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Corrigé 11 : Cinématique relativiste

1 Astronaute sur internet

Un astronaute a bord d'une fusée s'éloigne a une vitesse constante u de la Terre. Deux horloges
mesurent le temps depuis lequel I'astronaute a quitté la Terre. On note ¢ le temps indiqué par I'horloge
terrestre et ¢ celui donné par I'horloge de la fusée. L'astronaute désire surfer sur internet.

(a)

L'astronaute clique pour se connecter; on appelle cet événement A. A cet instant, son horloge
de bord indique #/;. A quelle distance de la Terre (dans le référentiel terrestre), se trouve-t-il
alors ? Quel temps t4 est-il indiqué par I'horloge terrestre 7 Commencer par placer les différents
événements sur un diagramme espace-temps.
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Figure 1

Soit S le référentiel 1ié & la Terre et S’ le référentiel lié & la fusée. Les événements dans S
et S’ sont reliés par les transformations de Lorentz :

x’ x — ut x '+ ut’
(t’) = (t B ux/02> et, par relativité, (t) =7 (t’ n um’/02> ; (1)

avec v = 1/y/1 —u?/c?. Dans S, la fusée avance a la vitesse u et la Terre est au repos. Dans
&', la Terre se déplace a la vitesse —u et la fusée est au repos. La situation est illustrée
sur le diagramme espace-temps ci-dessus. L’événement A (lorsque 'astronaute clique pour
se connecter) a pour coordonnées spatio-temporelles (t/y,2’,) dans &', avec 2’4 = 0. On
exprime cet événement dans S grace a 1’équation (1),

ta =y, xA = yuty = uta. (2)

L’application numérique donne v = 3.2, x4 = 1.4-10"%m et t4 = 48.0s.

Le signal étant transmis par ondes radio, qu'indique I'horloge terrestre lorsque le signal est recu
sur Terre ? Qu'indique alors I'horloge de la fusée? Vu de la fusée, a quelle distance la Terre se
trouve-t-elle alors?
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Le signal se propage par ondes radio, donc a la vitesse de la lumiere ¢, et ceci dans tout
référentiel. Le temps de parcours mesuré par 'horloge terrestre est alors At; = x4/c. Soit
I’événement B, correspondant a l'instant ou le signal est regu sur Terre, de coordonnées
spatio-temporelles :

thtAJrAtl:tAJr“:tA(1+“):ms’A(1+“> et xp=0. (3)
C & &

Par les transformations de Lorentz, dans le référentiel de la fusée, I’événement B a pour
coordonnées :

t/
ts =tp =ty (1 + Z) = 1—72/(: et 'z =—yutp = —ut. (4)

De maniére équivalente, on aurait également pu trouver t; et 25 depuis le référentiel S’ en
remarquant que I’évenement B est l'intersection de la trajectoire de la Terre a la vitesse —u,

2’y = —ut’, et le faisceau lumineux a la vitesse —c qui part t/, plus tard, 2’z = —c(ts —t/y),
voir figure 1. Ainsi,

tlB:ﬁi:t;l""i/i :>a:33(1—1é):—ut14, (5)
et donc ot o Y

xjgzl_if/c:—utjg et tb:fi:?%' (6)
L’application numérique donne tg = 93.7s, 2’5 = —8.5 - 101%m et )3 = 300s.

La Terre renvoie immédiatement un signal de confirmation, également par ondes radio. Qu'indique
I'horloge de la fusée lorsque I'astronaute recoit le signal de confirmation ? Sur son horloge, combien
de temps s'est-il écoulé entre I'instant ou il a cliqué et I'instant ou il recoit la confirmation ?

Dans le référentiel de la fusée, le signal de confirmation est émis au temps t3, quand la Terre
se trouve & une distance |zz|. Comme dans le point (b), les ondes radio se propagent & une
vitesse ¢ dans tout référentiel, donc aussi par rapport a la fusée. Le temps de retour mesuré
par P'horloge de la fusée est alors At = |2'z|/c = ut’z/c. Soit Pévénement C' correspondant
a linstant auquel la fusée regoit la confirmation :

1+u/c
1oy At =+ (1 u _ —
tc tB+ tz tB( + c tAl—u/c et .I'C O (7)
Ainsi le temps écoulé dans la fusée entre A et C' est :
2u/c
At =ty —ty = ——t 8

L’application numérique donne t;, = 5855 et At = 570s.

