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Corrigé 9 : Polarisation, réflexion et réfraction

1 Action d’une lame de quartz sur une onde polarisée rectiligne
On considère une lame de quartz d’épaisseur d et parallèle au plan Oxy et une onde électromagnétique
polarisée rectiligne incidente de longueur λ0 = 2π/k0 se propageant dans la direction z et dont l’axe
de polarisation fait un angle αp avec l’axe x. La lame de quartz est un matériau biréfringent dont le
tenseur diélectrique s’écrit

ε =

εx 0 0
0 εy 0
0 0 ε0

 .

On supposera que le quartz n’est pas aimanté, c.-à-d. H = B/µ0 dans le quartz.
(a) Montrer que, dans le quartz, les nombres d’onde d’une onde polarisée rectiligne selon les axes

ordinaire ko = ko,z ez et extraordinaire ke = ke,z ez de la lame sont donnés par

k2
o,z = n2

ok2
0 et k2

e,z = n2
ek2

0,

où on dénote respectivement no =
√

εx/ε0 et ne =
√

εy/ε0, les indices de réfraction selon les
axes ordinaire et extraordinaire.
On part des équations de Maxwell dans lesquelles on impose une densité de charge et un
courant électrique libres nuls, ρf = Jf = 0,

∇ · D = 0,

∇ × H − ∂ D
∂t

= 0,

∇ · B = 0,

∇ × E + ∂ B
∂t

= 0.
(1)

On suppose que tous ces champs sont assimilables à des ondes planes. Par exemple, pour le
champ électrique, E(x, t) = E0 exp[i(k · x − ωt)], avec E0 un vecteur d’amplitude constant.
Par substitution de cette forme dans les équations de Maxwell, on obtient

k · D = 0,

k × H + ω D = 0,

k · H = 0,

k × E − ωµ0 H = 0.
(2)

En rappelant que D = εE, on peut écrire une équation uniquement en termes de E,

k × (k × E) = −ω2µ0ε E (3)

En développant k × (k × E) = (k · E) k − k2 E et en rappelant que les champs se propagent
le long de l’axe z, c.-à-d. k = kz ez, on obtient une équation matricielle similaire à celle
trouvée en cours :

k2
zEz ez − k2

z E + ω2µ0ε E =

αx − k2
z 0 0

0 αy − k2
z 0

0 0 α0

 ·

Ex

Ey

Ez

 = 0 (4)

où αx = ω2µ0εx, αy = ω2µ0εy et α0 = ω2µ0ε0 = ω2/c2. On remarque, d’une part, que ce
système linéaire impose α0Ez = 0 selon z et qu’il n’y aura donc pas de composante du
champ électrique selon z à l’intérieur du quartz, Ez = 0. D’autre part, on constate que les
équations restantes selon x et y ne peuvent pas être satisfaite simultanément si εx 6= εy. En
effet, pour la composante x, le nombre d’onde kz satisfait l’équation suivante :

k2
z = αx = εx

ε0

ω2

c2 = n2
ok2

0, (5)
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avec k0 = 2π/λ0 le nombre d’onde de l’onde incidente se propageant dans le vide. La
composante y imposera, quant à elle,

k2
z = n2

ek2
0. (6)

Cette inconsistance apparente laisse transparaître que les composantes ordinaire et extraor-
dinaire du champ électrique se propagent à des vitesses différentes à l’intérieur du quartz.
Afin de lever l’inconsistance, il est en effet nécessaire de poser

E = Eo + Ee = E0,oei(ko·x−ωt) ex + E0,eei(ke·x−ωt) ey, (7)

où Eo et Ee satisfont chacun la relation (4) séparément. Naturellement, E0 = E0,o = E0,e

en considérant les conditions aux bords à l’entrée de la lame. On obtient évidemment
que ko = ko,z ez et ke = ke,z ez avec

k2
o,z = n2

ok2
0 et k2

e,z = n2
ek2

0. (8)

Cette différence de vitesses de propagation à travers le quartz va donc induire un déphasage
entre les deux composantes du champ électrique.

