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Corrigé 8 : Propriétés de base des ondes électromagnétiques

1 Polarisation et représentation de Jones
Une onde électromagnétique polarisée se propageant dans la direction z s’écrit

E = Ex cos(kz − ωt + φx) ex + Ey cos(kz − ωt + φy) ey = Re
[(

Exeiφx

Eyeiφy

)
ei(kz−ωt)

]
. (∗)

La représentation de Jones est un formalisme vectoriel décrivant les ondes polarisées ainsi que leur
évolution à travers un système d’éléments optiques linéaires. Dans ce formalisme, l’onde (∗) est
représentée par le vecteur de Jones, E ∈ C2, suivant :

E =
(

Exeiφx

Eyeiφy

)
. (†)

Au début d’un calcul, il est courant de normaliser le vecteur de Jones d’une onde incidente entrant
dans un système optique à un vecteur unitaire, E2

x + E2
y = 1. Dans ce formalisme, un polariseur est

représenté par une matrice de Jones, P ∈ C2×2, opérant sur le vecteur de Jones de l’onde incidente.
On remarque que cette description est analogue à celle d’un système quantique à deux niveaux (on
pourrait adopter une notation bra-ket en définissant des vecteurs de base).
(a) Écrire le vecteur de Jones des ondes électromagnétiques polarisées suivantes :

1. Polarisée rectiligne parallèle à ex,
2. Polarisée rectiligne faisant un angle θ = π/4 avec ex,
3. Polarisée circulaire droite,
4. Polarisée circulaire gauche,
5. Polarisée elliptiquement de demi-grand axe égale deux fois plus grand que le demi-petit axe.

Afin d’aborder la question par le cas le plus simple, on substitue φx = φy = 0 dans le champ
électrique (∗)

E(z, t) = Ex cos(kz − ωt) ex + Ey cos(kz − ωt) ey = E0 cos(kz − ωt), (1)

où E0 = Ex ex + Ey ey. On obtient donc une onde polarisée rectiligne. Le vecteur de Jones
associé à cette onde, équation (†), s’écrit

E =
(

Ex

Ey

)
= E

(
cos θ
sin θ

)
, (2)

où E ∈ R est la norme du champ électrique et où on a utilisé une description polaire pour
les composantes de E. Pour les ondes polarisées rectilignes demandées dans l’énoncé, on
substitue θ = 0 et θ = π/4 afin d’obtenir

E1 ∝
(

1
0

)
et E2 ∝ 1√

2

(
1
1

)
. (3)

On s’intéresse ensuite à la présence d’un déphasage non nul entre les composantes du
vecteur E, par exemple (et sans perte de généralité) lorsque φy 6= φx = 0. Ceci implique
que les composantes spatiales du champ électrique évolueront dans le temps sans s’annuler
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aux mêmes instants. En effet, en posant par exemple φx = 0 et φy = ±π/2 dans l’équation
d’onde (∗), on obtient

E = Re
[(

Ex

±iEy

)
ei(kz−ωt)

]
=
(

Ex cos(kz − ωt)
∓Ey sin(kz − ωt)

)
, (4)

ce qui correspond en général à une onde polarisée elliptique. Le signe ∓ permet de déterminer
si la polarisation est elliptique gauche ou droite. En effet, en se plaçant en z = 0 pour
simplifier le raisonnement,

E(z = 0, t) =
(

Ex cos(ωt)
±Ey sin(ωt)

)
, (5)

on observe que la rotation du champ électrique est antihoraire, donc polarisée elliptique
gauche, pour le signe + et horaire, donc elliptique droite, pour le signe −.
En observant que l’équation (4) décrit une onde polarisée circulaire lorsque Ex = Ey =
E0/

√
2, on peut ainsi exprimer les vecteurs de Jones pour les ondes polarisées circulaires

gauche, φy = π/2, et droite, φy = −π/2, en remplaçant également φx = 0 dans le vecteur (†),

E3 ∝ 1√
2

(
1

e−iπ/2

)
= 1√

2

(
1

−i

)
et E4 ∝ 1√

2

(
1

eiπ/2

)
= 1√

2

(
1
i

)
. (6)