Expansion de I'univers et décalage vers le rouge

L'univers est en expansion constante en raison d'une dilatation de |'espace lui-méme. Il en résulte un
éloignement progressif des objets célestes a grande échelle (galaxies, amas de galaxies). On montre
que cette expansion entraine un décalage vers le rouge de la lumiére émise par des galaxies distantes.

On considére une seule dimension spatiale. Soit une source lumineuse s s'éloignant d'un observateur o
a une vitesse v > 0. On associe un référentiel R a 'observateur, ainsi que A, la longueur d'onde qu'il



mesure provenant de la source. Le référentiel lié a la source est noté R’, ainsi que A4 la longueur

d’'onde émise dans son propre référentiel.

(a) Exprimer la longueur d'onde A\, mesurée par |'observateur en fonction de la longueur d’onde
émise \; et de la vitesse relative 5 d'éloignement entre |'observateur et la source, 5 = v/ec.

On propose deux solutions.

Solution 1. On se place dans le référentiel de la source R'. Celle-ci émet des fronts d’ondes
séparés d’une longueur d’onde A\; = cATy, se propageant a vitesse ¢ en direction de
I’observateur, avec ATy la période de I'onde. Toujours du point de vue de la source, on
observe un premier front d’onde arriver a I'observateur, puis, apres un temps dts, un second
front. Pendant cet intervalle de temps, I’onde aura parcouru une distance cdtg, alors que
I’observateur aura lui parcouru une distance vdts. On peut donc écrire

As AT,

06t3:>\3+U5ts — 5t8:m:1_6 (9)

Puisque 'observateur est en mouvement par rapport a la source, I'intervalle de temps entre
I’arrivée de deux fronts d’onde, du point de vue de 'observateur dans le référentiel R, est

dilaté par rapport & R’ et s’écrit
ot
Sty = — = 6tg\/1 — 2. (10)
Y
En substituant expression (9) dans I’équation précédente, on obtient

1+
Pour 'observateur, 'intervalle §t, entre la réception de deux fronts d’onde correspond
naturellement & la période apparente AT, de 'onde qu’il regoit, 6t, = AT, = \,/c. On peut
ainsi conclure que

145
Ao =\ T5 (12)
Solution 2. Il est également possible de procéder par transformation de Lorentz. On
considére les coordonnées spatio-temporelles suivantes :

Eveénement dans le réf. de : 1’observateur, la source.

Arrivée du 1°* front. 1, 11 1'/1a t/1
Arrivée du 274 front. T, to zh, th

On pose arbitrairement z1 =z} = t; = | = 0. Puisque 1'observateur ne bouge pas dans
son propre référentiel R, alors il regoit également le second front en xo = 0, et ce apreés un
temps ty = \,/c en accord avec la longueur de 'onde qu’il mesure.

Les coordonnées spatio-temporelles associées a la réception du second front dans le référen-
tiel R’ satisfont la transformation de Lorentz, et notamment

VX9
th = 7(:52 - 02) = 7ts. (13)
Par un raisonnement similaire & la premiere solution, on peut affirmer que

1-p

ty = As vty = As=c(l = f)yta =/ ——
Cly s T Uiy s C( 5)72 1+ 3

Aos (14)



et donc

Ao = At/ —= (15)

ce qui est bien identique au résultat obtenu précédemment, éq. (12).

(b) Exprimer ce résultat en fonction du décalage vers le rouge (« redshift » en anglais), c’est-a-dire
la variable z = (A, — A\s)/As. Interpréter les cas z > 0 et z < 0.