(b) Montrer que le champ électrique E à la sortie de la lame est en général polarisé elliptique,

E2
x

E2 cos2 αp
+

E2
y

E2 sin2 αp
− 2ExEy cos φ

E2 cos αp sin αp
= sin2 φ, (∗)

où φ = (2π/λ0)(ne − no)d, Ex et Ey sont les composantes du champ électrique selon les axes x
et y, et E = ‖E‖. Quelle quantité physique φ représente-t-elle ?
On commence par exprimer le champ électrique incident sur la lame de quartz,

E(x, t) = E(cos αp ex + sin αp ey)ei(k·x−ωt), (9)

avec k = k0 ez. Lorsque cette onde plane atteint et pénètre dans le quartz, la composante
parallèle à l’interface vide-quartz doit être continue, c’est-à-dire que E1,‖ = E2,‖ (voir, par
exemple, série 7, exercice 3). Donc, dans ce cas particulier, l’entièreté de l’onde incidente
est transmise. En posant x = 0 à l’entrée de la lame de quartz, on obtient donc l’expression
suivante pour le champ électrique à l’entrée de la lame :

E(x = 0, t) = E(cos αp ex + sin αp ey)e−iωt. (10)

En utilisant le résultat trouvé au point (a), le champ électrique doit être décomposé en
une composante ordinaire, Eo, et extraordinaire, Ee, qui se propageront respectivement
avec kz,o = nok0 et kz,e = nek0. Par conséquent, sachant que la composante ordinaire Eo

correspond à la composante x du champ électrique et la composante extraordinaire à la
composante y, le champ électrique dans la lame de quartz peut s’écrire

E(x, t) = Eo(x, t) + Ee(x, t) = E
(
cos αpeik0(noz−ct) ex + sin αpeik0(nez−ct) ey

)
. (11)

Le champ électrique E à la sortie de la lame de quartz, à x = d ez, s’écrit

E(d ez, t) = E
(
cos αpeik0(nod−ct) ex + sin αpeik0(ned−ct) ey

)
. (12)

Comme précédemment établi au point (a), on voit donc que les composantes x et y de
l’onde après avoir traversé la lame sont déphasées. On peut mettre en évidence ce déphasage
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en réécrivant l’équation (12) dans laquelle on effectue une translation temporelle suivante,
t 7→ t + (no + ne)d/(2c),

E(d ez, t) = E
(
cos αpei[k0(no−ne)d/2−ωt] ex + sin αpei[k0(ne−no)d/2−ωt] ey

)
= · · ·

· · · = E
(
cos αpei(−φ/2−ωt) ex + sin αpei(φ/2−ωt) ey

)
, (13)

où on a posé φ = k0(ne − no)d = (2π/λ0)(ne − no)d qui est donc le déphasage entre les
composantes x et y. En prenant la partie réelle de l’équation (13), on obtient

Ex = Ex ex = E cos αp cos(ωt − φ/2) ex, (14)
Ey = Ey ey = E sin αp cos(ωt + φ/2) ey. (15)

En injectant ces expressions pour Ex et Ey dans l’équation de l’ellipse à démontrer, éq. (∗),
on obtient, au prix d’un peu d’algèbre,

cos2
(

ωt − φ

2

)
+ cos2

(
ωt + φ

2

)
− 2 cos

(
ωt − φ

2

)
cos
(

ωt + φ

2

)
cos φ = (16)

=
[
cos
(

ωt − φ

2

)
− cos

(
ωt + φ

2

)]2
+ 2 cos

(
ωt − φ

2

)
cos
(

ωt + φ

2

)
(1 − cos φ) (17)

= 4 sin2(ωt) sin2 φ

2 + 2
[
cos2(ωt) cos2 φ

2 − sin2(ωt) sin2 φ

2

]
(1 − cos φ) (18)

