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Corrigé 7 : Interférences et diffraction

1 Anneaux de Newton
Une lentille optique plan-convexe, posée sur un miroir parfait, est illuminée
par une onde monochromatique. On suppose que l’épaisseur d(r) de la couche
d’air sous la lentille est négligeable par rapport au rayon de courbure de
la lentille R, c’est-à-dire d � R. La figure ci-contre représente la lentille
plan-convexe reposant sur le miroir.
(a) En utilisant la limite d � R, montrer que d ≈ r2/(2R). Avec cette

approximation, montrer les ondes réfléchies et réfractées d’une onde
incidente verticale restent elles-mêmes verticales.
Comme d � R, le théorème de Pythagore permet d’écrire :

R2 = r2 + (R− d)2 =⇒ 2d ≈ r2/R. (1)

Par conséquent, on peut conclure que la surface courbe de la lentille forme un angle
tanα ≈

√
d/2R avec le miroir, cf. figure ci-dessous. Bien que cet angle soit non nul, on va

approximer qu’il est suffisamment faible tel que les deux surfaces puissent être considérées
parallèles. Ceci permet alors notamment de considérer que les réfractions et réflexions
d’une onde incidente verticale restent elles-mêmes verticales, ce qui permet de simplifier la
discussion des figures d’interférences pour la suite de l’exercice. Cependant, on continuera
de traiter l’épaisseur d = d(r) comme variable. En effet, comme discuté dans les réponses
suivantes, l’observation d’interférences constructives et destructives ne requiert qu’une
variation ∆d ∼ λ de l’épaisseur entre lentille et miroir. Cette justification est similaire à
celle employée dans la série 4, exercice 1 traitant des fentes de Young.

(b) Décrire le comportement d’un faisceau incident réfléchi aux différentes interfaces. On négligera
les réflexions multiples. Expliquer qualitativement pourquoi un observateur placé au-dessus
de la lentille observe des interférences qui se manifestent par des anneaux concentriques
alternativement sombres et clairs appelés « anneaux de Newton ».

miroir

lentille

E1 E2

Le raisonnement en partie (a) permet d’affirmer que l’espace entre la lentille et le miroir est
une couche d’air d’épaisseur d variable. Comme illustré sur la figure ci-dessus, un rayon
traversant la couche d’air et réfléchi par le miroir sera donc déphasé par rapport à un rayon
réfléchi par la paroi interne de la lentille. Selon la distance parcourue à travers la couche
d’air, l’interférence due à la superposition des fonctions d’ondes associées à ces deux rayons
peut être constructive ou destructive. Pour un observateur situé au-dessus de l’expérience
(en direction de la source lumineuse incidente et regardant le miroir à travers la lentille), ces
interférences se manifestent donc par des anneaux alternativement sombres (interférences
destructives) et clairs (interférences constructives).
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(c) Déterminer le rayon rm du me anneau sombre ainsi que la loi décrivant l’augmentation du rayon
entre deux anneaux sombres consécutifs.
On souhaite déterminer rm caractérisant la position des anneaux sombres, correspondant
aux interférences destructives. On écrit pour cela la fonction d’onde associée à la lumière
incidente sous la forme complexe suivante :

E = E0e
i(kx−ωt). (2)

On appelle E1 le rayon lumineux réfléchi par la surface intérieure de la lentille et E2 le
rayon lumineux réfléchi par le miroir. La différence de chemin optique correspond donc à
2d, puisque le rayon lumineux E2 traverse la couche d’air entre la lentille et le miroir deux
fois. De plus, la réflexion pour E2 engendre un changement de signe de l’amplitude réfléchie
puisque le miroir est conducteur, comme précisé par l’indication. En superposant ces deux
contributions, on obtient que :

Etot = E1 + E2 = Ere
i(−kx−ωt)(1 − e2ikd) = · · ·

· · · = − Ere
−i(kx+ωt)eikd(eikd − e−ikd) = −2iEre

−i(kx+ωt)eikd sin(kd). (3)