Le vecteur de Jones d’une onde polarisée elliptiquement d’excentricité
√

1/2 est simplement
obtenu par multiplication d’une des deux composantes par un facteur deux,

E5 ∝ 1√
3

(
2
i

)
. (7)

(b) Un polariseur rectiligne présente un axe permettant de sélectionner la composante de l’onde
incidente de polarisation parallèle à cet axe. Donner la forme matricielle P0 d’un polariseur
rectiligne idéal d’axe parallèle à ex. En déduire la matrice P (θ) d’un polariseur rectiligne idéal
dont l’axe forme un angle θ avec l’axe ex.
On considère dans un premier temps le cas d’un polariseur rectiligne idéal dont l’axe est
aligné sur ex. L’effet d’un tel polariseur sur une onde incidente est de ne laisser passer que
la composante parallèle à ex. Sa matrice s’exprime donc

P0 =
(

1 0
0 0

)
. (8)

En considérant maintenant le cas plus général d’un polariseur dont l’axe fait un angle θ
quelconque avec ex, on peut déterminer sa matrice en effectuant un changement de base à
partir de la matrice P0. On introduit pour cela la matrice de rotation R(θ) :

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (9)

Cette matrice de rotation permet de passer d’une base où l’axe du polariseur est aligné
sur ex à une base où l’axe du polariseur est tourné d’un angle θ par rapport à ex. La matrice
du polariseur dans cette nouvelle base est obtenue par la formule de changement de base
P (θ) = R(θ)P0R(θ)T :

P (θ) =
(

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

)
. (10)
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(c) Une onde électromagnétique incidente polarisée rectiligne parallèle à ex passe à travers du
polariseur P (θ). Retrouver la loi de Malus, qui donne l’expression de l’intensité de l’onde sortante
I en fonction de l’intensité I0 de l’onde incidente sur le polariseur et de l’angle θ :

I = I0 cos2 θ.

Quelle est l’intensité moyenne de l’onde sortante si l’onde incidente est non polarisée ?
Soit E = E1, éq. (3), le vecteur de Jones de l’onde incidente et E′ celui de l’onde après
avoir traversé le polariseur de matrice de Jones P (θ), éq. (10). Pour obtenir la loi de Malus,
il faut utiliser le fait que I ∝ E′∗ · E′. Afin d’obtenir l’amplitude de l’onde après son passage
au travers du polariseur, on multiplie la matrice de Jones associée à celui-ci avec le vecteur
de Jones de l’onde incidente,

E′ = P (θ) E =
(

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

)(
1
0

)
=
(

cos2 θ
sin θ cos θ

)
. (11)

L’intensité de l’onde sortante s’obtient en calculant E′∗ · E′. On en déduit ainsi

I ∝ cos4 θ + cos2 θ sin2 θ = cos2 θ =⇒ I = I0 cos2 θ. (12)

Finalement, pour une onde non polarisée, la valeur moyenne de l’intensité s’obtient en
prenant la valeur moyenne de cos2 θ sur l’ensemble des angles d’incidences θ ∈ [0, 2π],

〈cos2 θ〉 = 1
2π

∫ 2π

0
cos2 θ dθ = 1

2 =⇒ 〈I〉 = I0
2 . (13)

(d) Le Polaroïd est un filtre rectiligne non idéal, c’est-à-dire que celui-ci a une transmittance T1 le
long de la direction privilégiée et T2 le long de la direction perpendiculaire, où T2 < T1 ≤ 1. En
considérant ces hypothèses, écrire la matrice représentant le filtre Polaroïd lorsque la direction
privilégiée
1. est parallèle à l’axe ex,
2. fait un angle θ avec l’axe ex.
Dériver la loi de Malus dans le cas du filtre Polaroïd.
L’approche pour résoudre ce problème est similaire au point (b). Dans un premier temps,
on considère un filtre Polaroïd dont la direction privilégiée est parallèle à l’axe ex. Dans ce
cas, le filtre Polaroïd transmet une fraction T1 de l’intensité entrante selon la direction ex et
une fraction T2 selon la direction perpendiculaire ey. La matrice de Jones de ce polariseur
doit donc satisfaire

