1),

tA = γt′
A, xA = γut′

A = utA. (2)

L’application numérique donne γ = 3.2, xA = 1.4 · 1010 m et tA = 48.0 s.
(b) Le signal étant transmis par ondes radio, qu’indique l’horloge terrestre lorsque le signal est reçu

sur Terre ? Qu’indique alors l’horloge de la fusée ? Vu de la fusée, à quelle distance la Terre se
trouve-t-elle alors ?
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Le signal se propage par ondes radio, donc à la vitesse de la lumière c, et ceci dans tout
référentiel. Le temps de parcours mesuré par l’horloge terrestre est alors ∆t1 = xA/c. Soit
l’événement B, correspondant à l’instant où le signal est reçu sur Terre, de coordonnées
spatio-temporelles :

tB = tA + ∆t1 = tA + xA

c
= tA

(
1 + u

c

)
= γt′

A

(
1 + u

c

)
et xB = 0. (3)

Par les transformations de Lorentz, dans le référentiel de la fusée, l’événement B a pour
coordonnées :

t′
B = γtB = γ2t′

A

(
1 + u

c

)
= t′

A

1 − u/c
et x′

B = −γutB = −ut′
B. (4)

De manière équivalente, on aurait également pu trouver t′
B et x′

B depuis le référentiel S ′ en
remarquant que l’évènement B est l’intersection de la trajectoire de la Terre à la vitesse −u,
x′

B = −ut′
B, et le faisceau lumineux à la vitesse −c qui part t′

A plus tard, x′
B = −c(t′

B − t′
A),

voir figure 1. Ainsi,

t′
B = x′

B

−u
= t′

A + x′
B

−c
=⇒ x′

B

(
1 − u

c

)
= −ut′

A, (5)

et donc
x′

B = −ut′
A

1 − u/c
= −ut′

B et t′
B = x′

B

−u
= t′

A

1 − u/c
. (6)

L’application numérique donne tB = 93.7 s, x′
B = −8.5 · 1010 m et t′

B = 300 s.
(c) La Terre renvoie immédiatement un signal de confirmation, également par ondes radio. Qu’indique

l’horloge de la fusée lorsque l’astronaute reçoit le signal de confirmation ? Sur son horloge, combien
de temps s’est-il écoulé entre l’instant où il a cliqué et l’instant où il reçoit la confirmation ?
Dans le référentiel de la fusée, le signal de confirmation est émis au temps t′

B , quand la Terre
se trouve à une distance |x′

B|. Comme dans le point (b), les ondes radio se propagent à une
vitesse c dans tout référentiel, donc aussi par rapport à la fusée. Le temps de retour mesuré
par l’horloge de la fusée est alors ∆t′

2 = |x′
B|/c = ut′

B/c. Soit l’événement C correspondant
à l’instant auquel la fusée reçoit la confirmation :

t′
C = t′

B + ∆t′
2 = t′

B

(
1 + u

c

)
= t′

A

1 + u/c

1 − u/c
et x′

C = 0. (7)

Ainsi le temps écoulé dans la fusée entre A et C est :

∆t′ = t′
C − t′

A = 2u/c

1 − u/c
t′
A (8)

L’application numérique donne t′
C = 585 s et ∆t = 570 s.

2 Expansion de l’univers et décalage vers le rouge
L’univers est en expansion constante en raison d’une dilatation de l’espace lui-même. Il en résulte un
éloignement progressif des objets célestes à grande échelle (galaxies, amas de galaxies). On montre
que cette expansion entraîne un décalage vers le rouge de la lumière émise par des galaxies distantes.
On considère une seule dimension spatiale. Soit une source lumineuse s s’éloignant d’un observateur o
à une vitesse v > 0. On associe un référentiel R à l’observateur, ainsi que λo la longueur d’onde qu’il
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mesure provenant de la source. Le référentiel lié à la source est noté R′, ainsi que λs la longueur
d’onde émise dans son propre référentiel.
(a) Exprimer la longueur d’onde λo mesurée par l’observateur en fonction de la longueur d’onde

émise λs et de la vitesse relative β d’éloignement entre l’observateur et la source, β = v/c.
On propose deux solutions.