= 2 sin2(ωt)(1 − cos φ) +
[
cos2(ωt)(1 + cos φ) − sin2(ωt)(1 − cos φ)

]
(1 − cos φ) (19)

= 2 sin2(ωt)(1 − cos φ) + cos2(ωt)(1 − cos2 φ) − sin2(ωt)(1 − 2 cos φ + cos2 φ) (20)
= 1 − cos2 φ = sin2 φ, (21)

où on a utilisé les relations trigonométriques suivantes,

cos(α − β) = cos α cos β + sin α sin β, 2 cos2 α = 1 + cos(2α), (22)
cos(α + β) = cos α cos β − sin α sin β, 2 sin2 α = 1 − cos(2α). (23)

L’égalité (∗) étant vérifiée, ceci montre donc que, en général, le champ électrique sortant
est polarisé elliptiquement.

(c) Discuter les cas où φ = 0, φ = π, et φ = ±π/2. Comparer ces résultats avec ceux trouvés en
série 8, exercice 1, question (e).
Lorsque φ = 0 ou φ = π, l’équation de l’ellipse se réduit à

E2
x

E cos2 αp
+

E2
y

E sin2 αp
∓ 2ExEy

E2 cos αp sin αp
= 0, (24)

ce qui peut être factorisé en (
Ex

cos αp
∓ Ey

sin αp

)2
= 0. (25)

Cette dernière équation impose une relation linéaire entre Ex et Ey :

Ey = ± tan αpEx. (26)

De ce résultat, on déduit que l’onde sortante de la lame de quartz est une onde polarisée
rectiligne. Si φ = 0, l’onde sortante est polarisée parallèlement à l’onde entrante. Dans
le cas où φ = π, la polarisation de l’onde sortante est alors symétrique à l’onde entrante

3



par rapport à l’axe x, auquel cas la lame de quartz se comporte donc comme une lame
demi-onde Qπ étudiée dans la série 8, exercice 1, question (e).
Lorsque φ = ±π/2, l’équation de l’ellipse s’écrit

E2
x

E2 cos2 αp
+

E2
y

E2 sin2 αp
= 1. (27)

Il s’agit donc de l’équation d’une ellipse dont les deux axes correspondent aux axes x et y,
ce qui n’était pas forcément le cas de l’équation générale démontrée en (b). La polarisation
de l’onde sortante est donc elliptique. Dans le cas spécifique où αp = π/4, on a alors

E2
x

E2/2 +
E2

y

E2/2 = 1, (28)

et la polarisation de l’onde sortante est donc circulaire de norme E/
√

2. La lame de quartz se
comporte donc comme une lame quart d’onde Qπ/4, étudiée série 8, exercice 1, question (e).

2 Filtre de Lyot
On propose une application pratique des résultats de l’exercice 1. Un filtre de Lyot est un système
composé d’une lame de quartz placée entre deux polariseurs rectilignes. La lame de quartz est
identique à celle de l’exercice 1 : son axe ordinaire est parallèle à ex et son axe extraordinaire à ey.
Les deux polarisateurs rectilignes sont inclinés tel que leurs axes de polarisation fassent un angle
de π/4 par rapport à l’axe ex. On considère une onde électromagnétique plane, incidente sur le filtre
de Lyot, de longueur d’onde λ0, polarisée rectiligne selon ex et se propageant dans la direction z.
(a) Exprimer l’amplitude et l’intensité du champ électrique de l’onde transmise par le filtre en

fonction de φ = (2π/λ0)(ne − no)d, où d est l’épaisseur de la lame, et no et ne sont les
indices de réfraction ordinaire et extraordinaire. En déduire un coefficient de transmission pour
l’amplitude du champ électrique, t = Esortie/Eentrée. Définir t en tenant uniquement compte du
quartz et du dernier polariseur, c.-à-d. en ignorant l’effet du premier polariseur.
Le champ électrique incident sur le premier polariseur est donné par

E0(z, t) = E0ei(kz−ωt) ex = E0

(
1
0

)
. (29)

