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Corrigé 6 : Ondes stationnaires et diffraction

1 Figures de Chladni sur une plaque carrée

Les figures de Chladni sont des motifs élégants pouvant étre
observés sur une plaque en vibration. Celles-ci correspondent
aux modes propres de vibration de la plaque. Quand certains
de ces modes sont excités, la poudre placée sur la plaque
se concentrera alors aux points correspondant aux nceuds
des ondes stationnaires excités par la vibration. On souhaite
décrire un modele simple de ces figures de Chladni. Pour ce
faire, on considere une plaque rectangulaire de dimensions
L, et L,. On va tout d'abord considérer que les vibrations
respectent I'équation d'onde. La définition des conditions
aux bords de la plaque n'est pas évidente. Par simplicité, on
va considérer que la déformation principale de la plaque est
une déformation sous forme de cisaillement. Pour ce type de
déformation, la pente de la déformation doit étre nulle au
bord dans la direction perpendiculaire au bord, c'est-a-dire
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(a) En utilisant la méthode de séparation des variables, dériver les modes propres de la plaque.
L’équation d’onde en deux dimensions est donnée par :
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(1)

dont les conditions aux bords sont données par les équations (k). Les conditions initiales

peuvent étre écrites de maniere générale comme :

¢($7y70) :f(l',y) et %f(x,y,()) :g(x,y).

(2)

En posant que ¢(z,y,t) = X(x)Y (y)T(t) et en injectant cette expression dans 1’équation
d’onde (1), il est possible de réécrire I’équation différentielle de sorte a isoler chaque variable :

T't) _ o X"(z)  Y"(y) = —u?(k* + %) = —w?
6~ (X o))~ =

On obtient donc trois équations différentielles pour les fonctions X (), Y (y) et T'(¢t) :
X"(z) + K2 X (2) = 0,

Y"'(y) +1*Y (y) =0,
T"(t) + W?T(t) = 0.

(3)

(4)

Dans I’expression (4), on note que I'on a imposé k, [, w € R, tel que —k2, =12, —w? < 0.
Cela s’explique car une constante positive ne permet pas d’obtenir une solution compatible
avec les conditions aux bords décrites en (x). En effet, considérons par exemple I’équation



X"(x) —m?X(x) = 0. La solution générale de cette équation est donnée par X(z) =
Ae™® + Be~™. En utilisant les conditions aux bords (x), on observe alors :

?;i((),y,t)zo — X'(0)=m(A-B)=0 = A=B, (5)
gd) (L,y,t) =0 = 2'(L,) = mA(e™s — e7™L+) = 9m A sinh(mL,) = 0. (6)

Cette derniere égalité n’est possible que si m = 0, ce qui est contradictoire.
Par conséquent, on résout les équations harmoniques obtenues en (4) et on obtient les
formes générales suivantes :
X(z) = Ay sin(kzx) + B, cos(kx),
Y (y) = Aysin(ly) + By cos(ly), (7)
T(t) = A; cos(wt) + By sin(wt).
En suivant un raisonnement similaire & celui réalisé ci-dessus, on obtient une condition pour

les coefficients A, B, Ay et By. On raisonne pour X (z) et de méme pour Y (y) puisque
les conditions aux bords sont similaires :

gw(o,y,t):o — X'(0)=kAy =0 = A, =0, 8)
gqi(Lm,y, t)=0 = X'(L,) = —kB,sin(kL,) = 0. 9)

La derniere égalité impose donc que kL, = nw pour que B, soit non nul. Par conséquent,
on a que k, = nn/L, et de méme, l,,, = mn/L, oun et m sont des entiers. La fréquence
angulaire w peut étre écrite en fonction de n et m, éq.