Solution 1. On se place dans le référentiel de la source R′. Celle-ci émet des fronts d’ondes
séparés d’une longueur d’onde λs = c∆Ts, se propageant à vitesse c en direction de
l’observateur, avec ∆Ts la période de l’onde. Toujours du point de vue de la source, on
observe un premier front d’onde arriver à l’observateur, puis, après un temps δts, un second
front. Pendant cet intervalle de temps, l’onde aura parcouru une distance cδts, alors que
l’observateur aura lui parcouru une distance vδts. On peut donc écrire

cδts = λs + vδts =⇒ δts = λs

c − v
= ∆Ts

1 − β
. (9)

Puisque l’observateur est en mouvement par rapport à la source, l’intervalle de temps entre
l’arrivée de deux fronts d’onde, du point de vue de l’observateur dans le référentiel R, est
dilaté par rapport à R′ et s’écrit

δto = δts

γ
= δts

√
1 − β2. (10)

En substituant l’expression (9) dans l’équation précédente, on obtient

δto = ∆Ts

√
1 + β

1 − β
. (11)

Pour l’observateur, l’intervalle δto entre la réception de deux fronts d’onde correspond
naturellement à la période apparente ∆To de l’onde qu’il reçoit, δto = ∆To = λo/c. On peut
ainsi conclure que

λo = λs

√
1 + β

1 − β
. (12)

Solution 2. Il est également possible de procéder par transformation de Lorentz. On
considère les coordonnées spatio-temporelles suivantes :

Évènement dans le réf. de : l’observateur, la source.

Arrivée du 1er front. x1, t1 x′
1, t′

1
Arrivée du 2nd front. x2, t2 x′

2, t′
2

On pose arbitrairement x1 = x′
1 = t1 = t′

1 = 0. Puisque l’observateur ne bouge pas dans
son propre référentiel R, alors il reçoit également le second front en x2 = 0, et ce après un
temps t2 = λo/c en accord avec la longueur de l’onde qu’il mesure.
Les coordonnées spatio-temporelles associées à la réception du second front dans le référen-
tiel R′ satisfont la transformation de Lorentz, et notamment

t′
2 = γ

(
t2 − vx2

c2

)
= γt2. (13)

Par un raisonnement similaire à la première solution, on peut affirmer que

ct′
2 = λs + vt′

2 =⇒ λs = c(1 − β)γt2 =
√

1 − β

1 + β
λo, (14)
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et donc

λo = λs

√
1 + β

1 − β
, (15)

ce qui est bien identique au résultat obtenu précédemment, éq. (12).
(b) Exprimer ce résultat en fonction du décalage vers le rouge (« redshift » en anglais), c’est-à-dire

la variable z = (λo − λs)/λs. Interpréter les cas z > 0 et z < 0.
Par substitution de l’éq. (15) dans l’expression du décalage vers le rouge z donnée en énoncé,
on obtient

z =
√

1 + β

1 − β
− 1. (16)

Puisqu’on avait posé qu’un éloignement de la source et de l’observateur correspond au cas
v > 0, on constate que ce cas implique β ∈ ]0, 1[ et donc z > 0. Pour une source s’éloignant
de l’observateur, les longueurs d’ondes mesurées apparaissent plus longues que la longueur
d’onde émise, λo > λs, et se traduit par un décalage vers le rouge du spectre lumineux
mesuré. Si, au contraire, la source et l’observateur se rapprochent, alors v < 0, β ∈ ]−1, 0[,
z < 0 et λo < λs, c’est-à-dire que les longueurs d’onde mesurées paraissent alors plus courte
que celle originalement émises par la source. Le décalage du spectre lumineux se fait alors
« vers le bleu ».