‖P0 ex‖2 = T1. (14)

Afin de satisfaire cette condition, on peut donc écrire que P0 ex =
√

T1 ex. Similairement, la
condition pour la direction perpendiculaire s’écrit

‖P0 ey‖2 = T2. (15)

Ce qui permet d’écrire P0 ey =
√

T2 ey. La matrice de Jones du Polaroïd est donc

P0 =
(√

T1 0
0

√
T2

)
. (16)

Comme au point (b), ce raisonnement peut se généraliser pour un Polaroïd avec une direction
privilégiée formant un angle θ quelconque avec l’axe ex. Il faut pour cela appliquer la formule
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de changement de base P (θ) = R(θ)P0R(θ)T , ce qui donne :

P (θ) =
(√

T1 cos2 θ +
√

T2 sin2 θ sin θ cos θ(
√

T1 −
√

T2)
sin θ cos θ(

√
T1 −

√
T2)

√
T1 sin2 θ +

√
T2 cos2 θ

)
. (17)

En calculant l’intensité d’une onde polarisée rectiligne selon l’axe ex, on obtient alors la loi
de Malus pour le Polaroïd

I ∝ ‖P (θ)E ex‖2 =⇒ I = I0(T1 cos2 θ + T2 sin2 θ). (18)

On observe que les résultats obtenus sont équivalents à ceux trouvés au point précédent
si T1 = 1 et T2 = 0, correspondant donc à un polariseur rectiligne idéal. On remarque
également que, si T1 = T2, la matrice P (θ) est diagonale pour tout angle θ. En effet, le
filtre aurait alors uniquement comme effet de modifier l’intensité de l’onde mais pas sa
polarisation.

(e) Les lames à retard sont des éléments optiques introduisant une phase φ qui retarde la composante
de l’onde incidente perpendiculaire à l’axe optique de la lame par rapport à sa composante le
long de l’axe optique. Donner la forme générale d’une lame à retard si l’axe optique fait un
angle θ avec ex. Que peut-on dire de ce polariseur si φ = π ? Et quand φ = π/2 ?
On adopte un raisonnement similaire aux questions précédentes et on suppose d’abord que
l’axe optique est le long de l’axe ex, c.-à-d. θ = 0. On choisit la forme matricielle Q(θ = 0)
suivante pour la lame à retard :

Qφ(θ = 0) =
(

e−iφ/2 0
0 eiφ/2

)
= e−iφ/2

(
1 0
0 eiφ

)
. (19)

Cette formulation implique un déphasage individuel de ±φ/2 des composantes perpendicu-
laires et parallèles au polariseur, et donc un déphasage total de φ. On note cependant que
ce choix, éq. (19), est arbitraire à un facteur de phase près. En effet, il aurait également été
possible de choisir, par exemple,

Q′
φ(θ = 0) =

(
1 0
0 eiφ

)
. (20)

En utilisant la matrice de rotation R(θ), on obtient la forme générale de la lame à retard
pour un angle θ quelconque entre l’axe optique et ex.

Qφ(θ) = R(θ)Qφ(θ = 0)R(θ)T = e−iφ/2
(

cos2 θ + eiφ sin2 θ (1 − eiφ) sin θ cos θ
(1 − eiφ) sin θ cos θ eiφ cos2 θ + sin2 θ

)
. (21)

Lorsque φ = π, on obtient :

Qφ=π(θ) = −i

(
cos2 θ − sin2 θ 2 sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ

)
, (22)

et lorsque θ = 0,

Qφ=π(θ = 0) =
(

−i 0
0 i

)
. (23)