On remarque, dans le résultat ci-dessus, que l’on a considéré que les ondes réfléchie et
réfractée ont une amplitude similaire, Er, selon l’indication de l’énoncé. C’est évidemment
une approximation : on devrait en principe évaluer les coefficients de Fresnel (voir série 5) à
l’interface afin d’obtenir les amplitudes de E1 et E2 séparément. On préfère ici se concentrer
sur l’impact du déphasage.
D’après l’équation (3), pour obtenir une interférence destructive, il est nécessaire que la
condition suivante soit satisfaite :

2π
λ
d = mπ =⇒ 2d = mλ ≈ r2

m

R
, (4)

où on a utilisé l’expression trouvée en (1). Ceci permet de conclure que

rm =
√
mλR. (5)

(d) Quelle est l’aire séparant deux anneaux sombres ? Dépend-elle de m ?
L’aire séparant rm et rm+1 est donnée par :

Am = π(r2
m+1 − r2

m) = πλR. (6)

On remarque que Am ne dépend pas de m et reste donc constante.
(e) Déterminer la loi décrivant le rayon r′

m de l’interférence constructive.
La condition pour observer des interférences constructives s’observent à partir de l’expression
donnée par (3). La condition s’écrit donc comme :

2π
λ
d =

(
m+ 1

2

)
π =⇒ r′

m =
√(

m+ 1
2

)
λR. (7)
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2 Interféromètre de Fabry-Perot
Un interféromètre de Fabry-Perot est un instrument optique composé
de deux surfaces partiellement réfléchissantes. Il permet de laisser passer
uniquement les longueurs d’onde de la lumière incidente qui sont en
résonance avec la cavité optique formée par les deux surfaces. On désire
caractériser la figure d’interférences de cet interféromètre en assimilant
les surfaces aux deux interfaces d’une lame de verre de largeur d et
d’indice de réfraction n. Pour simplifier l’analyse, on considère une onde
monochromatique incidente sur la lame avec un angle incident θi par
rapport à la normale. Le rayon incident est réfracté avec un angle θr.
(a) À l’aide d’un diagramme, expliquer comment se comporte un rayon lumineux incident traversant

la lame de verre. Considérer des réflexions multiples et montrer qu’un rayon entrant engendre
plusieurs rayons sortants (ayant traversé la lame). Déduire la différence de phase ∆φ(θr) en
fonction de θr entre deux rayons sortants successifs.

À chaque contact avec l’interface, le rayon est divisé en un rayon réfléchi et un rayon réfracté.
Le chemin optique le plus court traversant la lame de verre est celui d’un rayon réfracté
en A, puis réfracté en B. Le second plus court chemin est celui d’un rayon réfracté en
A, réfléchi en B puis en C, et enfin réfracté en D. En considérant un plus grand nombre
de réflexions, on peut donc supposer un nombre infini de tels chemins. Comme indiqué
dans l’énoncé de la question, on commence ici par considérer uniquement les deux premiers
rayons sortants, en B et D.

Pour calculer la différence de chemins optiques, δ (ci-après aussi appelée « différence de
marche »), on remarque qu’il faut prendre en compte le chemin parcouru par le rayon réfléchi
en B, parcourant le chemin BCD, et le rayon réfracté en B, suivant le chemin BE. Les rayons
sortants sont considérés parallèles et l’observateur à une distance L � ‖BD‖ > ‖BE‖,
ce qui correspond à la limite de diffraction en champ lointain (Fraunhofer), voir série 4,
exercice 2. Soit la fonction d’onde mesurée au point B, ψB = sBe

−iωt avec sB l’amplitude
de l’onde, que l’on calculera à la question (b). Les fonctions d’ondes en D et E s’écrivent
alors

ψD = sDe
i
(

k′(‖BC‖+‖CD‖)−ωt
)

et ψE = sEe
i(k‖BE‖−ωt), (8)

où k′ = nk puisque l’onde selon BCD se propage dans le verre. En prenant la somme de
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ces ondes, ψ = ψD + ψE , on isole le déphasage des deux rayons,

ψ =
(
sDe

i∆φ + sE

)
ei(k‖BE‖−ωt), (9)

où on a écrit
∆φ = kδ = k

[
n(‖BC‖ + ‖CD‖) − ‖BE‖

]
. (10)

Il faut maintenant exprimer ‖BC‖, ‖CD‖ et ‖BE‖ en fonction de θr et θi,

‖BC‖ = ‖CD‖ = d

cos θr
. (11)

On en déduit que le segment ‖BD‖ est donné par :