(c) Quelle relation obtient-on pour λ lorsque v � c ?
Quand v � c, les équations (15) et (16) deviennent

λo ≈ λs(1 + β) = λs

(
1 + v

c

)
et z ≈ β = v

c
. (17)

L’équation (17) correspond à l’effet Doppler classique déjà vu en cours. On retrouve donc
la limite classique de la mécanique relativiste à la mécanique galiléenne quand β � 1.
L’expression obtenue en (16) pour le décalage vers le rouge est capitale en astrophysique et
possède diverses applications. En effet, à partir des spectres des différentes galaxies, il est
possible de mesurer le décalage vers le rouge z de celles-ci et d’obtenir leur distance à la
Terre par application de la loi de Hubble, donnée par

v = H0d, (18)

où H0 est la constante de Hubble. Dans la limite où z ≈ v‖/c où v‖ est la vitesse de la
galaxie dans l’axe d’observation, la distance est donnée par

d = cz

H0
. (19)

C’est d’ailleurs pour cela que le télescope James Webb, lancé en 2021, ne mesure la lumière
que dans le spectre infrarouge : afin d’observer des objets de décalage vers le rouge z ∼ 20,
époque correspondant à la formation des premières étoiles et galaxies, soit seulement 180
millions d’années après le Big Bang.

3 Physique des particules
Parmi les innombrables particules observées dans l’accélérateur du LHC au CERN, on rencontre
parfois la particule nommée Λ0. Sa durée de vie au repos est de τ0, après quoi elle se désintègre. Les
appareils de mesure la repèrent pendant τ = 13τ0/5. Pour simplifier, on traite le problème de façon
unidimensionnelle dans l’espace.
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(a) Montrer que la vitesse de la particule par rapport aux appareils de mesure est de v = 12c/13.
Quelle est la longueur L de sa trace (le chemin enregistré par le détecteur depuis son apparition
jusqu’à sa désintégration) ? De quelle longueur L0 est la trace de la particule dans son référentiel
propre ?
L’existence de la particule Λ0 semble prolongée par rapport à sa durée de vie au repos en
raison de sa vitesse par rapport aux instruments de mesure. En effet, le temps s’écoule
différemment que l’on soit dans le laboratoire ou dans le référentiel de la particule. Si on se
place dans un référentiel dans lequel la particule est au repos (le référentiel propre), la durée
de vie est de τ0. Si on se déplace à une vitesse v par rapport à la particule (ou de façon
équivalente, on observe la particule se déplacer à vitesse v), on constate une dilatation du
temps donnée par

τ = γτ0 = τ0√
1 − v2/c2 . (20)

On en dégage la vitesse de la particule par rapport au laboratoire,

v = c

√
1 − τ2

0
τ2 = c

√
1 − 25

169 = c

√
144
169 = 12

13c. (21)

La longueur de la trace mesurée par le détecteur est

L = vτ = 12
13cτ. (22)

Pour répondre à la question de la longueur du tracé dans le référentiel propre, on propose
deux interprétations aboutissant à la même conclusion.

1. Du point de vue de la particule, c’est le laboratoire qui bouge à la vitesse v. Pendant
le temps τ0, ce dernier se sera déplacé de

L0 = vτ0 = 12
13cτ0. (23)

2. En partant du référentiel du laboratoire, un changement de référentiel vers le
référentiel propre de la particule induit une contraction des longueurs. Si, dans le
laboratoire, on mesure la distance L, alors, en utilisant les relations (20) et (22),

L0 = L

√
1 − v2

c2 = vτ
τ0
τ

= vτ0 = 12
13cτ0. (24)

Finalement, on remarque qu’il aurait pu paraître judicieux d’appliquer l’identité pour la
contraction des longueurs de la façon suivante :

L = L0
γ

, (25)