Par substitution de 1'éq. (15) dans I’expression du décalage vers le rouge z donnée en énoncé,

on obtient
14+ B
2—1/1_5 1. (16)

Puisqu’on avait posé qu'un éloignement de la source et de I’observateur correspond au cas
v > 0, on constate que ce cas implique § € ]0,1] et donc z > 0. Pour une source s’éloignant
de 'observateur, les longueurs d’ondes mesurées apparaissent plus longues que la longueur
d’onde émise, A\, > Ag4, et se traduit par un décalage vers le rouge du spectre lumineux
mesuré. Si, au contraire, la source et I’observateur se rapprochent, alors v < 0, g € |—1,0],
z < 0et A, < Ag, c’est-a-dire que les longueurs d’onde mesurées paraissent alors plus courte
que celle originalement émises par la source. Le décalage du spectre lumineux se fait alors
« vers le bleu ».

(c) Quelle relation obtient-on pour A lorsque v < ¢?

Quand v < ¢, les équations (15) et (16) deviennent
v v
)\O%/\S(l—i-ﬁ):)\S(l—i-) et zrf=—. (17)
c c

L’équation (17) correspond a l'effet Doppler classique déja vu en cours. On retrouve donc
la limite classique de la mécanique relativiste a la mécanique galiléenne quand 5 < 1.

L’expression obtenue en (16) pour le décalage vers le rouge est capitale en astrophysique et
possede diverses applications. En effet, a partir des spectres des différentes galaxies, il est
possible de mesurer le décalage vers le rouge z de celles-ci et d’obtenir leur distance a la
Terre par application de la loi de Hubble, donnée par

v = Hyd, (18)

ol Hy est la constante de Hubble. Dans la limite ott 2 = v)/c ou v est la vitesse de la
galaxie dans ’axe d’observation, la distance est donnée par

cz

d=—. 19

i (19)

C’est d’ailleurs pour cela que le télescope James Webb, lancé en 2021, ne mesure la lumiere

que dans le spectre infrarouge : afin d’observer des objets de décalage vers le rouge z ~ 20,

époque correspondant a la formation des premieres étoiles et galaxies, soit seulement 180
millions d’années apres le Big Bang.

3 Physique des particules
Parmi les innombrables particules observées dans |'accélérateur du LHC au CERN, on rencontre
parfois la particule nommée Ag. Sa durée de vie au repos est de 7y, aprés quoi elle se désintégre. Les
appareils de mesure la repérent pendant 7 = 1379/5. Pour simplifier, on traite le probléme de facon
unidimensionnelle dans I'espace.



(a) Montrer que la vitesse de la particule par rapport aux appareils de mesure est de v = 12¢/13.
Quelle est la longueur L de sa trace (le chemin enregistré par le détecteur depuis son apparition
jusqu'a sa désintégration) ? De quelle longueur Ly est la trace de la particule dans son référentiel
propre ?

L’existence de la particule Ay semble prolongée par rapport a sa durée de vie au repos en
raison de sa vitesse par rapport aux instruments de mesure. En effet, le temps s’écoule
différemment que 1’on soit dans le laboratoire ou dans le référentiel de la particule. Si on se
place dans un référentiel dans lequel la particule est au repos (le référentiel propre), la durée
de vie est de 79. Si on se déplace a une vitesse v par rapport a la particule (ou de fagon
équivalente, on observe la particule se déplacer a vitesse v), on constate une dilatation du

temps donnée par
70

T=9T) = ——7——.
T V1—02/c?

On en dégage la vitesse de la particule par rapport au laboratoire,

2 \/725 1 12
Y I Y SR TR e S 21
Y CR ‘ 169~ V169 ~— 13° (1)

La longueur de la trace mesurée par le détecteur est

(20)

12
L=vr=—cr. (22)
13

Pour répondre a la question de la longueur du tracé dans le référentiel propre, on propose
deux interprétations aboutissant a la méme conclusion.

