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Une lentille optique plan-convexe, posée sur un miroir parfait, est illuminée
par une onde monochromatique. On suppose que |'épaisseur d(r) de la couche
d’air sous la lentille est négligeable par rapport au rayon de courbure de
la lentille R, c'est-a-dire d < R. La figure ci-contre représente la lentille
plan-convexe reposant sur le miroir.

(a)

Corrigé 7 : Interférences et diffraction

Anneaux de Newton lumiére
incidente

R

En utilisant la limite d < R, montrer que d ~ r?/(2R). Avec cette

approximation, montrer les ondes réfléchies et réfractées d'une onde | : |
incidente verticale restent elles-mémes verticales. —Tr

Comme d < R, le théoreme de Pythagore permet d’écrire :
R*=r*+(R—d)? = 2d~r*/R. (1)

Par conséquent, on peut conclure que la surface courbe de la lentille forme un angle
tan a &~ /d/2R avec le miroir, cf. figure ci-dessous. Bien que cet angle soit non nul, on va
approximer qu’il est suffisamment faible tel que les deux surfaces puissent étre considérées
paralleéles. Ceci permet alors notamment de considérer que les réfractions et réflexions
d’une onde incidente verticale restent elles-mémes verticales, ce qui permet de simplifier la
discussion des figures d’interférences pour la suite de ’exercice. Cependant, on continuera
de traiter I’épaisseur d = d(r) comme variable. En effet, comme discuté dans les réponses
suivantes, ’observation d’interférences constructives et destructives ne requiert qu’une
variation Ad ~ A de ’épaisseur entre lentille et miroir. Cette justification est similaire &
celle employée dans la série 4, exercice 1 traitant des fentes de Young.

Décrire le comportement d'un faisceau incident réfléchi aux différentes interfaces. On négligera
les réflexions multiples. Expliquer qualitativement pourquoi un observateur placé au-dessus
de la lentille observe des interférences qui se manifestent par des anneaux concentriques
alternativement sombres et clairs appelés « anneaux de Newton ».

E; E,

miroir

Le raisonnement en partie (a) permet d’affirmer que 'espace entre la lentille et le miroir est
une couche d’air d’épaisseur d variable. Comme illustré sur la figure ci-dessus, un rayon
traversant la couche d’air et réfléchi par le miroir sera donc déphasé par rapport a un rayon
réfléchi par la paroi interne de la lentille. Selon la distance parcourue a travers la couche
d’air, l'interférence due a la superposition des fonctions d’ondes associées a ces deux rayons
peut étre constructive ou destructive. Pour un observateur situé au-dessus de ’expérience
(en direction de la source lumineuse incidente et regardant le miroir a travers la lentille), ces
interférences se manifestent donc par des anneaux alternativement sombres (interférences
destructives) et clairs (interférences constructives).



()

Déterminer le rayon r,, du m® anneau sombre ainsi que la loi décrivant I'augmentation du rayon
entre deux anneaux sombres consécutifs.

On souhaite déterminer r,, caractérisant la position des anneaux sombres, correspondant
aux interférences destructives. On écrit pour cela la fonction d’onde associée a la lumiere
incidente sous la forme complexe suivante :

E = Eyeikz—wt), (2)

On appelle E; le rayon lumineux réfléchi par la surface intérieure de la lentille et Es le
rayon lumineux réfléchi par le miroir. La différence de chemin optique correspond donc a
2d, puisque le rayon lumineux Eq traverse la couche d’air entre la lentille et le miroir deux
fois. De plus, la réflexion pour Eo engendre un changement de signe de 'amplitude réfléchie
puisque le miroir est conducteur, comme précisé par 'indication. En superposant ces deux
contributions, on obtient que :

Eiot = E| + Ey = E,e!(-Fz—«b) (1- eZikd) — ...

e ETe—i(kac—i-wt)eik:d (eikd _ e—ikd) — 9 Ere—i(/m-i—wt)eikd Sln(]{}d) (3)

On remarque, dans le résultat ci-dessus, que 'on a considéré que les ondes réfléchie et
réfractée ont une amplitude similaire, E,, selon I'indication de 1’énoncé. C’est évidemment
une approximation : on devrait en principe évaluer les coefficients de Fresnel (voir série 5) a
Iinterface afin d’obtenir les amplitudes de Eq et Eg séparément. On préfére ici se concentrer
sur 'impact du déphasage.