Par conséquent, pour une onde polarisée rectiligne, on observe que la lame induit un
déphasage de π/2 aux deux composantes par rapport à l’onde incidente, ainsi qu’une
inversion de la composante perpendiculaire à l’axe optique. De manière équivalente, on peut
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aussi dire que l’effet de la lame est d’introduire un déphasage de ±π/2 à chaque composante,
et donc un déphasage total de π entre les deux composantes de l’onde incidente. Pour cette
raison, ce type de lame à retard est appelé « lame demi-onde », car elle induit un retard
d’une demi-longueur d’onde à l’une des composantes incidentes.
Lorsque φ = π/2, la matrice de Jones (21) de la lame à retard s’écrit

Qφ=π/2(θ) = e−iπ/4
(

cos2 θ + i sin2 θ (1 − i) sin θ cos θ
(1 − i) sin θ cos θ i cos2 θ + sin2 θ

)
. (24)

Pour comprendre quel est l’effet de ce polariseur, on pose θ = 0 et on obtient le polariseur
suivant :

Qφ=π/2(θ = 0) = e−iπ/4
(

e−iπ/4 0
0 eiπ/4

)
. (25)

Cette matrice est similaire à la matrice de Jones de la lame demi-onde (23), pour laquelle on
note que ±i = e±iπ/2. Une onde incidente rectiligne subira donc également un déphasage de
ses composantes respectives, mais celles-ci seront déphasées de π/2, et non de π. Cette lame
est donc appelée « lame quart d’onde », car le déphasage induit est équivalent à un retard
d’un quart de la longueur d’onde. Un tel déphasage aura pour conséquence de transformer
une onde incidente polarisée rectiligne en une onde polarisée elliptique (ou circulaire en
fonction de la norme des composantes incidentes).

2 Réflexion d’une onde électromagnétique sur un miroir parfaitement réfléchissant
Une onde électromagnétique plane sinusoïdale se propage dans le vide.
Elle arrive, sous un angle d’incidence αi sur une surface plane Σ = Oyz
parfaitement réfléchissante. Le champ électrique Ei est normal au plan
d’incidence Oxy.
(a) Montrer que le champ électrique E, résultant de l’interférence de Ei avec le champ Er de l’onde

réfléchie, est une onde se propageant selon y, dont l’amplitude dépend de x.
La condition au bord à l’interface du miroir implique la continuité de la composante du
champ électrique parallèle à l’interface (voir indication série 7, exercice 3b)

ex × (Ex>0 − Ex<0) = 0,

avec Ex>0 = Ei + Er le champ au-dessus du miroir et Ex<0 = 0 le champ à l’interface et
au-dessous de celle-ci. Puisque le champ électrique Ei oscille dans le plan de l’interface
et que Σ est parfaitement réfléchissante, on en déduit que Er(x = 0) = − Ei(x = 0). Les
champs électriques s’écrivent ainsi

Ei(x, t) = −E0 sin(ki · x − ωt) ez, avec ki = −k cos αi ex + k sin αi ey, (26)
Er(x, t) = E0 sin(kr · x − ωt) ez, avec kr = k cos αi ex + k sin αi ey. (27)

En utilisant la relation trigonométrique

sin(α) − sin(β) = 2 cos
(

α + β

2

)
sin
(

α − β

2

)
, (28)

on obtient donc que le champ électrique total est donné par :

E(x, t) = Ei(x, t) + Er(x, t) = E0
[
sin(kr · x − ωt) − sin(ki · x − ωt)

]
ez = · · ·

· · · = 2E0 cos(ky sin αi − ωt) sin(kx cos αi) ez. (29)

L’onde obtenue est une onde qui se propage le long de l’axe ey. Toutefois, on constate que
son amplitude dépend de x. Pour y fixe, l’onde selon x a la forme d’une onde stationnaire.
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(b) Déterminer les plans nodaux et les plans ventraux de E.
Les plans nodaux x = xn, parallèles à Oyz, sont tels que E soit nul et les plans ventraux
x = xv sont tels que l’amplitude de E soit maximale. En substituant k = 2π/λ dans (29) et
en imposant les conditions à l’existence de nœuds et ventres,

xn,m = mλ

2 cos αi
et xv,m = (m + 1/2)λ

2 cos αi
, avec m ∈ N. (30)