On remarque que la notation en vecteur colonne se réfère au vecteur de Jones de l’onde
incidente, voir série 8, exercice 1. On note, respectivement, E1, E2 et E3 l’onde après avoir
traversé le premier polariseur P (π/4), la lame de quartz et le deuxième polariseur P (π/4).
On rappelle que la matrice des polariseurs s’écrit

P (π/4) = 1
2

(
1 1
1 1

)
, (30)

et le vecteur d’onde E1 est donc donné par

E1 = P (π/4) E0 = E

2

(
1
1

)
= E′

√
2

(
1
1

)
, (31)

où E′ = E/
√

2 est l’amplitude de l’onde après le premier polariseur.
La lame de quartz décrite dans la consigne correspond à celle étudiée dans l’exercice 1, et
on peut par conséquent répéter le raisonnement qui y est présenté. On y a conclut que le
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quartz se comportait comme une lame à retard. Par inspection de l’équation (13), on lui
associe donc la matrice de Jones suivante,

Qφ =
(

e−iφ/2 0
0 eiφ/2

)
, (32)

ce qui permet donc de calculer le champ électrique E2 après avoir traversé la lame de quartz,

E2 = Qφ E1 = E′
√

2

(
e−iφ/2

eiφ/2

)
. (33)

Finalement, la traversée du dernier polariseur, de manière similaire à l’éq. (31), donne

E3 = P (π/4) E2 = E′

2
√

2

(
1 1
1 1

)(
e−iφ/2

eiφ/2

)
= · · ·

· · · = E′ e
−iφ/2 + eiφ/2

2
1√
2

(
1
1

)
= E′ cos

(
φ

2

) 1√
2

(
1
1

)
, (34)

c’est-à-dire, sans notation de Jones,

E3(z3, t) = E′ cos
(

φ

2

)
e−iωt ex + ey√

2
, (35)

avec la position z3 = d située derrière le dernier polariseur. Le coefficient de transmission,
donné par t = E3/E1, satisfait donc

|t| =
∣∣∣∣cos φ

2

∣∣∣∣. (36)

L’intensité de l’onde sortante est donnée par I3 = E∗
3 ·E3. On appelle I1 = E′2 qui correspond

à l’intensité de l’onde après le premier polariseur. On a donc

I3 = E∗
3 · E3 = I1|t|2 = I1

1 + cos φ

2 . (37)

(b) On empile N filtres de Lyot avec des lames de quartz d’épaisseurs dn = 2n−1d, n = 1, . . . , N .
En négligeant l’absorption des lames, démontrer que le coefficient de transmission total du
système t est donné par :

|t| =
∣∣∣∣ sin(2N−1φ)
2N sin(φ/2)

∣∣∣∣. (†)

Le coefficient de transmission pour le ne système s’écrit

tn = cos
(

2n−1φ

2

)
= cos(2n−2φ). (38)

Par conséquent, le coefficient de transmission total du système entier s’écrit

t =
N∏

n=1
tn = cos(φ/2) cos(φ) cos(2φ) · · · cos(2N−2φ). (39)

On note en particulier qu’entre deux plaques de quartz, deux polariseurs se retrouvent
montés en série. On peut traiter ce bloc de deux polariseurs comme un seul et unique
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élément optique. En effet, l’onde reçue par le second polariseur est polarisée parallèlement
à l’axe principal du premier polariseur (et donc aussi du second), et celle-ci est donc
intégralement transmise. Pour montrer que le coefficient de transmission (39) correspond à
celui de l’énoncé, on procède par récurrence. On vérifie d’abord que, pour le cas N = 1,
on ait bien une correspondance entre ce coefficient de transmission et celui proposé par
l’énoncé (†) :

t1 = cos φ

2 = eiφ/2 + e−iφ/2

2
eiφ/2 − e−iφ/2

eiφ/2 − e−iφ/2 = eiφ − e−iφ

2i

i

eiφ/2 − e−iφ/2 = sin φ

2 sin(φ/2) , (40)