D’apres 1’équation (3), pour obtenir une interférence destructive, il est nécessaire que la
condition suivante soit satisfaite :

2 2
Tﬂ-d:mW:>2d:m)\%%”, (4)

ol on a utilisé 'expression trouvée en (1). Ceci permet de conclure que

rm = VmAR. (5)

Quelle est I'aire séparant deux anneaux sombres ? Dépend-elle de m ?

L’aire séparant r,, et 11 est donnée par :
_ 2 2y _
Ay =7(rs 1 — ) = TAR. (6)

On remarque que A,, ne dépend pas de m et reste donc constante.
Déterminer la loi décrivant le rayon 7/, de I'interférence constructive.

La condition pour observer des interférences constructives s’observent a partir de ’expression
donnée par (3). La condition s’écrit donc comme :

o 1 , 1
Td_ (m—i— 2>7T = 71, = <m+ Q)AR. (7)



2 Interférométre de Fabry-Perot

Un interférométre de Fabry-Perot est un instrument optique composé
de deux surfaces partiellement réfléchissantes. |l permet de laisser passer
uniquement les longueurs d'onde de la lumiére incidente qui sont en
résonance avec la cavité optique formée par les deux surfaces. On désire
caractériser la figure d'interférences de cet interférométre en assimilant
les surfaces aux deux interfaces d'une lame de verre de largeur d et
d'indice de réfraction n. Pour simplifier I'analyse, on considére une onde
monochromatique incidente sur la lame avec un angle incident 6; par
rapport a la normale. Le rayon incident est réfracté avec un angle 6,.

(a) A I'aide d'un diagramme, expliquer comment se comporte un rayon lumineux incident traversant
la lame de verre. Considérer des réflexions multiples et montrer qu'un rayon entrant engendre
plusieurs rayons sortants (ayant traversé la lame). Déduire la différence de phase A¢(6,) en
fonction de 6, entre deux rayons sortants successifs.

A chaque contact avec interface, le rayon est divisé en un rayon réfléchi et un rayon réfracté.
Le chemin optique le plus court traversant la lame de verre est celui d’un rayon réfracté
en A, puis réfracté en B. Le second plus court chemin est celui d’un rayon réfracté en
A, réfléchi en B puis en C, et enfin réfracté en D. En considérant un plus grand nombre
de réflexions, on peut donc supposer un nombre infini de tels chemins. Comme indiqué
dans I’énoncé de la question, on commence ici par considérer uniquement les deux premiers
rayons sortants, en B et D.

d

Air

Pour calculer la différence de chemins optiques, § (ci-apres aussi appelée « différence de
marche »), on remarque qu'’il faut prendre en compte le chemin parcouru par le rayon réfléchi
en B, parcourant le chemin BC' D, et le rayon réfracté en B, suivant le chemin BFE. Les rayons
sortants sont considérés paralleles et I'observateur a une distance L > |BD| > |BE||,
ce qui correspond & la limite de diffraction en champ lointain (Fraunhofer), voir série 4,
exercice 2. Soit la fonction d’onde mesurée au point B, ¥p = sge” ! avec sg 'amplitude
de l'onde, que l'on calculera a la question (b). Les fonctions d’ondes en D et E s’écrivent
alors

i(K (IBC||l+||CD)—wt)

i(k| BE||—wt) (8)

Yp = spe et Yg=sge ;

ot k' = nk puisque I'onde selon BC'D se propage dans le verre. En prenant la somme de



ces ondes, ¥ = ¥p + ¥, on isole le déphasage des deux rayons,
w — (SDeiA¢> + SE)e'L’(k||BE||7wt)7 (9)

ou on a écrit

A¢ = ks = k[n(|BC| + |CD]) - |BE]]. (10)