1. Du point de vue de la particule, c’est le laboratoire qui bouge a la vitesse v. Pendant
le temps 7g, ce dernier se sera déplacé de

12
Lo =v1g = —c19- 23
0 0= 73670 (23)
2. En partant du référentiel du laboratoire, un changement de référentiel vers le
référentiel propre de la particule induit une contraction des longueurs. Si, dans le

laboratoire, on mesure la distance L, alors, en utilisant les relations (20) et (22),

2 12
Lo=Ly/1— 2—2 = vTT—: =19 = ﬁcm. (24)

Finalement, on remarque qu’il aurait pu paraitre judicieux d’appliquer l'identité pour la
contraction des longueurs de la fagon suivante :

L
L==22 (25)
Y

ce qui est évidemment en contradiction directe avec I’équation (22) qui indique que L = L.
La notation porte a confusion, mais il convient de noter que la longueur de la trace dans
le laboratoire est L. Dans le référentiel du laboratoire, cette trace est « immobile » : les
extrémités de la trajectoire (création et désintégration de la particule) ont des coordonnées
spatiales indépendantes du temps, et on peut donc ’associer a une longueur propre (on
pourrait par exemple dessiner cette trajectoire sur un papier). Cette longueur apparait
contractée dans le référentiel de la particule, en translation avec le laboratoire a vitesse v,
et donc Ly = L/, ce qui est bien l'identité attendue.

En revanche, les coordonnées spatio-temporelles associées aux extrémités de la trace dans
le référentiel en mouvement de la particule ne sont pas immobiles dans I’espace. On ne
peut donc pas appliquer la formule de contraction des longueurs directement. On pourrait
par contre effectuer une transformation de Lorentz vers le référentiel du laboratoire, qui
permettrait bien de retrouver L = L.



(b) On détecte deux particules Ay créées au méme moment et au méme endroit. Elles se déplacent
avec des vitesses de normes égales a v = 12¢/13, mais de directions opposées. Quelle est la
vitesse u de I'une par rapport a I'autre ? Est-ce qu'elles se désintégrent en méme temps dans le
référentiel du laboratoire? Et dans le référentiel de I'une des particules ? Justifier les réponses
par des calculs.

Un raisonnement classique suggere que la vitesse relative entre les deux particules est
u = 2v > c¢. Evidemment, une vitesse plus élevée que celle de la lumiere est contraire au
deuxieme postulat de la relativité. La loi de composition de vitesses est modifiée comme ceci

V1 — U2 2v 2-12-13 312

YT e/ T 102 169+ 144°  313°

(26)

et la vitesse relative reste donc inférieure a celle de la lumiere.

La simultanéité est une notion relative. Plagons l'origine de ’espace-temps a I’endroit et au
moment ou ces deux particules sont créées. Dans le référentiel du laboratoire, elles ont la
méme vitesse en norme. La maniere dont le temps s’écoule dans le laboratoire par rapport
a leur référentiel propre est la méme. Elles se désintegrent donc au méme moment 7 et a la
méme distance L d’un coté et de 'autre de I'origine.

Par contre, dans le référentiel propre de 1'une des particules (peu importe laquelle), il n’y a
plus cette symétrie : I'une est au repos (nommons cette particule A) et 'autre (particule B)
se déplace a la vitesse u. Par un raisonnement identique & la question (a), il y a & nouveau
dilatation du temps propre de B par rapport a A,

’ T0 3137’0 o 3137’0

= = = > 70. 27
JI_Z/E  BiE—3i22 25 0 27)

T

Ainsi, la particule A se désintégre avant la particule B dans le référentiel propre de A. Si
on échange A et B, 'affirmation précédente est aussi vraie. Méme si cela parait paradoxal,
c’est le principe méme de la relativité.

Alternativement, on peut répondre a cette question en utilisant les transformations de
Lorentz pour passer du référentiel du laboratoire au référentiel propre de la particule A
(qui, supposons, voyage dans la direction positive de 'axe des ). Remarquons d’abord que
I’'on garde la méme origine de I’espace-temps, c’est-a-dire que I’événement correspondant
a la production de B garde les coordonnées spatio-temporelles (¢, z) = (0,0). Ensuite, on
sait que B disparait & x = —L et t = 7. Par transformation de Lorentz et en utilisant les
équations (20) et (22), et on obtient

2,2 2 2
;o oL\ 40t 1374127 313
T —’Y(T+C)—TOCZU2—T()132122—7‘025>7’0. (28)
L’équivalence entre ces deux approches, éqgs. (27) et (28), peut étre montrée en remplagant u
par son expression en (26) dans (27),

47)2/02 :| -1/2

T/:To[l—(l_i_vw {(1_”2/62)2]_1/2_ 4?