‖BD‖ = 2d
cos θr

sin θr = 2d tan θr. (12)

Par conséquent, la distance parcourue par le premier rayon réfracté est donnée par :

‖BE‖ = 2d tan θr sin θi. (13)

En utilisant les expressions ci-dessus ainsi que la loi de Snell-Descartes sin θi = n sin θr, on
obtient donc la différence de chemin optique donnée par :

δ = n

( 2d
cos θr

)
− 2d tan θr sin θi = 2dn− sin θr sin θi

cos θr
= 2nd1 − sin2 θr

cos θr
= 2nd cos θr. (14)

La différence de phase ∆φ est donc donnée par :

∆φ = kδ = 4πnd
λ

cos θr. (15)

(b) On suppose que la réflectivité de l’interface verre-air est égal àR < 1. Calculer l’amplitude sn(∆φ)
de chaque réfraction en sortie de l’interféromètre. En déduire l’amplitude totale stot en fonction
de l’amplitude incidente si.
Au point (a), nous avons conclu qu’un nombre infini de rayons étaient réfractés par la
lame de verre. L’amplitude de l’onde incidente est donné par si. Puisque le premier rayon
traversant la lame par le chemin optique le plus court est réfracté deux fois, l’amplitude s0
du premier rayon sortant BE est donnée par :

s0 =
(√

1 −R
)2
si = (1 −R)si, (16)

avec R = Ir/Ii la réflectivité de l’interface. On note que cette quantité diffère du coefficient de
réflexion, introduit en série 5, exercice 1 sous le nom de coefficient de Fresnel. Une remarque
similaire peut-être faite pour distinguer la transmittance (définie en terme d’intensités) du
coefficient de transmission (défini en terme d’amplitudes). Le rayon réfracté suivant, sortant
de la lame au point D et d’amplitude s1, est réfléchi deux fois et possède un déphasage
∆φ par rapport à s0. Par récurrence, on en déduit l’expression de l’amplitude du me rayon
réfracté sm à partir de s0,

s1 =
(√

1 −R
)2(√

R
)2
ei∆φsi = Rei∆φs0 =⇒ sm = (Rei∆φ)ms0. (17)

Par conséquent, on obtient que l’amplitude totale de l’onde transmise stot s’exprime comme
la somme des amplitudes des rayons réfractés.

stot =
( ∞∑

m=0

(
Rei∆φ)m)s0 = s0

1 −Rei∆φ
= (1 −R)si

1 −Rei∆φ
. (18)
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(c) Montrer que la transmittance est donnée par :

T (θr) =
[
1 + 4R

(1 −R)2 sin2 ∆φ(θr)
2

]−1
.

L’intensité de l’onde transmise est donnée par Itot = s∗
totstot et on obtient que :

Itot = (1 −R)2s∗
i si

(1 −Re−i∆φ)(1 −Rei∆φ) = I0
(1 −R)2

1 +R2 − 2R cos ∆φ, (19)

où I0 = s∗
i si est l’intensité de l’onde incidente sur la lame de verre. Finalement, la transmit-

tance est donnée par :

T (θr) = Itot
I0

= (1 −R)2

1 +R2 − 2R cos ∆φ = (1 −R)2

1 +R2 − 2R
(
1 − 2 sin2(∆φ/2)

) = · · ·

· · · = (1 −R)2

(1 −R)2 + 4R sin2(∆φ/2)
=
[
1 + 4R

(1 −R)2 sin2 ∆φ(θr)
2

]−1
. (20)

(d) Donner les conditions pour avoir une transmittance maximale et dessiner la transmittance pour
un angle θr fixe en fonction de ∆φ, puis de λ. Que remarque-t-on ? En déduire une application
de l’interféromètre de Fabry-Perot.
La transmittance T (θr) en fonction de ∆φ est montrée en Figure 1. On y observe des pics
périodiques avec des maxima égaux à 1. On note que plus la réflectivité R est importante,
plus les pics à mi-hauteur seront étroits. Les maxima s’expriment, éq. (15),

∆φ
2 = mπ =⇒ λm = 2nd cos θr

m
. (21)

Figure 1 – Deux profils de transmittance en fonction de ∆φ. La courbe rouge est associé à
une réflectivité plus élevée que dans le cas de la courbe bleue.

