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Corrigé 9 : Polarisation, réflexion et réfraction

1 Action d’une lame de quartz sur une onde polarisée rectiligne

On considére une lame de quartz d'épaisseur d et paralléle au plan Oxy et une onde électromagnétique
polarisée rectiligne incidente de longueur \g = 27 /ko se propageant dans la direction z et dont I'axe
de polarisation fait un angle oy, avec I'axe . La lame de quartz est un matériau biréfringent dont le
tenseur diélectrique s'écrit

ez 0 0
e=10 ¢ O
0 0 e

On supposera que le quartz n'est pas aimanté, c.-a-d. H = B/ dans le quartz.
(a) Montrer que, dans le quartz, les nombres d'onde d'une onde polarisée rectiligne selon les axes
ordinaire k, = k, . e, et extraordinaire k. = k. . e, de la lame sont donnés par

2 _ 272 2 _ 272
kO,Z = noko et ke7z = neko,
ol on dénote respectivement n, = \/€;/€g et n. = \/€,/€o, les indices de réfraction selon les
axes ordinaire et extraordinaire.

On part des équations de Maxwell dans lesquelles on impose une densité de charge et un
courant électrique libres nuls, py = J; = 0,

V.-D=0, V.-B=0,
oD OB (1)

VXH—EZO, VXE“‘E:O

On suppose que tous ces champs sont assimilables & des ondes planes. Par exemple, pour le
champ électrique, E(x,t) = Egexp[i(k - x — wt)], avec Eg un vecteur d’amplitude constant.
Par substitution de cette forme dans les équations de Maxwell, on obtient
k-D=0, k-H=0, @)
kxH+wD =0, kxE—-wpH=0.
En rappelant que D = €E, on peut écrire une équation uniquement en termes de E,
k x (k x E) = —w?uoeE (3)

En développant k x (k x E) = (k- E)k — k? E et en rappelant que les champs se propagent
le long de l'axe z, c.-a-d. k = k, e,, on obtient une équation matricielle similaire a celle
trouvée en cours :

Ay — kig 0 0 Ez
k2F,e, — k2B + w?upeE = 0 a,—k 0 E,| =0 (4)
0 0 ap E,

ou ay = wguoex, Oy = wQ,uoey et ag = w2u060 = w2/02. On remarque, d’une part, que ce
systeme linéaire impose agF, = 0 selon z et qu’il n’y aura donc pas de composante du
champ électrique selon z a l'intérieur du quartz, £, = 0. D’autre part, on constate que les
équations restantes selon x et y ne peuvent pas étre satisfaite simultanément si €, # €,. En
effet, pour la composante x, le nombre d’onde k, satisfait 1’équation suivante :

€r W2

kz =q,; = = ngkg, (5)

€y 2



avec kg = 2w /)¢ le nombre d’onde de l'onde incidente se propageant dans le vide. La
composante y imposera, quant a elle,

k2 = n2k3. (6)

. =

Cette inconsistance apparente laisse transparaitre que les composantes ordinaire et extraor-
dinaire du champ électrique se propagent a des vitesses différentes a l'intérieur du quartz.
Afin de lever 'inconsistance, il est en effet nécessaire de poser

E=E,+E.= E07oei(kO.X7Wt) ey + EO,eei(ke.X7Wt) €y, (7)

ou E, et E, satisfont chacun la relation (4) séparément. Naturellement, Fy = Ey, = Eo
en considérant les conditions aux bords a l’entrée de la lame. On obtient évidemment
que k, =k, . e, et k. = k. . e, avec

Ko =noki et k. =nchg. (8)

Cette différence de vitesses de propagation a travers le quartz va donc induire un déphasage
entre les deux composantes du champ électrique.

Montrer que le champ électrique E a la sortie de la lame est en général polarisé elliptique,

2 2
E? E; _ 2BE;Bycos¢
2 a2 2 2 2 :
E<cos*ap,  E<sin“a,  E“cosaysinay,

= sin? o, (%)

ol ¢ = (2m/Xo)(ne —no)d, E, et E, sont les composantes du champ électrique selon les axes x
et y, et £ = ||E||. Quelle quantité physique ¢ représente-t-elle ?