(/@R 2

4 Simultanéité

Dans un référentiel R, deux événements 1 et 2 ont lieu en (z1,t1) = (xo,x0/c) et (x2,t2) =
(220, 20/(2¢)). Quelle est la vitesse du référentiel R’ dans lequel les deux événements ont lieu
simultanément ? Déterminer |'instant correspondant.



La correspondance entre les coordonnées spatio-temporelles d’un événement dans les référentiels R

et R’ est donnée par
x; x; — Bet;
A j j
<t9> gl (tj _ Ba; /C> , (30)

ounj=12 8=v/cety=1/y/1— 2 On veut que les deux événements soient simultanés
dans R', ce qui signifie que #; = . Ainsi,

C(tg — tl) 1 C

9 — X1 2 v 2 ( )
Le fait que v < 0 signifie que le référentiel R’ se déplace dans le sens négatif le long de I'axe x
du référentiel R. L’instant cherché est

o =t, =32, (32)
C

5 Invariance des équations de Maxwell (partie 2)

On aborde la seconde partie du probléme débuté en série 10, exercice 1.

A titre de rappel, on désire déterminer quelle transformation laisse I'équation d'onde des champs

électromagnétiques invariante. En définissant I'opérateur d’alembertien 0 = 9%/9(ct)? — V2, on a

montré que |'équation d’onde n'est pas invariante sous les transformations de Galilée et donc que les

transformations galiléennes ne sont pas adaptées pour I'électromagnétisme. Ci-dessous, on dérive la

transformation cherchée et on |'identifie aux transformations de Lorentz.

Par convention, on choisit d'exprimer les coordonnées spatio-temporelles a I'aide des quadrivecteurs

suivants, x = (ct, z,y, 2)? = (zo,71,22,73)T et on écrit I'opérateur d'alembertien O = 92 /023 — V2.

(c) Exprimer I'opérateur O sous forme matricielle. Plus précisément, on demande d’exprimer OJ
3 I'aide de I'opérateur D = (0,0, , Ouy, Ouy)! et d’'une matrice diagonale G' qu'il faudra
préciser.

Afin d’obtenir un opérateur de forme d’alembertienne 0, il faut donc multiplier DT GD
ou G est une matrice qu’il faut définir. Si G était la matrice identité, on obtiendrait alors
un laplacien généralisé D? = 3’:0 0?/0x2. Pour obtenir le changement de signe sur les
dérivées secondes spatiales observé dans ’opérateur d’alembertien, il faut introduire une
matrice G, appelée « métrique de Minkowski », dont ’expression est donnée par :

1 0 0 0
0 -1 0 0
G= o 0 -1 0|’ (33)
0o 0 0 -1
et U'opérateur [ s’écrit donc :
1 0 0 O [ ;
0=D"GD = (3, 0, 0 &) [0 o )+ gxl —02 ~3 82 (34)
2 i=1
0 0 0 —1) \Ou

(d) Soit une matrice A € R**4 décrivant le changement de coordonnées x’ = Ax. Démontrer que



celle-ci doit satisfaire la relation

G =ATGA (%)
pour que |I'équation d'onde soit invariante pour cette transformation.
Le but de cette partie est de trouver quelles relations doivent satisfaire les matrices
de transformation A afin que l'opérateur 0 = DTGD soit invariant pour ce type de
transformation. On cherche a exprimer 'opérateur D par rapport aux coordonnées du
référentiel R’. On développe D = JD’, ot la matrice J est la matrice jacobienne associée a
la transformation, donnée par :

J ={0a!/0x;},., i,j=0,1,2,3. (35)

ij?

Sachant que x’ = Ax, on constate que J~! = A dans le cas des transformations linéaires.
Par conséquent, I'opérateur D transforme comme :

D’ = AD. (36)
En utilisant les résultats trouvés en (34) et (36), il est possible d’écrire [/
0 =DTGD' = (AD)"G(AD) = D'ATGAD = D'GD = 0. (37)

Par conséquent, en imposant que G = ATGA, on obtient que ' = 0. Ceci permet a
I’équation d’onde d’étre invariante si I'on suppose que E' = P(§)E comme vu au point (b).