(c) Exprimer la vitesse de phase u de E en fonction de la vitesse de la lumière c et αi.
L’expression du champ E de la question (a) décrit une onde progressive selon Oy, de nombre
d’onde ky = k sin αi. La vitesse de phase, correspondant à la vitesse de déplacement d’une
crête de l’onde, vaut ainsi :

u = ω

ky
= ω

k sin αi
= c

sin αi
> c. (31)

La vitesse de phase de l’onde est donc forcément supérieure à la vitesse de la lumière c.
On note cependant que la vitesse de phase ne correspond pas nécessairement à la vitesse
de transmission de l’information (ou d’énergie). Dans le cas à l’étude, on montre dans la
question suivante que la vitesse de groupe v est bien inférieure à c et correspondra à la
vitesse de transmission d’information (ou énergie). On note qu’il existe également des cas
pour lesquels v > c sans toutefois impliquer une transmission d’information ou énergie.

(d) Exprimer, par un raisonnement mathématique puis par un raisonnement géométrique, la vitesse
de groupe v de E.
La vitesse de groupe correspond à la vitesse de transmission de l’enveloppe d’une onde.
Celle-ci correspond en général à la vitesse de transmission de l’information et de l’énergie.
Elle est définie par v = dω/ dky. On note que le choix de la variable ky se justifie de la
même manière qu’au point (c) : l’onde totale est progressive selon l’axe y. Il vient alors

v = dω

dky
= d

dky
(ck) = c

d

dky

√
k2

x + k2
y = cky

k
= c sin αi ≤ c. (32)

Dans ce cas-ci, la vitesse de groupe est donc inférieure ou égale à la vitesse de la lumière c
et ne pourrait donc pas engendrer de transfert supraluminique d’information.
L’expression (32) peut également être obtenue à l’aide d’un raisonnement géométrique. On
remarque que les ondes incidentes et réfléchies, considérées individuellement, se propagent à
vitesse c dans la direction de leurs vecteurs d’onde respectifs, ki ou kr. La projection de cette
vitesse selon la direction de propagation de E, c.-à-d. Oy, est donc c sin(αi). Autrement dit,
le vecteur d’onde kr « annule » la partie de l’onde incidente de ki selon x, mais « s’ajoute »
à la partie selon y.

Figure 1

Lorsque le rayon de l’onde incidente parcourt une distance ct, Fig. 1, l’intersection du
front d’onde avec un plan x = x∗ se déplace d’une distance ut. Géométriquement, il vient
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sin αi = ct/ut et donc u = c/ sin(αi) la vitesse de phase de l’onde E selon y. La vitesse
de groupe de l’onde de E est la vitesse à laquelle l’énergie se propage selon y. Afin de
déduire la vitesse de groupe, imaginons que l’on ne laisse passer l’onde que pendant un court
instant, formant une brève impulsion. L’onde incidente selon ki transporterait l’impulsion à
la vitesse c en diagonale, alors que l’onde réfléchie kr contribuerait à annuler l’impulsion de
ki selon x. Les impulsions ki et kr progressent chacune d’une distance vt selon y pendant
le temps t. On a donc v = c sin αi.

On place un second miroir plan parfait Σ′ parallèle à Σ, à une distance x = X de Σ. L’onde incidente
subit ainsi des réflexions multiples entre Σ et Σ′.
(e) Dans ces conditions, exprimer la vitesse de phase u en fonction de X, λ et c. Montrer ensuite

que pour tout X donné, il existe une longueur d’onde λc et donc une fréquence de coupure fc

au-dessous de laquelle l’onde de E ne se propage pas.
En plaçant un second miroir, l’onde incidente subit des réflexions multiples entre Σ et Σ′. Le
miroir Σ′ étant parfaitement réfléchissant, on doit à nouveau avoir un champ d’amplitude
nulle à cette interface. En partant de l’expression du champ E donnée par l’équation (29),
voir point (a), cette condition amène que

kX cos αi = mπ =⇒ cos αi = mλ

2X
, avec m ∈ N∗, (33)