On commence par exprimer le champ électrique incident sur la lame de quartz,
E(X7 t) = E(COS Oép e, + sin ap ey)ei(l@X—wt)’ (9)

avec k = kg e,. Lorsque cette onde plane atteint et pénétre dans le quartz, la composante
parallele a l'interface vide-quartz doit étre continue, c’est-a-dire que E; || = Ey | (voir, par
exemple, série 7, exercice 3). Donc, dans ce cas particulier, I'entiéreté de ’onde incidente
est transmise. En posant x = 0 a l'entrée de la lame de quartz, on obtient donc ’expression
suivante pour le champ électrique a I'entrée de la lame :

E(x =0,t) = E(cosay e, +sina,e,)e " (10)

En utilisant le résultat trouvé au point (a), le champ électrique doit étre décomposé en
une composante ordinaire, E,, et extraordinaire, E., qui se propageront respectivement
avec k., = noko et k. . = ncko. Par conséquent, sachant que la composante ordinaire E,
correspond a la composante x du champ électrique et la composante extraordinaire a la
composante y, le champ électrique dans la lame de quartz peut s’écrire

E(x,t) = Eo(x,t) + E¢(x,t) = E(cos apeiko(”"zfd) e; + sin apeiko(”ezfd) ey). (11)
Le champ électrique E a la sortie de la lame de quartz, & x = de,, s’écrit
E(de,,t) = E(cos apetoMed=t) o 4 sin qetko(red=ct g ). (12)

Comme précédemment établi au point (a), on voit donc que les composantes = et y de
I’onde apres avoir traversé la lame sont déphasées. On peut mettre en évidence ce déphasage



en réécrivant I’équation (12) dans laquelle on effectue une translation temporelle suivante,
t—t+ (no +ne)d/(2¢),
E(d e, t) = E(COS apei[ko(no—ne)d/2—wt] e, + sin apei[ko(ne—no)dﬂ—wt] ey) ...
- = B(cos o, 79/27 e 4 sin qyel(®/27w0) ey), (13)

ol on a posé ¢ = ko(ne — no)d = (2m/Ng)(ne — no)d qui est donc le déphasage entre les
composantes x et y. En prenant la partie réelle de I’équation (13), on obtient

E, = E, e, = Ecosaycos(wt — ¢/2) e, (14)
E, = E, e, = Esinoy,cos(wt + ¢/2) e,. (15)

En injectant ces expressions pour E, et E, dans '’équation de l'ellipse & démontrer, éq. (),
on obtient, au prix d’un peu d’algebre,

cos? (wt — (5) + cos? (wt + q;) — 2cos (wt - ?) Ccos (wt + (5) cos ¢ = (16)
= [cos (wt — g) — cos (wt + g)] 2 + 2 cos (wt - (5) cos (wt + (5) (1 —cosep) (17)
= 4 sin?(wt) sin® g +2 [0052 (wt) cos? % — sin?(wt) sin? q;] (1 — cos ¢) 18)

(

= 2sin?(wt)(1 — cos ¢) + [cos®(wt)(1 + cos ¢) — sin?(wt)(1 — cos ¢)] (1 — cos p) (19)
= 2sin?(wt)(1 — cos ¢) 4 cos?(wt)(1 — cos? ¢) — sin?(wt)(1 — 2cos ¢ + cos® p)  (20)
=1—cos’¢ =sin®¢, (21)

ou on a utilisé les relations trigonométriques suivantes,

cos(aw — ) = cos acos B + sin asin 3, 2cos® a = 1 + cos(2a), (22)

cos(a + ) = cos acos 5 — sin asin 3, 2sin® a = 1 — cos(2a). (23)
L’égalité (x) étant vérifiée, ceci montre donc que, en général, le champ électrique sortant
est polarisé elliptiquement.

Discuter les cas ot ¢ =0, ¢ = m, et ¢ = £7/2. Comparer ces résultats avec ceux trouvés en
série 8, exercice 1, question (e).