Il faut maintenant exprimer |BC]||, ||CD|| et |BE|| en fonction de 6, et 6;,

d
BC| = ||CD|| = : 11
BC| = D] = - (1)
On en déduit que le segment ||[BD|| est donné par :
|IBD|| = cos 0. sin 0, = 2d tan6,. (12)
Par conséquent, la distance parcourue par le premier rayon réfracté est donnée par :
|BE|| = 2d tan 6, sin 6;. (13)

En utilisant les expressions ci-dessus ainsi que la loi de Snell-Descartes sin §; = nsinf,, on
obtient donc la différence de chemin optique donnée par :

_ . . . o . 2
0= n( 2d ) —2dtanf,sin0; = QdM = Qndﬂ = 2ndcosf,. (14)
cos 0, cos 0, cos 0,
La différence de phase A¢ est donc donnée par :
4dmnd
Ap =k = ﬂ; cos ;.. (15)

On suppose que la réflectivité de I'interface verre-air est égal a R < 1. Calculer I'amplitude s,,(A¢)
de chaque réfraction en sortie de I'interférometre. En déduire I'amplitude totale s¢o¢ en fonction
de I'amplitude incidente s;.

Au point (a), nous avons conclu qu’un nombre infini de rayons étaient réfractés par la
lame de verre. L’amplitude de ’onde incidente est donné par s;. Puisque le premier rayon
traversant la lame par le chemin optique le plus court est réfracté deux fois, 'amplitude sq
du premier rayon sortant BE est donnée par :

so=(VI=R)’s; = (1 - R)s;, (16)

avec R = I, /I; la réflectivité de I'interface. On note que cette quantité differe du coefficient de
réflexion, introduit en série 5, exercice 1 sous le nom de coefficient de Fresnel. Une remarque
similaire peut-étre faite pour distinguer la transmittance (définie en terme d’intensités) du
coefficient de transmission (défini en terme d’amplitudes). Le rayon réfracté suivant, sortant
de la lame au point D et d’amplitude si, est réfléchi deux fois et posséde un déphasage
A¢ par rapport a sg. Par récurrence, on en déduit I’expression de 'amplitude du m® rayon
réfracté s, a partir de s,

s = (VIZRA(VR) D%, = Ri®sy — 5, = (RS sy, (7)

Par conséquent, on obtient que 'amplitude totale de I’onde transmise sio s’exprime comme
la somme des amplitudes des rayons réfractés.

© iAdym 50 1 - R)s;
e (Z (7e) )80 = R = 1R (18)

m=0




(c)

Montrer que la transmittance est donnée par :

-1
AR sin? A¢(0T) .

T0:) = |1+ 1= R) 5

L’intensité de ’onde transmise est donnée par I = i, Sior €6 On obtient que :

(1 — R)?s}s, (1 - R)?

Tiot = . chic M ,
T (1= Re—™9)(1 — Re’®%) ~ "°1+ R? — 2Rcos Ao

(19)

ou Iy = sjs; est 'intensité de I'onde incidente sur la lame de verre. Finalement, la transmit-
tance est donnée par :

T(0,) = Fer _ (1-R)? _ (1-R)?
Y Iy 14 R?*-2RcosA¢ 1+ R2—2R(1 - 2sin?(A¢/2))

_ (1 _R)2 4R o A¢(0r) -1
(1= R)? +4Rsin?(A¢/2) (1— R)? sin )

= |1+ (20)

Donner les conditions pour avoir une transmittance maximale et dessiner la transmittance pour
un angle 6, fixe en fonction de A¢, puis de A. Que remarque-t-on ? En déduire une application
de l'interférometre de Fabry-Perot.