A (B) = (%v _57 02\,

Soit la matrice

0, | I,)
avec 8 = v/c ety = 1/y/1— B2. Montrer que A,(f3) correspond a une transformation de
Lorentz entre les référentiels R et R'. Vérifier que A,(3) satisfait la relation ().

La matrice A, (B) est associée & un changement de coordonnées entre les deux référentiels
R et R’ introduits en série 10. Pour rappel, le référentiel R’ se déplace selon e, avec une
vitesse relative v = (¢ par rapport a R. On développe

Yxo — By t v(t — Bz /c)
— / —
X/ _ A:E(B)X — Y1 . 5’7930 — x/ — ’Y(:U Ut) , (38)
2 Yy Y
3 2 z

ce qui correspond bien a une transformation de Lorentz le long de ’axe des z. Bien entendu,
on peut également écrire les matrices associées a une transformation similaire le long des
axes y et z,

v 0 =By 0 v 0 0 By
0 1 0 0 0 10 0
0o 0 0 1 By 0 0 ~

Ensuite, on vérifie que le changement de coordonnées donné par A, () satisfait bien la
relation (). Par calcul direct, on obtient que :

A=) 0 0 0
2n2
s@en@=| o TE D 0 g (40)
0 0 0o -1



e
s

ol on a utilisé le fait que 42(1 — 3?) = 1, ce qui conclut la démonstration.

Démontrer que les matrices A satisfaisant (%) forment un groupe. Montrer que les rotations
spatiales appartiennent également a ce groupe.

On commence par montrer que les matrices A forment un groupe. L’associativité découle du
fait que les matrices carrées forment une algebre et n’est pas a prouver. Il faut donc prouver
la loi de composition interne, I'existence de I’élément neutre et ’existence de ’'inverse :

Composition interne :  (A;A2)TG(A1A2) = AL(ATGA Ay = ATGA, = G, (41)
Elément neutre : ITGI = G, donc I appartient au groupe, (42)
Inverse : (A"H)TGA™! = (A"HT(ATGA)A~! = G, donc si A (43)

appartient au groupe, alors A~! également.

On en conclut que les matrices A forment effectivement un groupe.

Les matrices A satisfaisant la relation () appartiennent au groupe O(1, 3), ou (1, 3) est la
« signature » de la métrique G, parfois aussi notée (3,1) ou encore (—+ ++). Si G avait été
la matrice identité, alors la relation deviendrait AT A = I et correspondrait aux matrices
dites « orthogonales », dont le groupe est O(3).

Les matrices de Lorentz, plus spécifiquement, appartiennent a un sous-groupe de O(1, 3),
appelé « groupe orthogonal spécial orthochrone » SO(1, 3)". Ce groupe contient les matrices
satisfaisant également det(A) =1 et Aggp > 1. On remarque que les matrices de translation
A; (), définies a la question (e), appartiennent au groupe SO(1,3)™.

Les matrices de rotations spatiales peuvent s’écrire de la fagon suivante :

1 0 0 0 1 0 0 O
01 0 0 0 cosf O siné

AR, (9)] = 0 0 cosf —sinf |’ ARy (9)] = 0 0 1 0 ’
0 O sinf cosb 0 —sinf® 0 cos@

0 0 (44)

cosf) —sind

sinf cosf
0 0

A[R.(0)] =

o O O
= o o O

ou la notation R;(6) fait référence aux matrices de rotation en trois dimensions, appar-
tenant au groupe spécial orthogonal dans R3*3, noté SO(3). Ce groupe réunit toutes les
matrices R € R3*3 telles que RT R = I avec det R = 1. Les matrices ci-dessus sont par
blocs et satisfont la relation ATGA = G. On peut le vérifier pour la premiére matrice de
rotation :

1 0 0 0
0 -1 0 0
0 0 0 —cos?6 —sin? 6

On en conclut que les rotations spatiales sont des transformations qui laissent également les
équations de Maxwell invariantes. On note que les matrices de rotation A[R;(6)], comme
les matrices de translation A;(3), appartiennent au groupe SO(1,3)™.