c’est-à-dire qu’on obtient X = xn,m, voir la condition (30), à l’exception du fait que m 6= 0,
pour éviter le cas X = 0, puisque l’on veut préserver un espace entre les miroirs Σ et Σ′.
On note que pour une longueur d’onde λ et une distance X fixées, la relation (33) implique
que l’angle αi est complètement déterminé. Réciproquement, pour λ et αi fixés, la distance
X est alors déterminée par la relation (33). Autrement dit, la condition de réflexion parfaite
du second miroir, imposée par (33), a pour conséquence de lier les trois paramètres αi, λ
et X de sorte qu’il ne soit possible d’en choisir que deux indépendamment. On en déduit la
vitesse de phase

u = ω

ky
= ω

k sin αi
= c√

1 − m2λ2/(2X)2 . (34)

Si l’on choisit et fixe les paramètres X et αi, on remarque que pour l’argument de la racine
peut devenir négatif pour une longueur d’onde λ suffisamment grande. On obtient alors
un vecteur d’onde ky imaginaire. Dans ce cas, l’onde est évanescente et ne se propage pas.
Cette valeur limite pour la longueur d’onde permet de définir la fréquence de coupure, qui
est la fréquence minimale qu’une onde doit avoir pour se propager. La longueur d’onde de
coupure λc est obtenue en imposant que l’argument à la racine dans (34) devienne négatif,

1 − m2λ2

(2X)2 ≤ 0 =⇒ 2X

m
≤ λ =⇒ λ

2 ≥ X ≥ X

m
. (35)

Par conséquent, la longueur d’onde de coupure est λc = 2X, et la fréquence de coupure
associée est fc = c/λc = c/(2X). Pour une longueur d’onde λ plus grande, il n’y aucune
onde qui se propage, peu importe la valeur de α et de n.

(f)challenge
Déterminer la relation de dispersion de cette onde.
En utilisant les expressions (31) et (32) pour u et v, il est possible d’établir la forme de la
relation de dispersion. En effet,

uv = ω

ky

dω

dky
= d(ω2)

d(k2
y) = c

sin αi
· c sin αi = c2. (36)
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En intégrant en fonction de k2
y, on obtient que la relation de dispersion doit être de la forme

ω2 = c2k2
y + C, (37)

avec C une constante d’intégration. Afin de déterminer C, on substitue la fréquence de
coupure ω = ωc obtenue au point précédent. De plus, on remarque que

ky(ω = ωc) = k sin αi = k

√
1 − m2λ2

c

(2X)2 = 0 (38)

par définition de la longueur d’onde de coupure λc, éq. (35). Par substitution de ky = 0 et
ω = ωc dans (37), on obtient C = ω2

c et la relation de dispersion s’écrit donc

ω2 = c2k2
y + ω2

c . (39)

On remarque que la vitesse de groupe v trouvée en (32) peut être redérivée avec cette
relation de dispersion :

v = d

dky

√
c2k2

y + ω2
c = c2ky√

c2k2
y + ω2

c

= c2ky

ω
= c sin αi, (40)

où on a utilisé cky/ω = sin αi, éq. (31).

3 Principe de base de l’holographie
L’holographie est un procédé d’enregistrement de la lumière réfléchie par un objet. On procède par
illumination d’une surface sensible, par exemple un film photographique, par une figure d’interférence
entre la lumière réfléchie par l’objet (« faisceau objet ») et une source de lumière cohérente (« faisceau
de référence »), typiquement un laser. Les franges d’interférences sont alors enregistrées sur cette
surface et, lorsque éclairées par une source lumineuse cohérente, agissent comme un réseau de
diffraction et restituent le faisceau objet, qu’un observateur percevra comme une image holographique.