Lorsque ¢ = 0 ou ¢ = m, ’équation de I’ellipse se réduit a

E?2 E? 2F,E
z et T =0, (24)
cos®p  Esin“oy B cosaysinay,
ce qui peut étre factorisé en
E E, \?
( Ly L ) =0. (25)
cosqy  sina,

Cette derniere équation impose une relation linéaire entre I, et £, :
E, = ttana, L. (26)

De ce résultat, on déduit que I'onde sortante de la lame de quartz est une onde polarisée
rectiligne. Si ¢ = 0, 'onde sortante est polarisée parallelement a I'onde entrante. Dans
le cas ou ¢ = m, la polarisation de ’onde sortante est alors symétrique a ’onde entrante



par rapport a 'axe x, auquel cas la lame de quartz se comporte donc comme une lame
demi-onde @, étudiée dans la série 8, exercice 1, question (e).

Lorsque ¢ = +m/2, ’équation de Dellipse s’écrit
E} E,
F2cos?a,  E?sin’

=1 (27)

Il s’agit donc de I’équation d’une ellipse dont les deux axes correspondent aux axes = et y,
ce qui n’était pas forcément le cas de I’équation générale démontrée en (b). La polarisation
de I'onde sortante est donc elliptique. Dans le cas spécifique ol oy, = 7/4, on a alors

E?  Ej
E?gfz W (28)

et la polarisation de I'onde sortante est donc circulaire de norme E/+/2. La lame de quartz se
comporte donc comme une lame quart d’onde Q/4, étudiée série 8, exercice 1, question (e).

2 Filtre de Lyot
On propose une application pratique des résultats de I'exercice 1. Un filtre de Lyot est un systéme
composé d'une lame de quartz placée entre deux polariseurs rectilignes. La lame de quartz est
identique a celle de I'exercice 1 : son axe ordinaire est paralléle a e, et son axe extraordinaire a e,.
Les deux polarisateurs rectilignes sont inclinés tel que leurs axes de polarisation fassent un angle
de 7/4 par rapport a I'axe e,. On considére une onde électromagnétique plane, incidente sur le filtre
de Lyot, de longueur d'onde \g, polarisée rectiligne selon e, et se propageant dans la direction z.
(a) Exprimer I'amplitude et l'intensité du champ électrique de I'onde transmise par le filtre en
fonction de ¢ = (27/Ao)(ne — no)d, ou d est I'épaisseur de la lame, et n, et n. sont les
indices de réfraction ordinaire et extraordinaire. En déduire un coefficient de transmission pour
I'amplitude du champ électrique, t = Egsortie/ Eentrée- Définir ¢ en tenant uniquement compte du
quartz et du dernier polariseur, c.-a-d. en ignorant I'effet du premier polariseur.

Le champ électrique incident sur le premier polariseur est donné par

Eo(z,1) = Epe'®* %Y e, = E (é) : (29)

On remarque que la notation en vecteur colonne se réféere au vecteur de Jones de 'onde
incidente, voir série 8, exercice 1. On note, respectivement, Eq, Eo et E3 'onde apres avoir
traversé le premier polariseur P(7/4), la lame de quartz et le deuxiéme polariseur P(m/4).
On rappelle que la matrice des polariseurs s’écrit

P(r/4) = % G 1) ; (30)

et le vecteur d’onde Eq est donc donné par

E, = P(r/4)Eo — g G) _ \% G) , (31)

on E'=FE/ V2 est amplitude de Ponde apres le premier polariseur.

La lame de quartz décrite dans la consigne correspond a celle étudiée dans ’exercice 1, et
on peut par conséquent répéter le raisonnement qui y est présenté. On y a conclut que le



quartz se comportait comme une lame a retard. Par inspection de ’équation (13), on lui
associe donc la matrice de Jones suivante,

e"/2
Qp = ( 0 €i¢/2) ) (32)

ce qui permet donc de calculer le champ électrique Eo apres avoir traversé la lame de quartz,

E [e—i9/2
E2 = Q¢ El = ﬁ €i¢>/2 . (33)

Finalement, la traversée du dernier polariseur, de maniére similaire a I’éq. (31), donne

E' (1 1\ [e19/2

—ig/2 i/2
.= E’%L 1 = E’cos(¢>1
2 V2 \1 2) /2

c’est-a-dire, sans notation de Jones,

¢> —iwt € + ey (35)

Es3(23,t :E’cos< e ,
3(23,1) 7

2
avec la position z3 = d située derriére le dernier polariseur. Le coefficient de transmission,
donné par t = E3/FE, satisfait donc

cos 2. (36)

t] =
t] = [cos 2

L’intensité de 'onde sortante est donnée par Is = E4-E3. On appelle I} = E” 2 qui correspond
a l'intensité de I'onde apres le premier polariseur. On a donc

1
I3=E§'E3211|t|2211++08¢- (37)
On empile N filtres de Lyot avec des lames de quartz d’'épaisseurs d,, = 2" 'd, n=1,...,N.