dont la valeur absolue correspond effectivement à l’expression (†) de l’énoncé pour N = 1.
On démontre désormais la récurrence. On suppose que pour N systèmes, le coefficient de
transmission est donné par l’expression de la consigne. Alors pour N + 1 systèmes, on a

tN+1 = tN cos(2N−1φ) =
sin
(
2N−1φ

)
2N sin(φ/2) cos(2N−1φ) = · · ·

· · · = 1
2N sin(φ/2)

e2N−1iφ − e−2N−1iφ

2i

e2N−1iφ + e−2N−1iφ

2 = · · ·

· · · = 1
2N+1 sin(φ/2)

e2N iφ − e−2N iφ

2i
= sin(2N φ)

2N+1 sin(φ/2) . (41)

Le module de l’expression ci-dessus correspond donc au coefficient de transmission (†) pour
N + 1 systèmes, ce qui conclut la preuve.
Une preuve directe est également possible et proposée ci-dessous. Le cosinus dans l’équa-
tion (39) est remplacé par sa forme exponentielle afin d’obtenir

t =
N∏

n=1
cos(2n−2φ) =

N−1∏
n=0

cos(2n−1φ) = 1
2N

[
N−1∏
n=0

e−2n−1iφ

][
N−1∏
n=0

(1 + e2niφ)
]
. (42)

On réarrange le premier produit en une série géométrique,

N−1∏
n=0

e−2n−1iφ = exp
[
− iφ

2

N−1∑
n=0

2n
]

= exp
[
− iφ

2 · 1 − 2N

1 − 2

]
= eiφ/2

e2N−1iφ
. (43)

On évalue désormais le second produit de l’équation (42), pour lequel on utilise l’expression
algébrique suivante,

N∏
n=1

(1 + xn) = 1 +
N∑

n=1
xn +

N∑
n,m=1
n<m

xnxm +
N∑

n,m,p=1
n<m<p

xnxmxp + · · · +
N∏

n=1
xn. (44)

En remplaçant xn = e2n−1iφ, on obtient

N∏
n=1

(1 + xn) = e0iφ +
N−1∑
n=0

e2niφ +
N−1∑

n,m=0
n<m

e(2n+2m)iφ + · · · + exp
[

N−1∑
n=0

2niφ

]
. (45)

L’expression ci-dessus correspond donc à une somme de termes exponentiels einφ, dont les
indices n sont donnés par les intervalles d’entier couverts par les limites des différentes
sommes. Le premier terme, commun pour tout N , correspond à l’élément n = 0. Le second
terme inclut toutes les puissances de 2 jusqu’à 2N−1. Le troisième terme inclut la somme de
deux puissances de 2, 2n + 2m pour n < m, et ainsi de suite. Si l’on considère l’ensemble
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des sommes, on peut en fait remarquer que tous les entiers entre 0 et 2N − 1 apparaîtront.
Il est plus simple d’arriver à ce constat si l’on adopte une représentation binaire pour
les puissances de 2. Prenons le cas simple où N = 3, le produit donné en (45) s’écrit
explicitement comme suit :

3∏
n=1

(1 + xn) = 1 + (x1 + x2 + x3) + (x1x2 + x1x3 + x2x3) + x1x2x3. (46)

En remplaçant les valeurs de xn = e2n−1iφ, n = 1, 2, 3, chaque terme peut être explicité :

x1 = e20iφ, x2 = e21iφ, x3 = e22iφ,

x1x2 = e(20+22)iφ, x1x3 = e(20+22)iφ, x2x3 = e(21+22)iφ,

x1x2x3 = e(20+21+22)iφ.