ce qui est évidemment en contradiction directe avec l’équation (22) qui indique que L = γL0.
La notation porte à confusion, mais il convient de noter que la longueur de la trace dans
le laboratoire est L. Dans le référentiel du laboratoire, cette trace est « immobile » : les
extrémités de la trajectoire (création et désintégration de la particule) ont des coordonnées
spatiales indépendantes du temps, et on peut donc l’associer à une longueur propre (on
pourrait par exemple dessiner cette trajectoire sur un papier). Cette longueur apparaît
contractée dans le référentiel de la particule, en translation avec le laboratoire à vitesse v,
et donc L0 = L/γ, ce qui est bien l’identité attendue.
En revanche, les coordonnées spatio-temporelles associées aux extrémités de la trace dans
le référentiel en mouvement de la particule ne sont pas immobiles dans l’espace. On ne
peut donc pas appliquer la formule de contraction des longueurs directement. On pourrait
par contre effectuer une transformation de Lorentz vers le référentiel du laboratoire, qui
permettrait bien de retrouver L = γL0.
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(b) On détecte deux particules Λ0 créées au même moment et au même endroit. Elles se déplacent
avec des vitesses de normes égales à v = 12c/13, mais de directions opposées. Quelle est la
vitesse u de l’une par rapport à l’autre ? Est-ce qu’elles se désintègrent en même temps dans le
référentiel du laboratoire ? Et dans le référentiel de l’une des particules ? Justifier les réponses
par des calculs.
Un raisonnement classique suggère que la vitesse relative entre les deux particules est
u = 2v > c. Évidemment, une vitesse plus élevée que celle de la lumière est contraire au
deuxième postulat de la relativité. La loi de composition de vitesses est modifiée comme ceci

u = v1 − v2
1 − v1v2/c2 = 2v

1 + v2/c2 = 2 · 12 · 13
169 + 144c = 312

313c (26)

et la vitesse relative reste donc inférieure à celle de la lumière.
La simultanéité est une notion relative. Plaçons l’origine de l’espace-temps à l’endroit et au
moment où ces deux particules sont créées. Dans le référentiel du laboratoire, elles ont la
même vitesse en norme. La manière dont le temps s’écoule dans le laboratoire par rapport
à leur référentiel propre est la même. Elles se désintègrent donc au même moment τ et à la
même distance L d’un côté et de l’autre de l’origine.
Par contre, dans le référentiel propre de l’une des particules (peu importe laquelle), il n’y a
plus cette symétrie : l’une est au repos (nommons cette particule A) et l’autre (particule B)
se déplace à la vitesse u. Par un raisonnement identique à la question (a), il y a à nouveau
dilatation du temps propre de B par rapport à A,

τ ′ = τ0√
1 − u2/c2 = 313τ0√

3132 − 3122
= 313τ0

25 > τ0. (27)

Ainsi, la particule A se désintègre avant la particule B dans le référentiel propre de A. Si
on échange A et B, l’affirmation précédente est aussi vraie. Même si cela paraît paradoxal,
c’est le principe même de la relativité.
Alternativement, on peut répondre à cette question en utilisant les transformations de
Lorentz pour passer du référentiel du laboratoire au référentiel propre de la particule A
(qui, supposons, voyage dans la direction positive de l’axe des x). Remarquons d’abord que
l’on garde la même origine de l’espace-temps, c’est-à-dire que l’évènement correspondant
à la production de B garde les coordonnées spatio-temporelles (t, x) = (0, 0). Ensuite, on
sait que B disparaît à x = −L et t = τ . Par transformation de Lorentz et en utilisant les
équations (20) et (22), et on obtient

τ ′ = γ

(
τ + vL

c

)
= τ0

c2 + v2

c2 − v2 = τ0
132 + 122

132 − 122 = τ0
313
25 > τ0. (28)

L’équivalence entre ces deux approches, éqs. (27) et (28), peut être montrée en remplaçant u
par son expression en (26) dans (27),

τ ′ = τ0

[
1 − 4v2/c2

(1 + v2/c2)2

]−1/2
= τ0

[(1 − v2/c2)2

(1 + v2/c2)2

]−1/2
= τ0

c2 + v2

c2 − v2 . (29)

4 Simultanéité
Dans un référentiel R, deux événements 1 et 2 ont lieu en (x1, t1) = (x0, x0/c) et (x2, t2) =(
2x0, x0/(2c)

)
. Quelle est la vitesse du référentiel R′ dans lequel les deux événements ont lieu

simultanément ? Déterminer l’instant correspondant.
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La correspondance entre les coordonnées spatio-temporelles d’un événement dans les référentiels R
et R′ est donnée par (

x′
j

t′
j

)
= γ

(
xj − βctj

tj − βxj/c

)
, (30)

où j = 1, 2, β = v/c et γ = 1/
√

1 − β2. On veut que les deux événements soient simultanés
dans R′, ce qui signifie que t′