La transmittance T'(6,) en fonction de A¢ est montrée en Figure 1. On y observe des pics
périodiques avec des maxima égaux a 1. On note que plus la réflectivité R est importante,
plus les pics a mi-hauteur seront étroits. Les maxima s’expriment, éq. (15),

A 2nd cos 6
B9 r = Ay, = 2de0sOr (21)
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Figure 1 — Deux profils de transmittance en fonction de A¢. La courbe rouge est associé a
une réflectivité plus élevée que dans le cas de la courbe bleue.

En utilisant I’équation (15), il est possible d’obtenir la méme figure mais en fonction de A,
Fig. 2. On remarque que la distance entre les pics semble étre la méme. Ceci s’explique par
I’argument suivant. Pour m > 1, la distance entre le pic lié a A, et A\, 41 peut s’écrire :

1 1 2ndcosf, 2ndcosb,
Am — Am41 = ANy, = 2nd cos 6, ( ) _ Znacosty  Znacos . (22)

m m+1) mm+1) m?



Pour m trés grand, on a donc que la distance entre pics de transmittance est approximati-
vement constante. En effet, si 'on compare la distance entre de séparation a la hauteur du
(m 4+ p)¢ pic avec celle du m® pour p < m,

1 2

Ay = —2ndeost _ ny  mlm 1) %Mm[l—zp+o(p2>]
(m+p)(m+p+1) (m+p+1)(m+p) m m

(23)

Cette propriété permet & I'interférometre de Fabry-Perot de jouer un réle de filtre optique,
permettant de sélectionner seulement certaines longueurs d’onde d’un spectre lumineux ou
encore de mesurer précisément des longueurs d’onde. Similairement & I’espacement des pics
AN, on remarque que la largeur des pics & mi-hauteur d\,, reste également similaire d’un
pic a 'autre. Le rapport entre la distance séparant les pics A\ et la largeur de pic dA est
appelé « finesse » et caractérise la capacité de 'interférometre a distinguer des longueurs
d’onde proches.
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Figure 2 — Transmittance en fonction de A.

3 Pression de radiation
On présente deux approches afin de dériver |'expression de la pression de radiation. On considere une
onde électromagnétique plane progressive,

E; = Re [Eoviei(k‘”_m) ey] = Ey; cos(kx — wt) ey,

se propageant depuis < 0 dans le vide et incidente sur un miroir plan, métallique et parfaitement
conducteur en = = 0, ce qui implique donc que le champ électrique s’annule a I'interface, E(z = 0) = 0.
Ceci implique donc une onde électromagnétique réfléchie,

E, = Re [onre*i(kwrwt) ey| = Eo, cos(kz + wt) ey.

(a) Déterminer I'amplitude Ep, en fonction de Ep;. Donner une expression pour les champs
électrique et magnétique Eio et Byt résultants pour x < 0. Pour I'onde incidente, calculer la
moyenne temporelle du vecteur de Poynting (S;) = (E; X B;)/ o, ainsi que la densité volumique
d’'énergie moyenne (u, ;) de I'onde électromagnétique.

Les conditions aux bords en z = 0 imposent que E; + E, = 0, soit

Eiot = [Eo, cos(wt) + Eg; cos(wt)] ey = 0, (24)



d’ott 'on déduit que Ep, = —Ep;. On observe que le champ total Eo est donné par :

Eiot = E; + E, = Re [E()?i(ei(kx*“’t) — ei(k”+“’t)) e, =
-+ = Re[Ep e (~2isin(wt)) e,] = 2Ey,; sin(kx) sin(wt) e,. (25)

Evalué en x = 0, on observe effectivement que Eio, = 0.