En négligeant I'absorption des lames, démontrer que le coefficient de transmission total du
systéme t est donné par :

] = sin(2V~"1g) ‘

2N sin(¢/2)

Le coefficient de transmission pour le n® systéme s’écrit

2n71¢
tn, = cos< 5 > = cos(2"2¢). (38)
Par conséquent, le coefficient de transmission total du systéme entier s’écrit
N
t= H t, = cos(¢/2) cos(p) cos(2¢) - - - cos(2V ~2¢). (39)
n=1

On note en particulier qu’entre deux plaques de quartz, deux polariseurs se retrouvent
montés en série. On peut traiter ce bloc de deux polariseurs comme un seul et unique



élément optique. En effet, I’onde regue par le second polariseur est polarisée parallelement
a l’axe principal du premier polariseur (et donc aussi du second), et celle-ci est donc
intégralement transmise. Pour montrer que le coefficient de transmission (39) correspond a
celui de I’énoncé, on procéde par récurrence. On vérifie d’abord que, pour le cas N = 1,
on ait bien une correspondance entre ce coefficient de transmission et celui proposé par
I'énoncé (1) :

¢ €2 4 eTi0/2 p10/2 _ omid/2 b _ it i sin ¢

t=cos L = | _ . __ 1
L= 0%y 2 ¢io/2 — ¢—i9/2 2 e~ 2sm(ga) )

dont la valeur absolue correspond effectivement & ’expression (1) de I’énoncé pour N = 1.
On démontre désormais la récurrence. On suppose que pour NN systemes, le coefficient de
transmission est donné par I’expression de la consigne. Alors pour N + 1 systémes, on a

sin(2V-1g)

tnp1 =ty cos(2V1g) = m cos(2V"1g) = - -
1 2N lig 2N lig 2N i + e—2N"lig
T 2Nsin(¢/2) 2i 2 -
B 1 62Ni¢ _ 6_2Nz‘¢ B Sin(2N¢) (41)
2N+ sin(¢/2) 2i 2N+ sin(¢/2)

Le module de l'expression ci-dessus correspond donc au coefficient de transmission () pour
N + 1 systemes, ce qui conclut la preuve.

Une preuve directe est également possible et proposée ci-dessous. Le cosinus dans I’équa-
tion (39) est remplacé par sa forme exponentielle afin d’obtenir

N N-1 = S B P\ .
t= 1:[1008(2"_2¢) = lilo cos(2" 1) = oN [ H e ? "z’l [H (1+ ¢ "z’)}. (42)

On réarrange le premier produit en une série géométrique,

N-1 . N-1 : _9N i/2

Com1; 110 ip 1-2 €
[]e2 % =exp[—2 > 2"] = eXp{_g' 1-2 ] = 2 (43)
n=0 n=0

On évalue désormais le second produit de 1'équation (42), pour lequel on utilise I’expression
algébrique suivante,

N N N N N
H(l—l—xn):l—l—z:xn—i— Z TnTm + Z ajnwmmp—i—~--—|—Ha)n. (44)
n=1 n=1 n,m=1 n,m,p=1 n=1

n<m n<m<p
En remplacant z,, = e2"~ ', on obtient
N . N-1 N-1 A
H(1+xn):€0Z¢+Z€2 7/¢+ Z 6(2 +2 )Z¢++exp
n=1 n=0