1 = t′
2. Ainsi,

β = c(t2 − t1)
x2 − x1

= −1
2 =⇒ v = − c

2 . (31)

Le fait que v < 0 signifie que le référentiel R′ se déplace dans le sens négatif le long de l’axe x
du référentiel R. L’instant cherché est

t′
1 = t′

2 =
√

3x0
c

. (32)

5 Invariance des équations de Maxwell (partie 2)
On aborde la seconde partie du problème débuté en série 10, exercice 1.
À titre de rappel, on désire déterminer quelle transformation laisse l’équation d’onde des champs
électromagnétiques invariante. En définissant l’opérateur d’alembertien � = ∂2/∂(ct)2 − ∇2, on a
montré que l’équation d’onde n’est pas invariante sous les transformations de Galilée et donc que les
transformations galiléennes ne sont pas adaptées pour l’électromagnétisme. Ci-dessous, on dérive la
transformation cherchée et on l’identifie aux transformations de Lorentz.
Par convention, on choisit d’exprimer les coordonnées spatio-temporelles à l’aide des quadrivecteurs
suivants, x = (ct, x, y, z)T = (x0, x1, x2, x3)T et on écrit l’opérateur d’alembertien � = ∂2/∂x2

0−∇2.
(c) Exprimer l’opérateur � sous forme matricielle. Plus précisément, on demande d’exprimer �

à l’aide de l’opérateur D = (∂x0 , ∂x1 , ∂x2 , ∂x3)T et d’une matrice diagonale G qu’il faudra
préciser.
Afin d’obtenir un opérateur de forme d’alembertienne �, il faut donc multiplier DT GD
où G est une matrice qu’il faut définir. Si G était la matrice identité, on obtiendrait alors
un laplacien généralisé D2 =

∑3
i=0 ∂2/∂x2

i . Pour obtenir le changement de signe sur les
dérivées secondes spatiales observé dans l’opérateur d’alembertien, il faut introduire une
matrice G, appelée « métrique de Minkowski », dont l’expression est donnée par :

G =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (33)

et l’opérateur � s’écrit donc :

� = DT GD =
(
∂x0 ∂x1 ∂x2 ∂x3

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




∂x0

∂x1

∂x2

∂x3

 = ∂2
x0 −

3∑
i=1

∂2
xi

. (34)

(d) Soit une matrice Λ ∈ R4×4 décrivant le changement de coordonnées x′ = Λx. Démontrer que
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celle-ci doit satisfaire la relation
G = ΛT GΛ (∗)

pour que l’équation d’onde soit invariante pour cette transformation.
Le but de cette partie est de trouver quelles relations doivent satisfaire les matrices
de transformation Λ afin que l’opérateur � = DT GD soit invariant pour ce type de
transformation. On cherche à exprimer l’opérateur D par rapport aux coordonnées du
référentiel R′. On développe D = JD′, où la matrice J est la matrice jacobienne associée à
la transformation, donnée par :

J = {∂x′
i/∂xj}ij , i, j = 0, 1, 2, 3. (35)

Sachant que x′ = Λx, on constate que J−1 = Λ dans le cas des transformations linéaires.
Par conséquent, l’opérateur D transforme comme :

D′ = ΛD. (36)

En utilisant les résultats trouvés en (34) et (36), il est possible d’écrire �′

�′ = D′T GD′ = (ΛD)T G(ΛD) = DT ΛT GΛD = DT GD = � . (37)

Par conséquent, en imposant que G = ΛT GΛ, on obtient que �′ = �. Ceci permet à
l’équation d’onde d’être invariante si l’on suppose que E′ = P (δ)E comme vu au point (b).