En utilisant l’équation (15), il est possible d’obtenir la même figure mais en fonction de λ,
Fig. 2. On remarque que la distance entre les pics semble être la même. Ceci s’explique par
l’argument suivant. Pour m � 1, la distance entre le pic lié à λm et λm+1 peut s’écrire :

λm − λm+1 = ∆λm = 2nd cos θr

( 1
m

− 1
m+ 1

)
= 2nd cos θr

m(m+ 1) ≈ 2nd cos θr

m2 . (22)
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Pour m très grand, on a donc que la distance entre pics de transmittance est approximati-
vement constante. En effet, si l’on compare la distance entre de séparation à la hauteur du
(m+ p)e pic avec celle du me pour p � m,

∆λm+p = 2nd cos θr

(m+ p)(m+ p+ 1) = ∆λm
m(m+ 1)

(m+ p+ 1)(m+ p) ≈ ∆λm

[
1 − 2p

m
+ O

(
p2

m2

)]
.

(23)
Cette propriété permet à l’interféromètre de Fabry-Perot de jouer un rôle de filtre optique,
permettant de sélectionner seulement certaines longueurs d’onde d’un spectre lumineux ou
encore de mesurer précisément des longueurs d’onde. Similairement à l’espacement des pics
∆λm, on remarque que la largeur des pics à mi-hauteur δλm reste également similaire d’un
pic à l’autre. Le rapport entre la distance séparant les pics ∆λ et la largeur de pic δλ est
appelé « finesse » et caractérise la capacité de l’interféromètre à distinguer des longueurs
d’onde proches.

Figure 2 – Transmittance en fonction de λ.

3 Pression de radiation
On présente deux approches afin de dériver l’expression de la pression de radiation. On considère une
onde électromagnétique plane progressive,

Ei = Re
[
E0,ie

i(kx−ωt) ey
]

= E0,i cos(kx− ωt) ey,

se propageant depuis x < 0 dans le vide et incidente sur un miroir plan, métallique et parfaitement
conducteur en x = 0, ce qui implique donc que le champ électrique s’annule à l’interface, E(x = 0) = 0.
Ceci implique donc une onde électromagnétique réfléchie,

Er = Re
[
E0,re

−i(kx+ωt) ey
]

= E0,r cos(kx+ ωt) ey.

(a) Déterminer l’amplitude E0,r en fonction de E0,i. Donner une expression pour les champs
électrique et magnétique Etot et Btot résultants pour x < 0. Pour l’onde incidente, calculer la
moyenne temporelle du vecteur de Poynting 〈Si〉 = 〈Ei ×Bi〉/µ0, ainsi que la densité volumique
d’énergie moyenne 〈uv,i〉 de l’onde électromagnétique.
Les conditions aux bords en x = 0 imposent que Ei + Er = 0, soit

Etot =
[
E0,r cos(ωt) + E0,i cos(ωt)

]
ey = 0, (24)
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d’où l’on déduit que E0,r = −E0,i. On observe que le champ total Etot est donné par :

Etot = Ei + Er = Re
[
E0,i

(
ei(kx−ωt) − ei(kx+ωt)) ey

]
= · · ·

· · · = Re
[
E0,ie

ikx(−2i sin(ωt)
)

ey
]

= 2E0,i sin(kx) sin(ωt) ey. (25)

Évalué en x = 0, on observe effectivement que Etot = 0.
Par la loi d’induction de Faraday, il est possible de déterminer le champ magnétique B à
partir dans un champ électrique E = E0e

i(k·x−ωt) u :

∇ × E = −∂B
∂t

=⇒ B = −
∫
ik × E dt, (26)

et donc

B = Re
[
−i(k × u)E0

∫
ei(k·x−ωt) dt

]
= Re

[
E0k

ω
ei(k·x−ωt)

( k
‖k‖

× u
)]

= · · ·

· · · = E0
c

cos(k · x − ωt)
( k

‖k‖
× u

)
,

(27)

où u est le vecteur unitaire dans la direction de la polarisation. Dans le cas présent,
k = ±k ex et u = ey et, par conséquent, on obtient les expressions suivantes pour Bi et Br :

Bi = E0,i

c
cos(kx− ωt) ez, (28)