n,m=0
n<m

N—1
> 2%5] . (45)
n=0

L’expression ci-dessus correspond donc & une somme de termes exponentiels e, dont les
indices n sont donnés par les intervalles d’entier couverts par les limites des différentes
sommes. Le premier terme, commun pour tout N, correspond a I’élément n = 0. Le second
terme inclut toutes les puissances de 2 jusqu’a 2V~1. Le troisieme terme inclut la somme de
deux puissances de 2, 2" 4+ 2™ pour n < m, et ainsi de suite. Si ’on considere ’ensemble



des sommes, on peut en fait remarquer que tous les entiers entre 0 et 2V — 1 apparaitront.
Il est plus simple d’arriver a ce constat si I’on adopte une représentation binaire pour
les puissances de 2. Prenons le cas simple ou N = 3, le produit donné en (45) s’écrit
explicitement comme suit :

3
H (I1+zy) =14 (z1 + 22 + 23) + (T122 + 2123 + T273) + T1X2X3. (46)

n=1
En remplacant les valeurs de z,, = €2" "', n = 1,2, 3, chaque terme peut étre explicité :

0; 1, 2.
r1 = 62 z(b, To = 62 zqﬁ? T3 = 62 zd)7

(20+22)i¢

T2 =€ .z = P20 woxs = (2 +2)i0 (47)

Y

T1ZoT3 = 6(20+21+22)i¢>.

Chaque terme est associé a une représentation binaire a 3 chiffres :

£, = 6(001)22'(1)’ £g = 6(010)2@7 €3 = 6(100)2@7
T1Zg = 6,(011)2z‘¢’ €123 = 6(101)2i¢’ CoXz = 6(110)2i¢’ (48)
T1Toxy = e(lll)zi‘b,

ou la notation (-)2 dénote un nombre en notation binaire. On note que le terme (000)2 est
également inclus dans Iexpression (46) puisque 1 = ¢(090)2i¢_ Le produit (44) devient donc
la somme de toutes les exponentielles entre 1 jusqu’a e(2¥—1i¢. On obtient donc la série
géométrique suivante,

2NZ—:1 in €2Ni¢ 1 62N*1i¢ Sin(QN—lé)
e = - = -
=0 e —1 e?/2  sin(¢/2)

(49)

Afin de conclure, on substitue les résultats des développements (43) et (49) dans 1'équa-
tion (42),
1 €92 2" i0sin(2N-1g)  sin(2V1g)

TN TG ol sin(g2) | 2V sin(9/2)’ o

et on retrouve ainsi l’expression () proposée en énoncé.

t

Etudier le comportement du coefficient de transmission (1) en fonction du nombre de filtre N
et montrer qu'un empilement de filtres de Lyot agit comme un filtre passe-bande étroit. Un tel
type de filtre privilégie la transmission d'une fréquence spécifique et atténue le reste du spectre.

On inspecte graphiquement 'effet d’un filtre de Lyot a plusieurs plaques a la figure 1 en y
représentant I'intensité transmise |ty|?, éq. (1), pour différentes valeurs de N. L’intensité
transmise est étudiée en fonction du déphasage ¢ et de la longueur d’onde incidente A.
On a notamment choisi d = 2mm, n, = 1.544 et n, = 1.553. Lorsque plusieurs filtres,
N > 1, sont montés en série, le systeme agit tel un filtre passe-bande étroit : plusieurs pics
se forment et privilégient la transmission de certaines fréquences par rapport au reste du
spectre. On qualifie le filtre d’« étroit » puisque la largeur d’un pic de transmission est
nettement inférieure a la distance séparant deux pics de transmission.
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Intensité transmise |t|? Intensité transmise |t|?

T T T T T
—21n on 2n 585 590 595 600 605 610 615

Déphasage ¢ [-] Longueur d'onde A [nm]

Figure 1

Effet de peau

La répartition d'un courant alternatif dans un conducteur n’est pas

uniforme. Le courant alternatif génére un champ magnétique variable

N

dans le temps, qui engendre lui-méme un champ électrique et, par
conséquent, un courant induit. Ce courant induit modifie le profil de
courant total : on observe une densité de courant plus importante dans
la périphérie d'un conducteur qu'en son centre. Cet effet est appelé
« effet de peau ». On étudie ce phénoméne dans le cas d'un conducteur
non aimanté, de conductivité o, cylindrique de rayon R et d’axe e,
paralléle au courant alternatif principal. On note e, le vecteur unitaire
dans la direction radiale et on choisit e, tel que la base (e, ey, e.)
soit droite.