Par la loi d’induction de Faraday, il est possible de déterminer le champ magnétique B a
partir dans un champ électrique E = Epel(kx—wt)
0B

u:

et donc

B = Re [—z’(k x u)Ey / eilkx—wt) dt} = Re[EOkei(k'x_“’t) (k X u)} — ...
w k| (27)

E, k
-zocos(k‘x—wt)<||k| Xu),

C

ou u est le vecteur unitaire dans la direction de la polarisation. Dans le cas présent,
k = tke, et u = e, et, par conséquent, on obtient les expressions suivantes pour B; et B, :

Ey,i
B; = g’ cos(kx — wt) e, (28)

E
B, = — =2 cos(—kxr —wt)e, =
c

E .
0 cos(kx + wt) e,. (29)
c
Le champ magnétique total dans le vide By est donc donné par la superposition des
champs incident et réfléchi :

Eq,i Eo,i
B, = B + B, = —> (cos(kz — wt) 4 cos(kz + wt)) e, = 2% cos(kx) cos(wt) e,. (30)
c c

Il aurait évidemment aussi été possible d’appliquer la loi de Faraday (26) a Eot,

0B
V X Eiot = 2Ep ik cos(kx) sin(wt) e, = — attOt (31)
Eo,i
Biot = 22 cos(kx) cos(wt) e, (32)
c

en remplagant ¢ = w/k. Le champ magnétique se comporte donc comme une onde sta-
tionnaire en x < 0. Dans le vide, le vecteur de Poynting S; de ’onde électromagnétique
incidente est donné par :

2
_ EixBi _ Eo, cos?(kx — wt)(e, X e,) = cegEs ; cos? (kx — wt) ;. (33)
Ho CHo ’
On remarque que le vecteur de Poynting pointe donc dans la direction de propagation
de Tonde électromagnétique plane. En prenant la moyenne temporelle, on a (S;) =
(ceoEai /2) ez. Cette solution peut étre simplifiée en considérant la densité volumique
d’énergie moyenne de ’onde électromagnétique incidente. En effet, celle-ci est donnée par

Si

1 B;||?
s = 5 (callBif? + 1240, 3
En prenant la moyenne temporelle, on obtient que
1
(uvi) = 5€0Eq (35)
et la moyenne du vecteur de Poynting peut donc s’écrire :
(Si) = cuv,) ey (36)



(b)

Déterminer la charge surfacique o et le courant surfacique J5; en z = 0.

Pour trouver la charge surfacique o en x = 0, il suffit d’utiliser la loi de Gauss, étant donné
que Eetar est nul et que le champ électrique dans le vide Ey;qe est paralléle a la surface
plane, ceci montre que o = 0 par la condition (Dy—D;); = o. Pour le courant surfacique Js,
il faut utiliser la condition (Hg —Hy)| - (t X n) = J; - t. Comme le miroir est un conducteur
parfait, Bypstal = 0 pour z > 0. En utilisant I'identité vectorielle a- (b X ¢) =b - (¢ X a),
on a :

—H||~(tXl’l):t-(nX—H”):t'Js, (37)
et donc
JSZHX—HH, (38)

et comme n = e, et H| = B /1o = Biot( = 0) /0, avec I'équation (30), on a

FEq
J, =272 cos(wt)(e; X e;) = 2cegEy ; cos(wt) ey. (39)
CHo

L'expression de la force résultante est donnée par :
1
dF = 5(0 Etot +Js X Biot) dS, (%)

ol dS est un petit élément de surface. Donner une explication pour le facteur 1/2. En déduire
que I'onde exerce une pression P sur le miroir dont on calculera la valeur moyenne (P) en
fonction de la densité volumique moyenne d'énergie (u, ;) de I'onde incidente, puis de la densité
volumique moyenne d'énergie (u, tot) de I'onde totale.

On remarque tout d’abord que, comme discuté en question (b), o = 0 dans I’équation (x).
Le champ électromagnétique exerce sur une surface d.S du miroir une force dont ’expression
est, en notation réelle :

1
dF = 5 JS X Btot ds. (40)

L’origine du facteur 1/2 est expliquée intuitivement. Il n’est en effet pas cohérent de supposer
que la partie réfléchie du champ magnétique B, générée par la densité de courant J4 puisse
exercer une force sur cette méme densité de courant. On ne prend donc pas en compte
le champ magnétique créé par cette surface, d’ou le facteur 1/2. L’élément de force dF
s’exprime donc comme, égs. (30) et (39),

1

dF = §4€0E(2)7i cos?(wt) dS e,. (41)