Wh,m = uy/ k2 + 12, = um/ L2 (10)

La forme générale des modes propres est donc donnée par 'expression suivante :

¢n,m(l’, Y, t) = COS(WZTJ:

x

) cos<mL7ry> [Apm c08(wWn,mt) + Bup,m sin(wp,mt)], (11)
y

ou on a rassemblé les constantes A, ., = Aén)Aém)Agn’m) et By, = Aé”)Agm) B,Sn’m) pour
simplifier les expressions. On peut finalement distinguer les casoum #n=0oun #m =0
et le cas ou n =m = 0. Les cas m # n = 0, respectivement n # m = 0, correspondent aux
modes dont la perturbation est constante le long 1’axe x, respectivement ’axe y. Le cas
particulier ou n = m = 0 correspond au cas trivial ou le mode propre correspond a une
perturbation constante, c.-a-d. ¥ 0(x,y,t) = Ago. La solution recherchée est en général
formée d’une combinaison des modes propres et s’écrit :

wOO —|- Z wom x y, + Z Z wn,m(wvyvt)‘ (12)

n=1m=1

Y(z,y,t) =

Les facteurs 1/2 et 1 / 4 sont introduits afin que les définitions des coefficients donnés ci-
dessous soient valides pour tous n et m. Ces coefficients A,, ., et By, », se calculent de la
fagon suivante :

2 92 Ly pL,
Apm = L. L, A fa, y)cos<nL7rx> cos(nZ/y> dx dy, (13)

/ / g(z,y cos<mm) cos(mwy) dx dy. (14)
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(b) Quels motifs de Chladni les modes propres trouvés donneraient-ils ? Commenter avec les résultats
présentés ci-contre.

Les noeuds des modes propres correspondent aux points ot ¢y m(z,y,t) = 0 pour tout
temps t. En utilisant I'expression pour v, on en déduit que les noeuds correspondent a
des lignes verticales et horizontales dont le nombre et la position dépendent de n et de m,

L, /1
cos(ngf> —0) — ;= ;(2 —H’), aveci =0, 1, ..., n, (15)
L, (1
cos(nzzy) =0 = y; = 77:1:<2 +j>7 avec 7 =0, 1, ..., m. (16)

Ceci veut dire que les lignes nodales des modes propres trouvées en (a) correspondent a des
motifs en grille. A premiere vue, on observe qu’il y a des différences majeures avec les figures
de Chladni obtenues expérimentalement (cf. figure). Ceci est dii & deux raisons principales :

1. L’équation d’onde considérée n’est en réalité pas adéquate pour décrire la physique
des vibrations d’une plaque. Il faudrait plutét considérer une équation différentielle
différente, de la forme suivante :

0?1
—— = AV
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2. Les conditions aux bords libres sont en réalité bien plus complexes a décrire. En effet,

la forme exacte de ces conditions aux bords est donnée par :

Py Py Py 0%

92 + I/ay2 = 93 +(2-v) 00 0, pourz=0,L, (17)

0%u 0?u  Bu O3u

a5 tro s 3 + ( V)GxQ(‘)y 0, poury=0,L, (18)
Ou _ ins 2,y € {0, L} (19)
oy0z ~ aux coins x,y ,L}.

2 Diffraction par un trou circulaire

La diffraction par un trou circulaire produit ce qu'on appelle une tache d'Airy. Cette tache est

notamment la cause d'une limite de résolution angulaire des instruments optiques. Dans cet exercice,

on souhaite décrire la figure de diffraction produite par un trou circulaire de rayon R, illuminé par

une onde plane incidente de longueur A = 27 /k, placé a une distance d d'un écran

(a) En supposant que, selon le principe de Huygens, chaque élément de surface du trou circulaire
émet une onde sphérique d’amplitude &y, montrer que I'amplitude totale de I'onde sur un point P
de I'écran est donnée par :

X2 4+vy? X Y
EX)Y) = %Oexp(i(k:d — wt)) exp (zk;i) / exp(—ik‘x;li_y> dz dy,
trou

ou (X,Y) et (x,y) sont, respectivement, les coordonnées du point P sur I'écran et d'un point
sur la surface du trou. Faire les hypothéses x, y, X, Y < d (approximation de Fraunhofer),
r K X et y <Y pour dériver ce résultat.

On note un point P sur ’écran et on suppose que chaque élément de surface dz dy, noté
M, du trou est émetteur d’une onde sphérique d’amplitude &y (principe de Huygens). On
dénote de maniere générale les coordonnées du point P par (X, Y, d) et celles de I’élément



de surface M par (z,y,0). La distance entre ces deux points est donnée par :

Ar(z,y, X,Y) = [|[MP|| = /(X —2)2 + (Y — 9)? + d?

(20)

= 22 2 X2 E Y2 22X 4 yY).