()

Déterminer le champ magnétique H(r, t) induit par un courant J(r,t) = J(r,t) e, traversant
une section circulaire 3, normale a e, de rayon r du cylindre.

Le courant circulant dans un cylindre de rayon r peut étre décrit par la somme des densités
de courant J(r',t) = J(1’,t) e, circulant dans des couronnes cylindriques situées en 1’ < r
et d’épaisseurs dr’. Par conséquent, le champ magnétique H(r,t) = H(r,t) ey est donné
par la loi d’Ampeére en sommant toutes ces contributions. Soit une section de rayon r du
cylindre, ¥, de périmétre 93, on note d3 = dX. e, un élément de surface de 3 et on applique
le théoreme de Stokes,

/VXH s = /<J+>-d2z/J-dz, (51)

H-dl = /J d¥ = H(r,t)= /JT t)2mr’ dr'. (52)

)y 2

Dans I’équation (51), on a négligé le courant de déplacement 9D/t puisque la fréquence
d’oscillation du champ électrique, c.-a-d. la fréquence du courant alternatif, sera typiquement
basse comparée a celle d’ondes électromagnétiques.

Montrer qu'un courant induit circule sur le périmétre d'une surface rectangulaire dS = L dr ey,
(en gris foncé sur la figure ci-dessus, avec L la longueur de la surface selon I'axe z et dr sa
longueur dans la direction radiale) située a un rayon r. En déduire qu'un gradient de champ



électrique OE/Or, avec E(r,t) = E(r,t) e, s'établit tel que

oE _ OH
ar M

Le flux de champ d’induction magnétique B = 1o H traversant la surface dS = Ldrey
dépend du temps et géneére donc une force électromotrice de = ¢ E - dl. On inteégre la loi de
Lenz-Faraday et on applique & nouveau le théoréeme de Stokes,

/(VxE)-dS’:—/ 9B s (53)
ds ds Ot
0 0H

On remarque que pour la surface dS = dS e, choisie, le théoreme de Stokes est appliqué sur
le bord selon 'orientation ddS = ADCB. Puisque E = E e,, la tension induite peut s’écrire
OF
de = [E(r) — E(r +dr)]L ~ —a—L dr. (55)
r
A partir des équations (54) et (55), c’est-a-dire en appliquant la loi de Lenz-Faraday, il est
possible d’exprimer OF/9r en fonction de H /0t,

OF oOH
i el 56
87" IU’O at Y ( )
ce qui indique donc qu'une augmentation de B dans le temps implique que de < 0 et
vice-versa.

B

&

D ~_WZ

En supposant un courant alternatif de pulsation w et que le champ électrique prend la forme
E(r,t) = E(r)e”™", montrer que la distribution radiale du champ électrique E(r) satisfait

0?°E 10E

, .0 .
572 + o +ipgowE =0, ou — — —iw. (1)

ot

En substituant I'expression de H(r,t) trouvée en (52) dans I’équation (56), on peut exprimer
le gradient radial de champ électrique a l'aide de la densité de courant J(r,t),

ok Ho T aJ ’ 7 4
98 _ Fo [TOL 0 om ar.
or 2mr Jo Ot (r', 8)2mr" dr (57)

En multipliant les deux cotés de 1’équation (57) par r puis en dérivant par r, on obtient

3(3E>_3E+32E_ [ —) ) (58)
or\"or ) T ar Tz T HOT g T HOTT

t

En divisant par r et en considérant E(r,t) = E(r)e~™* on obtient donc 1’équation donnée

dans ’énoncé :
0’E  10FE

Or2 + ;5 + iMoO’WE = 0. (59)



On remarque que cette équation différentielle correspond a une équation de Bessel, dont la
forme générale est donnée par

d%y 1dy+x2—n2

—y=0. (60)

dz? " zdx x
On peut assimiler ’équation (59) & ’équation de Bessel d’ordre n = 0 en choisissant y = E
et x = /iupowr. Le champ électrique s’écrit donc