(47)

Chaque terme est associé à une représentation binaire à 3 chiffres :

x1 = e(001)2iφ, x2 = e(010)2iφ, x3 = e(100)2iφ,

x1x2 = e(011)2iφ, x1x3 = e(101)2iφ, x2x3 = e(110)2iφ,

x1x2x3 = e(111)2iφ,

(48)

où la notation (·)2 dénote un nombre en notation binaire. On note que le terme (000)2 est
également inclus dans l’expression (46) puisque 1 = e(000)2iφ. Le produit (44) devient donc
la somme de toutes les exponentielles entre 1 jusqu’à e(2N −1)iφ. On obtient donc la série
géométrique suivante,

2N −1∑
n=0

einφ = e2N iφ − 1
eiφ − 1 = e2N−1iφ

eiφ/2
sin(2N−1φ)

sin(φ/2) . (49)

Afin de conclure, on substitue les résultats des développements (43) et (49) dans l’équa-
tion (42),

t = 1
2N

eiφ/2

e2N−1iφ

e2N−1iφ

eiφ/2
sin(2N−1φ)

sin(φ/2) = sin(2N−1φ)
2N sin(φ/2) , (50)

et on retrouve ainsi l’expression (†) proposée en énoncé.
(c) Étudier le comportement du coefficient de transmission (†) en fonction du nombre de filtre N

et montrer qu’un empilement de filtres de Lyot agit comme un filtre passe-bande étroit. Un tel
type de filtre privilégie la transmission d’une fréquence spécifique et atténue le reste du spectre.
On inspecte graphiquement l’effet d’un filtre de Lyot à plusieurs plaques à la figure 1 en y
représentant l’intensité transmise |tN |2, éq. (†), pour différentes valeurs de N . L’intensité
transmise est étudiée en fonction du déphasage φ et de la longueur d’onde incidente λ.
On a notamment choisi d = 2 mm, no = 1.544 et ne = 1.553. Lorsque plusieurs filtres,
N > 1, sont montés en série, le système agit tel un filtre passe-bande étroit : plusieurs pics
se forment et privilégient la transmission de certaines fréquences par rapport au reste du
spectre. On qualifie le filtre d’« étroit » puisque la largeur d’un pic de transmission est
nettement inférieure à la distance séparant deux pics de transmission.
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Figure 1

3 Effet de peau
La répartition d’un courant alternatif dans un conducteur n’est pas
uniforme. Le courant alternatif génère un champ magnétique variable
dans le temps, qui engendre lui-même un champ électrique et, par
conséquent, un courant induit. Ce courant induit modifie le profil de
courant total : on observe une densité de courant plus importante dans
la périphérie d’un conducteur qu’en son centre. Cet effet est appelé
« effet de peau ». On étudie ce phénomène dans le cas d’un conducteur
non aimanté, de conductivité σ, cylindrique de rayon R et d’axe ez

parallèle au courant alternatif principal. On note er le vecteur unitaire
dans la direction radiale et on choisit eφ tel que la base (er, eφ, ez)
soit droite.
(a) Déterminer le champ magnétique H(r, t) induit par un courant J(r, t) = J(r, t) ez traversant

une section circulaire Σ, normale à ez, de rayon r du cylindre.
Le courant circulant dans un cylindre de rayon r peut être décrit par la somme des densités
de courant J(r′, t) = J(r′, t) ez circulant dans des couronnes cylindriques situées en r′ < r
et d’épaisseurs dr′. Par conséquent, le champ magnétique H(r, t) = H(r, t) eφ est donné
par la loi d’Ampère en sommant toutes ces contributions. Soit une section de rayon r du
cylindre, Σ, de périmètre ∂Σ, on note dΣ = dΣ ez un élément de surface de Σ et on applique
le théorème de Stokes,∫

Σ
∇ × H · dΣ =

∫
Σ

(
J + ∂D

∂t

)
· dΣ ≈

∫
Σ

J · dΣ, (51)∮
∂Σ

H · dl =
∫

Σ
J · dΣ =⇒ H(r, t) = 1

2πr

∫ r

0
J(r′, t)2πr′ dr′. (52)

Dans l’équation (51), on a négligé le courant de déplacement ∂D/∂t puisque la fréquence
d’oscillation du champ électrique, c.-à-d. la fréquence du courant alternatif, sera typiquement
basse comparée à celle d’ondes électromagnétiques.