(e) Soit la matrice

Λx(β) =

 γ −βγ
−βγ γ

02

02 I2

,

avec β = v/c et γ = 1/
√

1 − β2. Montrer que Λx(β) correspond à une transformation de
Lorentz entre les référentiels R et R′. Vérifier que Λx(β) satisfait la relation (∗).
La matrice Λx(β) est associée à un changement de coordonnées entre les deux référentiels
R et R′ introduits en série 10. Pour rappel, le référentiel R′ se déplace selon ex avec une
vitesse relative v = βc par rapport à R. On développe

x′ = Λx(β)x =


γx0 − βγx1
γx1 − βγx0

x2
x3

 =⇒


t′

x′

y′

z′

 =


γ(t − βx/c)
γ(x − vt)

y
z

 , (38)

ce qui correspond bien à une transformation de Lorentz le long de l’axe des x. Bien entendu,
on peut également écrire les matrices associées à une transformation similaire le long des
axes y et z,

Λy(β) =


γ 0 −βγ 0
0 1 0 0

−βγ 0 γ 0
0 0 0 1

 et Λz(β) =


γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ

 . (39)

Ensuite, on vérifie que le changement de coordonnées donné par Λx(β) satisfait bien la
relation (∗). Par calcul direct, on obtient que :

Λx(β)T GΛx(β) =


γ2(1 − β2) 0 0 0

0 γ2(β2 − 1) 0 0
0 0 −1 0
0 0 0 −1

 = G, (40)
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où on a utilisé le fait que γ2(1 − β2) = 1, ce qui conclut la démonstration.
(f)challenge

Démontrer que les matrices Λ satisfaisant (∗) forment un groupe. Montrer que les rotations
spatiales appartiennent également à ce groupe.
On commence par montrer que les matrices Λ forment un groupe. L’associativité découle du
fait que les matrices carrées forment une algèbre et n’est pas à prouver. Il faut donc prouver
la loi de composition interne, l’existence de l’élément neutre et l’existence de l’inverse :

Composition interne : (Λ1Λ2)T G(Λ1Λ2) = ΛT
2 (ΛT

1 GΛ1)Λ2 = ΛT
2 GΛ2 = G, (41)

Élément neutre : IT GI = G, donc I appartient au groupe, (42)
Inverse : (Λ−1)T GΛ−1 = (Λ−1)T (ΛT GΛ)Λ−1 = G, donc si Λ

appartient au groupe, alors Λ−1 également.
(43)

On en conclut que les matrices Λ forment effectivement un groupe.
Les matrices Λ satisfaisant la relation (∗) appartiennent au groupe O(1, 3), où (1, 3) est la
« signature » de la métrique G, parfois aussi notée (3, 1) ou encore (− + ++). Si G avait été
la matrice identité, alors la relation deviendrait ΛT Λ = I et correspondrait aux matrices
dites « orthogonales », dont le groupe est O(3).
Les matrices de Lorentz, plus spécifiquement, appartiennent à un sous-groupe de O(1, 3),
appelé « groupe orthogonal spécial orthochrone » SO(1, 3)+. Ce groupe contient les matrices
satisfaisant également det(Λ) = 1 et Λ00 ≥ 1. On remarque que les matrices de translation
Λi(β), définies à la question (e), appartiennent au groupe SO(1, 3)+.
Les matrices de rotations spatiales peuvent s’écrire de la façon suivante :

Λ[Rx(θ)] =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 , Λ[Ry(θ)] =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 ,

Λ[Rz(θ)] =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 ,

(44)

où la notation Ri(θ) fait référence aux matrices de rotation en trois dimensions, appar-
tenant au groupe spécial orthogonal dans R3×3, noté SO(3). Ce groupe réunit toutes les
matrices R ∈ R3×3 telles que RT R = I avec det R = 1. Les matrices ci-dessus sont par
blocs et satisfont la relation ΛT GΛ = G. On peut le vérifier pour la première matrice de
rotation :

Λ[Rx(θ)]T GΛ[Rx(θ)] =


1 0 0 0
0 −1 0 0
0 0 − cos2 θ − sin2 θ 0
0 0 0 − cos2 θ − sin2 θ

 = G. (45)

On en conclut que les rotations spatiales sont des transformations qui laissent également les
équations de Maxwell invariantes. On note que les matrices de rotation Λ[Ri(θ)], comme
les matrices de translation Λi(β), appartiennent au groupe SO(1, 3)+.
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