En prenant la valeur moyenne de dF, on obtient donc que :
(dF) = eoEj ; dS e, (42)
La pression de radiation (P) est donc finalement donnée par :

(dF)

PI="a

N = 60E§,i = 2<uvyi>, (43)
avec n = e, le vecteur unitaire normal a la surface. On peut également exprimer la pression
en fonction du vecteur de Poynting de l'onde incidente, équation (36),

(Si) 'e:r'

C

(P) =2 (44)



On note que le facteur 2 dans les équations (43) et (44) ci-dessus est attendu en raison
de la réflexion de ’onde incidente sur le miroir. Si, au contraire, la surface était telle que
I’onde avait été parfaitement absorbée, ce facteur serait absent. En notant que I'amplitude
des champs totaux est deux fois plus grande que les amplitudes incidentes, équations (25)
et (30), on peut affirmer que (uy tot) = 4(uy). La pression de radiation s’écrit donc

(p) = L) (45)

Dans un second temps, |'expression de la pression de radiation peut également étre dérivée en

considérant la nature corpusculaire de la lumiere.

(d) En utilisant la relation de I'énergie d'un photon E., = c|/p,||, déterminer I'expression de la
pression de radiation (P) produite en fonction de la puissance émise P, et de la distance r de
la surface considérée par rapport a la source.

Chaque photon incident posséde une quantité de mouvement initiale p,. Apres réflexion
sur le miroir parfait, sa quantité de mouvement sera donnée par — p,. Par conséquent, la
quantité de mouvement transmise par un photon est donnée par Ap, = 2p, = 2E, /c.

On estime la force exercée sur un élément de surface dS. Le nombre de photons incidents
sur d.S pendant un intervalle de temps dt est proportionnel au flux de photons incidents,
dN, =T'dS dt, avec [I'] = m~2s~!. Chaque photon transférant Ap, a la surface, on peut
ainsi exprimer la différence de quantité de mouvement de celle-ci,

2F oT,
dp = Apy dN, = =T dS dt = ?E ds dt, (46)

avec I'g = E,I' le flux d’énergie associé aux photons incidents. La force infinitésimale dF'
exercée sur la surface dS est donc

dp 2FE
dF = — =224 4
pria e A (47)

ce qui permet de conclure que la pression de radiation est

dFF  2I'g
P=—=—. 48
ds c (48)
Le flux d’énergie I'y provenant d’une source homogeéne ponctuelle de puissance émettrice Py,
s’écrit p
I'p=—"% 49
E= 42 (49)
ce qui est substitué dans ’équation (48),
Py
P) = . 50
(P) 2mr2e (50)

On note que dans cette description, on a une équivalence entre moyenne et valeur instantanée
des champs, c.-a-d. P = (P). Cette expression peut étre ramenée a celle trouvée au point (c),
éq. (43) en remarquant que la puissance moyenne émise par la source est liée a la valeur
moyenne du vecteur de Poynting (S;) - e, = (P,)/(47r?). Par conséquent, on obtient donc

oo omp, 1)



(e) Déterminer le rayon limite Ry, d'une sphére métallique pour lequel celle-ci pourrait étre éjectée
du systeme solaire, en tenant compte de la pression de radiation. On suppose que le Soleil émet
un rayonnement d'une puissance P,,. La section efficace de la sphére est donnée par 7 R2.

La sphere métallique est soumise & deux forces :

— la force de gravité : F, = —(GMm/r?) e, ot M est la masse du Soleil et m la masse
de la sphere,
— la force produite par la pression de radiation : F, = (P,R?/2r?c)e,, ot R est le

rayon de la sphere.
La 2° loi de Newton donne :

Py M
g2 GMm (52)

ma =
2mre r2

Pour que la sphere soit éjectée du systéme solaire, il faut donc que a > 0, ce qui permet de
poser une condition sur son rayon limite R > Ry,

P,R> GMm [2GeMm
27”20 - 7’2 > O - Rlim == Tu} (53)
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