(b) Montrer qu’un courant induit circule sur le périmètre d’une surface rectangulaire dS = L dr eφ

(en gris foncé sur la figure ci-dessus, avec L la longueur de la surface selon l’axe z et dr sa
longueur dans la direction radiale) située à un rayon r. En déduire qu’un gradient de champ
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électrique ∂E/∂r, avec E(r, t) = E(r, t) ez, s’établit tel que
∂E

∂r
= µ0

∂H

∂t
.

Le flux de champ d’induction magnétique B = µ0 H traversant la surface dS = L dr eφ

dépend du temps et génère donc une force électromotrice dε =
∮

E · dl. On intègre la loi de
Lenz-Faraday et on applique à nouveau le théorème de Stokes,∫

dS
(∇ × E) · dS′ = −

∫
dS

∂B
∂t

· dS′, (53)

dε =
∮

ADCB
E · dl = − ∂

∂t
(B · dS) = −µ0

∂H

∂t
L dr. (54)

On remarque que pour la surface dS = dS eφ choisie, le théorème de Stokes est appliqué sur
le bord selon l’orientation ∂dS = ADCB. Puisque E = E ez, la tension induite peut s’écrire

dε = [E(r) − E(r + dr)]L ≈ −∂E

∂r
L dr. (55)

À partir des équations (54) et (55), c’est-à-dire en appliquant la loi de Lenz-Faraday, il est
possible d’exprimer ∂E/∂r en fonction de ∂H/∂t,

∂E

∂r
= µ0

∂H

∂t
, (56)

ce qui indique donc qu’une augmentation de B dans le temps implique que dε < 0 et
vice-versa.

(c) En supposant un courant alternatif de pulsation ω et que le champ électrique prend la forme
E(r, t) = E(r)e−iωt, montrer que la distribution radiale du champ électrique E(r) satisfait

∂2E

∂r2 + 1
r

∂E

∂r
+ iµ0σωE = 0, où ∂

∂t
7→ −iω. (‡)

En substituant l’expression de H(r, t) trouvée en (52) dans l’équation (56), on peut exprimer
le gradient radial de champ électrique à l’aide de la densité de courant J(r, t),

∂E

∂r
= µ0

2πr

∫ r

0

∂J

∂t
(r′, t)2πr′ dr′. (57)

En multipliant les deux côtés de l’équation (57) par r puis en dérivant par r, on obtient

∂

∂r

(
r

∂E

∂r

)
= ∂E

∂r
+ r

∂2E

∂r2 = µ0r
∂J

∂t
= µ0σr

∂E

∂t
. (58)

En divisant par r et en considérant E(r, t) = E(r)e−iωt, on obtient donc l’équation donnée
dans l’énoncé :

∂2E

∂r2 + 1
r

∂E

∂r
+ iµ0σωE = 0. (59)
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On remarque que cette équation différentielle correspond à une équation de Bessel, dont la
forme générale est donnée par

d2y

dx2 + 1
x

dy

dx
+ x2 − n2

x2 y = 0. (60)

On peut assimiler l’équation (59) à l’équation de Bessel d’ordre n = 0 en choisissant y = E
et x =

√
iµ0σωr. Le champ électrique s’écrit donc

E(r) = AJ0(
√

iµ0σωr) + BY0(
√

iµ0σωr), (61)

où J0 et Y0 sont les fonctions de Bessel d’ordre zéro de première et seconde espèce. À
première vue, ce résultat parait contredire l’observation faite précédemment, éq. (55),
que le champ électrique augmente en fonction du rayon. Les fonctions de Bessel J0(x) et
Y0(x) tendent en effet vers zéro pour des arguments x → ∞ réels, ce qui pourrait sembler
contradictoire puisque l’on cherche à montrer une augmentation de l’amplitude avec le
rayon. On souligne ici cependant que les arguments fournis à ces fonctions en (61) ont une
partie imaginaire non nulle et, de ce fait, permettent de retrouver le comportement attendu
pour E.