Lumière
cohérente

Faisceau
d'illumination Objet

Faisceau
objet

Plaque
photographique

Faisceau de 
référence

Miroir

Image
holographique

Faisceau de
reconstruction

Plaque
photographique

Onde
restituée

Observateur

Enregistrement (gauche) et lecture (droite) d’un hologramme.
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On étudie la situation simplifiée suivante, voir la figure ci-contre, pour
laquelle on considère deux ondes lumineuses planes, cohérentes, de
mêmes longueurs d’onde λ, de mêmes intensités, polarisées linéaire-
ment et de vecteurs E parallèles à l’axe z. Le vecteur d’onde k1 de la
première onde est parallèle à x et le vecteur d’onde k2 de la seconde
forme un angle α par rapport à x. Un film photographique est placé
dans le plan x = 0 afin d’enregistrer les franges d’interférence.

x

y

αk1E1

k2
E2

Film photo 2L

z

(a) Montrer que l’intensité, moyennée dans le temps, résultant de la superposition des deux ondes
dans le plan x = 0 est donnée par

Imoy(y) = I0 cos2
(1

2ky sin α

)
,

avec I0 une constante réelle à déterminer.
L’expression des champs électriques des deux ondes incidentes s’écrit comme :

E1 = E sin(k1 · x − ωt) ez, avec k1 = k ex, (41)
E2 = E sin(k2 · x − ωt) ez, avec k2 = k(cos α ex + sin α ey). (42)

L’onde résultante, polarisée dans la direction ez, est donnée par la somme des ondes
incidentes :

E = E1 + E2 = E
[
sin(k1 · x − ωt) + sin(k2 · x − ωt)

]
ez = · · ·

· · · = 2E sin
(

kx
1 + cos α

2 + ky
sin α

2 − ωt

)
cos
(

kx
1 − cos α

2 − ky
sin α

2

)
ez. (43)

On s’intéresse à l’intensité moyenne de l’onde dans le plan x = 0. L’intensité totale
instantanée est donnée par

I(y, t) = E∗(x = 0) · E(x = 0) = 4E2 sin2
(

ky

2 sin α − ωt

)
cos2

(
ky

2 sin α

)
, (44)

et la moyenne de Imoy(y) sur une période est donc

Imoy(y) = 2E2 cos2
(

ky

2 sin α

)
= I0 cos2

(
ky

2 sin α

)
. (45)

Dans le plan x = 0, on place un film photographique de largeur 2L dont le noircissement est
proportionnel à l’intensité I(y) incidente sur celui-ci. Une fois ce film exposé et noirci, on l’éclaire
avec une onde incidente de vecteur d’onde k1. On suppose que l’amplitude E(y) du champ électrique
transmis à travers le film est donnée par le profil de noircissement déterminé en (a),

E(y) ∝ 1 − Imoy(y)
I0

.

(b) Déterminer le profil d’intensité diffractée. En déduire que seuls des rayons diffractés par le film
photo pour x > 0 dans les directions θ = 0 et θ = ±α ne sont pas atténués, comme attendu
pour une image holographique.
Par application du principe de Huygens, on admet que chaque élément de longueur infinitési-
male dy du film émet une onde sphérique. Puisque le noircissement du film est proportionnel
à Imoy(y), éq. (45), alors les amplitudes des sources sphériques associées au principe de
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Huygens seront proportionnelle à

E(y) ∝ 1 − Imoy(y)
I0

= sin2
(

ky

2 sin α

)
. (46)

Soit un point P , non contenu dans le plan du film, à une distance r du centre de celui-ci. On
indique θ l’angle entre l’axe x et le vecteur reliant le centre du film au point P , c’est-à-dire
(xP , yP ) = (r cos θ, r sin θ). L’amplitude totale du champ électrique au point P est donnée
par l’intégrale suivante :

E(r, θ) =
∫ L

−L
sin2

(
ky

2 sin α

)
A

r − y sin θ
ei[k(r−y sin θ)−ωt] dy, (47)

où A est une constante de proportionnalité. Le terme r − y sin θ apparait pour les mêmes
raisons que discutées en série 4, exercice 2 (diffraction de Fraunhofer). On note que, lors
de l’intégration, le terme A/(r − y sin θ) varie peu car L � r. Cependant, le terme de
phase iky sin θ présentera des variations d’ordre O(1) puisque λ � L. Cette justification
est identique à celle employée dans la série 4, exercice 1 sur les fentes de Young et permet
d’extraire la dépendance inverse à r de l’intégrale. On introduit également k′ = −k sin θ et
δk′ = k sin α dans l’éq. (47) afin d’alléger la notation et on obtient donc