E(r) = AJo(Vipoowr) + BYy(v/ipoowr), (61)

olt Jy et Yy sont les fonctions de Bessel d’ordre zéro de premiére et seconde espéce. A
premiére vue, ce résultat parait contredire 'observation faite précédemment, éq. (55),
que le champ électrique augmente en fonction du rayon. Les fonctions de Bessel Jy(z) et
Yo(z) tendent en effet vers zéro pour des arguments 2z — oo réels, ce qui pourrait sembler
contradictoire puisque ’on cherche & montrer une augmentation de I'amplitude avec le
rayon. On souligne ici cependant que les arguments fournis a ces fonctions en (61) ont une
partie imaginaire non nulle et, de ce fait, permettent de retrouver le comportement attendu
pour E.

On reconnait une équation différentielle de Bessel dont la solution
sera exprimée en termes de Jy(x) et Yy(x). Expérimentalement, on
observe cependant que, lorsque |I'on pénétre dans le conducteur,
le champ électrique devient rapidement nul sur une distance E(r)
caractéristique ¢ (voir figure) que I'on appelle épaisseur de peau.
En général, celle-ci est telle que § < R ce qui permet d'affirmer,
dans |'épaisseur de peau, que

=g >
*E  10FE o

7 v or ®)

(d) Vérifier que la solution approchée E(r), tenant compte de I'approximation (§), a I'équation (),
trouvée au point (c), est telle que :
Hoow
5

Montrer que [ peut étre associé a un coefficient d'absorption du champ électrique. En déduire
que le courant est plus important en périphérie.

E(r,t) = B(r)e ™! = Bye PR BE=)=wt] " jyec g =

En tenant compte de 'indication, on a que ’équation différentielle se réduit a :
0’E 0’F 9
— +iugowkE = — — k*E = 0. 62
or? + oo or? (62)

On développe la racine complexe,

K = \/—igow = + ’“‘O;M(l — i) = +B(1 — ). (63)
L’équation différentielle (62) peut donc se résoudre par :

E(r) = ApPU-DE=) 4 g o=BU=0(E-T), (64)

On sélectionne uniquement la solution ou E(r) diminue lorsqu’on rentre dans le conducteur,
c.-a~d. lorsque r diminue, et on pose donc AL = 0. Avec A = A_, on obtient alors

E(r) = Ac(-1HB(R=) _ go=BR=1)+iB(R-T) (65)
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Le terme § peut étre assimilé a la partie imaginaire de I'indice de réfraction vu en cours.

On rappelle
Im(n) =n" = /- 66
m(n) =" = /57— (66)

ce qui permet d’associer § a un coefficient d’absorption,

ow w
B =4/ 26062 = ;n". (67)

Finalement, on substitue I'expression (65) dans I’expression pour E(r,t),

E(r,t) = B(r)e” ™! = Eye AR gilBR-r)—wt] (68)

ou on a posé A = Ej. Le champ électrique dans le conducteur se comporte donc comme une
onde se propageant depuis le bord du cylindre vers I'intérieur de celui-ci, dont 'amplitude
est absorbée sur une longueur caractéristique 6 = 1/3. Soit 'amplitude du champ électrique
&(r) = Eye PUE=7) on constate que celle-ci diminue lorsque onde pénétre dans le cylindre,
&(r+dr) > &(r). Par conséquent, le courant induit (ou pour étre précis, 'amplitude du profil
de courant électrique induit) est plus important en périphérie, c.-a~d. |Jinq(r+dr)| > |Jina(r)|,
ce qui conclut la réponse a cette question.

A titre informatif, on vérifie, a posteriori, que ’approximation (§) est justifiée en considérant
uniquement I’amplitude du champ électrique,

&(r) = Eoem 000, (69)
198 _ Bo —(nnyss o 9% _ Eo _(nnys
ror  ré. et o5 = 5 : (70)

Dans la mesure ou on s’intéresse principalement a la région proche de la périphérie du
conducteur, r ~ R, le rapport de ces deux termes est effectivement faible,

19¢ (%" 6 4
a<a2> =y RSL (71)

On note par contre que pour r — 0, le terme (1/7)0¢/0r diverge et, par conséquent, cette
approximation n’est plus valide.
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