On reconnait une équation différentielle de Bessel dont la solution
sera exprimée en termes de J0(x) et Y0(x). Expérimentalement, on
observe cependant que, lorsque l’on pénètre dans le conducteur,
le champ électrique devient rapidement nul sur une distance
caractéristique δ (voir figure) que l’on appelle épaisseur de peau.
En général, celle-ci est telle que δ � R ce qui permet d’affirmer,
dans l’épaisseur de peau, que

∂2E

∂r2 � 1
r

∂E

∂r
. (§)

(d) Vérifier que la solution approchée E(r), tenant compte de l’approximation (§), à l’équation (‡),
trouvée au point (c), est telle que :

E(r, t) = E(r)e−iωt = E0e−β(R−r)ei[β(R−r)−ωt], avec β =
√

µ0σω

2 .

Montrer que β peut être associé à un coefficient d’absorption du champ électrique. En déduire
que le courant est plus important en périphérie.
En tenant compte de l’indication, on a que l’équation différentielle se réduit à :

∂2E

∂r2 + iµ0σωE = ∂2E

∂r2 − κ2E = 0. (62)

On développe la racine complexe,

κ =
√

−iµ0σω = ±
√

µ0σω

2 (1 − i) = ±β(1 − i). (63)

L’équation différentielle (62) peut donc se résoudre par :

E(r) = A+eβ(1−i)(R−r) + A−e−β(1−i)(R−r). (64)

On sélectionne uniquement la solution où E(r) diminue lorsqu’on rentre dans le conducteur,
c.-à-d. lorsque r diminue, et on pose donc A+ = 0. Avec A = A−, on obtient alors

E(r) = Ae(−1+i)β(R−r) = Ae−β(R−r)+iβ(R−r). (65)
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Le terme β peut être assimilé à la partie imaginaire de l’indice de réfraction vu en cours.
On rappelle

Im(n) = n′′ =
√

σ

2ε0ω
, (66)

ce qui permet d’associer β à un coefficient d’absorption,

β =
√

σω

2ε0c2 = ω

c
n′′. (67)

Finalement, on substitue l’expression (65) dans l’expression pour E(r, t),

E(r, t) = E(r)e−iωt = E0e−β(R−r)ei[β(R−r)−ωt], (68)

où on a posé A = E0. Le champ électrique dans le conducteur se comporte donc comme une
onde se propageant depuis le bord du cylindre vers l’intérieur de celui-ci, dont l’amplitude
est absorbée sur une longueur caractéristique δ = 1/β. Soit l’amplitude du champ électrique
ξ(r) = E0e−β(R−r), on constate que celle-ci diminue lorsque l’onde pénètre dans le cylindre,
ξ(r+dr) > ξ(r). Par conséquent, le courant induit (ou pour être précis, l’amplitude du profil
de courant électrique induit) est plus important en périphérie, c.-à-d. |Jind(r+dr)| > |Jind(r)|,
ce qui conclut la réponse à cette question.
À titre informatif, on vérifie, a posteriori, que l’approximation (§) est justifiée en considérant
uniquement l’amplitude du champ électrique,

ξ(r) = E0e−(R−r)/δ, (69)
1
r

∂ξ

∂r
= E0

rδ
e−(R−r)/δ et ∂2ξ

∂r2 = E0
δ2 e−(R−r)/δ. (70)

Dans la mesure où on s’intéresse principalement à la région proche de la périphérie du
conducteur, r ∼ R, le rapport de ces deux termes est effectivement faible,

1
r

∂ξ

∂r

(
∂2ξ

∂r2

)−1
= δ

r
∼ δ

R
� 1. (71)

On note par contre que pour r → 0, le terme (1/r)∂ξ/∂r diverge et, par conséquent, cette
approximation n’est plus valide.
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