E(r, θ) = A

r
ei(kr−ωt)

∫ L

−L
sin2

(
δk′y

2

)
e−ik′y dy. (48)

On réécrit ensuite

sin x = eix − e−ix

2i
=⇒ sin2 x = 2 − e2ix − e−2ix

4 , (49)

que l’on insère dans (48),

E(r, θ) = A

4r
ei(kr−ωt)

∫ L

−L

(
2 − eiδk′y − e−iδk′y

)
e−ik′y dy = · · ·

· · · = A

4r
ei(kr−ωt)

∫ L

−L

(
2e−ik′y − e−ik′′

+y − e−ik′′
−y
)

dy, (50)

où on a posé k′′
± = k′ ± δk′. En intégrant, on obtient l’expression finale pour l’amplitude

totale de l’onde :

E(r, θ) = A

4r
ei(kr−ωt)

(
2eik′L − e−ik′L

ik′ − eik′′
+L − e−ik′′

+L

ik′′
+

− eik′′
−L − e−ik′′

−L

ik′′
−

)
= · · ·

· · · = AL

2r
ei(kr−ωt)[2 sinc(k′L) − sinc(k′′

+L) − sinc(k′′
−L)

]
, (51)

où on rappelle l’expression de la fonction sinus cardinal, sinc x = (sin x)/x. L’intensité de
l’onde est donnée par I(r, θ) = E∗(r, θ)E(r, θ). On regroupe les termes provenant de la mise
au carré de (51) à l’aide de deux contributions différentes, I(r, θ) ∝ R(r, θ) + C(r, θ), où on
définit

R(r, θ) = 4 sinc2(k′L) + sinc2(k′′
+L) + sinc2(k′′

−L), (52)
C(r, θ) = sinc(k′′

+L) sinc(k′′
−L) − 2 sinc(k′L) sinc(k′′

+L) − 2 sinc(k′L) sinc(k′′
−L). (53)

Pour peu que k′ 6= k′′
±, on peut montrer que les termes « croisés » C(r, θ) sont négligeables

par rapport à R(r, θ). On remarque tout d’abord que lorsque l’on s’écarte du maximum
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de la fonction sinc, la norme de celle-ci chute rapidement. Par exemple, les maximas de
sinc(k′L) sont donnés par k′L = kL sin θ = nπ, avec le pic principal en θ = 0. Les pics
suivants seront atteints lorsque sin θ = nλ/(2L) � 1. Il suffit donc d’un faible écart δθ avec
le pic principal avant que la norme de la fonction sinc devienne négligeable. Une conclusion
similaire peut être tirée pour les termes sinc(k′′

±L) dont les maximas se situent en θ = ±α.
Ainsi, pour peu que k′ 6= k′′

±, c’est-à-dire pour peu que sin α soit suffisamment grand, on
peut négliger les termes croisés apparaissant dans C(r, θ) pour le reste du raisonnement.
Ceci qui permet d’affirmer que

I(r, θ) ≈
(

AL

2r

)2
R(r, θ)2 ∝ 4 sinc2(k′L) + sinc2(k′′

+L) + sinc2(k′′
−L). (54)

L’intensité résultante I(r, θ) a donc trois maximas en k′L = kL sin θ = 0, c’est-à-dire en
θ = 0, ainsi qu’en k′′

±L = kL(sin θ ± sin α) = 0, c’est-à-dire en θ = ±α. Dès que l’on
s’écarte de ces maximas, l’intensité chute très vite pour les raisons évoquées précédemment.
L’intensité aura donc l’allure donnée dans la figure 2.

Figure 2 : À gauche : Illustration de la lecture du film holographique. En illuminant le film
à l’aide de la source cohérente utilisée lors de l’enregistrement, le film agit comme un réseau
de diffraction et restitue l’onde de vecteur k2 qui illuminait le film lors de l’enregistrement
de l’hologramme. À droite : Un graphe de l’intensité I(r, θ), éq. (54).
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