Br = −E0,r

c
cos(−kx− ωt) ez = E0,i

c
cos(kx+ ωt) ez. (29)

Le champ magnétique total dans le vide Btot est donc donné par la superposition des
champs incident et réfléchi :

Btot = Bi + Br = E0,i

c

(
cos(kx− ωt) + cos(kx+ ωt)

)
ez = 2E0,i

c
cos(kx) cos(ωt) ez. (30)

Il aurait évidemment aussi été possible d’appliquer la loi de Faraday (26) à Etot,

∇ × Etot = 2E0,ik cos(kx) sin(ωt) ez = −∂Btot
∂t

(31)

Btot = 2E0,i

c
cos(kx) cos(ωt) ez, (32)

en remplaçant c = ω/k. Le champ magnétique se comporte donc comme une onde sta-
tionnaire en x < 0. Dans le vide, le vecteur de Poynting Si de l’onde électromagnétique
incidente est donné par :

Si = Ei × Bi

µ0
=
E2

0,i

cµ0
cos2(kx− ωt)(ey × ez) = cε0E

2
0,i cos2(kx− ωt) ex. (33)

On remarque que le vecteur de Poynting pointe donc dans la direction de propagation
de l’onde électromagnétique plane. En prenant la moyenne temporelle, on a 〈Si〉 =
(cε0E2

0,i/2) ex. Cette solution peut être simplifiée en considérant la densité volumique
d’énergie moyenne de l’onde électromagnétique incidente. En effet, celle-ci est donnée par

uv,i = 1
2

(
ε0‖Ei‖2 + ‖Bi‖2

µ0

)
. (34)

En prenant la moyenne temporelle, on obtient que

〈uv,i〉 = 1
2ε0E

2
0,i, (35)

et la moyenne du vecteur de Poynting peut donc s’écrire :

〈Si〉 = c〈uv,i〉 ex. (36)
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(b) Déterminer la charge surfacique σ et le courant surfacique Js en x = 0.
Pour trouver la charge surfacique σ en x = 0, il suffit d’utiliser la loi de Gauss, étant donné
que Emétal est nul et que le champ électrique dans le vide Evide est parallèle à la surface
plane, ceci montre que σ = 0 par la condition (D2 −D1)⊥ = σ. Pour le courant surfacique Js,
il faut utiliser la condition (H2 − H1)‖ · (t × n) = Js · t. Comme le miroir est un conducteur
parfait, Bmétal = 0 pour x > 0. En utilisant l’identité vectorielle a · (b × c) = b · (c × a),
on a :

− H‖ · (t × n) = t · (n × − H‖) = t · Js, (37)
et donc

Js = n × − H‖, (38)

et comme n = ex et H‖ = B‖/µ0 = Btot(x = 0)/µ0, avec l’équation (30), on a

Js = −2E0,i

cµ0
cos(ωt)(ex × ez) = 2cε0E0,i cos(ωt) ey. (39)

(c) L’expression de la force résultante est donnée par :

dF = 1
2(σEtot + Js × Btot) dS, (∗)

où dS est un petit élément de surface. Donner une explication pour le facteur 1/2. En déduire
que l’onde exerce une pression P sur le miroir dont on calculera la valeur moyenne 〈P 〉 en
fonction de la densité volumique moyenne d’énergie 〈uv,i〉 de l’onde incidente, puis de la densité
volumique moyenne d’énergie 〈uv,tot〉 de l’onde totale.
On remarque tout d’abord que, comme discuté en question (b), σ = 0 dans l’équation (∗).
Le champ électromagnétique exerce sur une surface dS du miroir une force dont l’expression
est, en notation réelle :

dF = 1
2 Js × Btot dS. (40)

L’origine du facteur 1/2 est expliquée intuitivement. Il n’est en effet pas cohérent de supposer
que la partie réfléchie du champ magnétique Br générée par la densité de courant Js puisse
exercer une force sur cette même densité de courant. On ne prend donc pas en compte
le champ magnétique créé par cette surface, d’où le facteur 1/2. L’élément de force dF
s’exprime donc comme, éqs. (30) et (39),

dF = 1
24ε0E2

0,i cos2(ωt) dS ex. (41)

En prenant la valeur moyenne de dF, on obtient donc que :