Puisque I’écran est considéré suffisamment loin, on a donc que z, y, X, Y < d.

X +yY 2?24+ X242 4+Y?
Ar(z,y, X,Y) ~ d(l -3 + 52 ) (21)
De plus, en utilisant les hypotheses z, y, X, Y < d, x < X et y< Y on a:
X +yY  X24Y?

Ar(z,y, X,Y) =~ d(l - 2 + 5 > (22)

En tenant compte de ’hypothese que chaque élément de surface dx dy est émetteur d’une
onde sphérique de méme amplitude &y, 'amplitude totale de I’onde au point P est donnée
par I’expression suivante :

E(X, Y) _ / giei(kAr(z,y,X,Y)—wt) dz dy. (23)
trou AT

Par simplicité, on ne considére que le terme &y/Ar peut étre approximé a l'ordre 0 par &y/d

afin de considérablement simplifier les calculs. Cette approximation peut étre justifiée de

maniere similaire a celle présentée a 1’exercice 1, série 4, sur les fentes de Young décalées.

En remplagant I'expression de Ar dans ’exponentielle, on trouve finalement :

, X% 4+Y? X +yY
EX)Y) = %Oez(kd*”t) exp (zk%) / exp (—zkx;y) dz dy. (24)
trou

En utilisant des coordonnées polaires, 7 = v/ X2 + Y2, démontrer que I'expression de I'intensité
moyenne est donnée par :
2J1 (krR/d)\?
). (1

I(r) = IO( krR/d

Dans le cas d’un trou circulaire, il est intéressant de considérer des coordonnées polaires
pour les coordonnées (z,y) et (X,Y’). On paramétrise donc P par les coordonnées (r,6) et
M par (p,®) et on utilise le fait que z, y, X, Y < d. La distance séparant M de P, Ar,
s’écrit donc :

Ar:\/:U2+y2+X2+Y2—|—d2—2(:UX—|—yY) (25)
= \/,02 + 12+ d? — 2(pr cos ¢ cos O + prsin ¢ sin 6) (26)
~ \/d2 — 2rpcosf cos ¢ — 2rpsin 0 sin ¢. (27)

En utilisant les identités trigonométriques données dans I’énoncé, on peut simplifier ’ex-
pression :

Ar =~ d[l - Z—g cos(f — gb)] (28)
En considérant I'intégrale sur la surface du trou circulaire, l'intégrale (23) devient :
. R 2
£(r,0) = %%Z(’fd*wt) / dpp | dpexp [—ikij cos(6 — ¢)|. (29)
0 0



En effectuant le changement de variable 7/2 4+ z = ¢ — 6 et en translatant les bornes
d’intégrations (ce que 'on peut faire car la fonction est périodique de période 27), on
obtient une intégrale de la forme de la fonction de Bessel,

) R T
&(r,0) = @ez(kd—wt) / dpp/ dzexp {—ikm COS<7T + Z)}
d 0 - d 2

. R ™
= %el(kd_“’t) / dpp / dz exp (zk:’; sin z) (30)
0 -7

_ 2780 i(kd—wt) / f ("”“P>
= e A dp pJo 7 )

En faisant le changement de variable u = krp/d et en utilisant la relation de récurrence
donnée dans I’énoncé, on a

R krp d\? [krR/d dR . (krR
| pp‘]"( d) (kr) f o kr‘]1< d ) (31)

On obtient, en l'injectant dans (30), que :

_ &0A i(ka—wn) 2J1(kTR/d)

o)== krR/d

(32)

avec A = mR? 'aire de la fente circulaire. On remarque notamment que le facteur 2 est
rassemblé avec la fonction de Bessel puisque

2
lim N (x)
z—0 X

=1, (33)
L’intensité I(r) étant proportionnelle au carré de 'amplitude |£|?,

2
-0

ot Iy o |9 A/d|? est I'intensité au centre de I’écran.

(34)

L'équation () ci-dessus correspond a I'intensité d'une tache d'Airy. Cette figure de diffraction est

rencontrée dans les systemes optiques possédants une géométrie circulaire et en limite le pouvoir de

résolution angulaire.

(c) Quelle condition entre D = 2R, le diamétre du trou, et \ est nécessaire a |'observation d'une
figure de diffraction ?