〈dF〉 = ε0E
2
0,i dS ex. (42)

La pression de radiation 〈P 〉 est donc finalement donnée par :

〈P 〉 = 〈dF〉
dS

· n = ε0E
2
0,i = 2〈uv,i〉, (43)

avec n = ex le vecteur unitaire normal à la surface. On peut également exprimer la pression
en fonction du vecteur de Poynting de l’onde incidente, équation (36),

〈P 〉 = 2〈Si〉 · ex

c
. (44)
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On note que le facteur 2 dans les équations (43) et (44) ci-dessus est attendu en raison
de la réflexion de l’onde incidente sur le miroir. Si, au contraire, la surface était telle que
l’onde avait été parfaitement absorbée, ce facteur serait absent. En notant que l’amplitude
des champs totaux est deux fois plus grande que les amplitudes incidentes, équations (25)
et (30), on peut affirmer que 〈uv,tot〉 = 4〈uv,i〉. La pression de radiation s’écrit donc

〈P 〉 = 〈uv,tot〉
2 . (45)

Dans un second temps, l’expression de la pression de radiation peut également être dérivée en
considérant la nature corpusculaire de la lumière.
(d) En utilisant la relation de l’énergie d’un photon Eγ = c‖pγ‖, déterminer l’expression de la

pression de radiation 〈P 〉 produite en fonction de la puissance émise Pw et de la distance r de
la surface considérée par rapport à la source.
Chaque photon incident possède une quantité de mouvement initiale pγ . Après réflexion
sur le miroir parfait, sa quantité de mouvement sera donnée par − pγ . Par conséquent, la
quantité de mouvement transmise par un photon est donnée par ∆pγ = 2pγ = 2Eγ/c.
On estime la force exercée sur un élément de surface dS. Le nombre de photons incidents
sur dS pendant un intervalle de temps dt est proportionnel au flux de photons incidents,
dNγ = Γ dS dt, avec [Γ] = m−2 s−1. Chaque photon transférant ∆pγ à la surface, on peut
ainsi exprimer la différence de quantité de mouvement de celle-ci,

dp = ∆pγ dNγ = 2Eγ

c
Γ dS dt = 2ΓE

c
dS dt, (46)

avec ΓE = EγΓ le flux d’énergie associé aux photons incidents. La force infinitésimale dF
exercée sur la surface dS est donc

dF = dp

dt
= 2ΓE

c
dS, (47)

ce qui permet de conclure que la pression de radiation est

P = dF

dS
= 2ΓE

c
. (48)

Le flux d’énergie ΓE provenant d’une source homogène ponctuelle de puissance émettrice Pw

s’écrit
ΓE = Pw

4πr2 , (49)

ce qui est substitué dans l’équation (48),

〈P 〉 = Pw

2πr2c
. (50)

On note que dans cette description, on a une équivalence entre moyenne et valeur instantanée
des champs, c.-à-d. P ≡ 〈P 〉. Cette expression peut être ramenée à celle trouvée au point (c),
éq. (43) en remarquant que la puissance moyenne émise par la source est liée à la valeur
moyenne du vecteur de Poynting 〈Si〉 · ex = 〈Pw〉/(4πr2). Par conséquent, on obtient donc

〈P 〉 = 2〈Si〉 · ex

c
= ε0E

2
0,i. (51)
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(e) Déterminer le rayon limite Rlim d’une sphère métallique pour lequel celle-ci pourrait être éjectée
du système solaire, en tenant compte de la pression de radiation. On suppose que le Soleil émet
un rayonnement d’une puissance Pw. La section efficace de la sphère est donnée par πR2.
La sphère métallique est soumise à deux forces :

— la force de gravité : Fg = −(GMm/r2) ex, où M est la masse du Soleil et m la masse
de la sphère,

— la force produite par la pression de radiation : Fp = (PwR
2/2r2c) ex, où R est le

rayon de la sphère.
La 2e loi de Newton donne :

ma = Pw

2πr2c
πR2 − GMm

r2 . (52)

Pour que la sphère soit éjectée du système solaire, il faut donc que a > 0, ce qui permet de
poser une condition sur son rayon limite R > Rlim,

PwR
2

2r2c
− GMm

r2 > 0 =⇒ Rlim =
√

2GcMm

Pw
. (53)
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