On commence par exprimer r = Arsin ¢ & dsin . Par conséquent, 'intensité moyenne sur
I’écran est donnée par :
2J1 (kR sin ¢)\?
L = 1o (2GR
kRsin ¢
La condition pour observer une figure de diffraction est qu’il existe un angle ¢ tel que
kRsinp =~ kRp > x1, ou z1 est le premier zéro de la fonction Jj. Si ’écran est trop
étroit, tel qu’un point en ¢ tombe au-dela du bord de I’écran, on ne verra pas de figure
d’interférence. On obtient que :

(35)

D A A
kR(p:ﬂTgOle — 902%5%1.225. (36)

Pour un écran suffisamment large, on aura plutét que kR > |kRsin ¢| = x1, et on obtient



alors une condition entre la taille de la fente et la longueur d’onde incidente,

D x

kR==">2 = D> “Ia~ 1.22 (37)
w

Cette condition est similaire, & un facteur pres, a celle trouvée pour la diffraction par une

fente rectangulaire de ’exercice 2 de la série 4.

On considére deux sources séparées d’un angle ¥ < 1 par rapport au trou, produisant chacune
une tache d'Airy sur I'écran, comme illustré sur la figure ci-dessus. Discuter des conditions
sur I'angle ¥ afin que les sources soient distinguables sur I'écran, c'est-a-dire que I'on puisse
distinguer leurs taches d'Airy respectives.

On s’intéresse désormais a caractériser le pouvoir de résolution angulaire d’un instrument
optique. Pour ce faire, on considere désormais deux sources lumineuses incidentes sur la
fente, séparées d’un angle ¥ < 1. Les taches d’Airy produites sur ’écran par ces deux
sources sont donc séparées d’'une distance 6 = Arsind = d a leurs pics, Fig. 1.

. ?
\

6

‘ Figure 1 — Deux sources séparées d’un angle
¥ produisent chacune une tache d’Airy. L’in-

tensité observée sur 1’écran correspond a la

somme de ces deux taches. Le pouvoir de réso-

lution angulaire est caractérisé par la capacité

a distinguer les deux taches.

RISBEE

Plusieurs critéres existent afin de définir le pouvoir de résolution angulaire d’un instrument
optique. Ils se résument a définir une limite de séparation angulaire minimale ¥ entre
les deux sources. Le critere de Rayleigh consiste a dire que la distance minimale entre
deux sommets d’une tiche d’Airy doit étre de la valeur du premier point d’annulation.
Cela donne donc que kRsindqit ~ kRYit = x1. On inverse cette relation pour obtenir
Uerit = 1.22)\/D. Deux sources peuvent donc étre distinguées si leur séparation angulaire ¢
est suffisante,

A
9 > it = 1.225, (critere de Rayleigh). (38)

Un deuxieme critere, le critere de Schuster, consiste simplement & dire que le premier point
d’annulation des deux taches doivent coincider, cela revient donc a multiplier par deux le
critere de Rayleigh, c’est-a-dire :

A
V> Vit = 2.445, (critere de Schuster). (39)

Finalement, le critere de Sparrow stipule que le premier point d’inflexion des deux taches
d’Airy coincide,
A
¥ > Derit, = 1.0257 (critére de Sparrow). (40)

La figure ci-dessous illustre la différence entre ces trois criteres.



a) Critere de Rayleigh b) Critére de Schuster c¢) Critere de Sparrow

3 Trajectoire dans un milieu non homogeéne (revisitée)

On considere une situation analogue a I'exercice 3, série 4. Un milieu non homogéne posséde un
indice de réfraction variable n(y) le long de la direction y. Comme illustré sur la figure, un rayon de
lumiére entre dans le milieu. On note 6 I'angle entre la trajectoire du rayon et I'axe y.

v A
d n
S Ilt y
\ ; |
) ! | 0. dyi+
y1+L - H(Yﬁl) 9.‘ ‘/d‘ el 1 # dy 1
ELD ; o § ax
ei— ‘ [
gl _ n(yi1) | # dyi
\ |
\ |
\ ‘ |
wl | () e?ﬂ |4 ayo
| _x
Xo
(a) Montrer que I'équation de la trajectoire du rayon est :
Yy dy/
z = x(y) = z0 + , (1)
o V12(y')/C% =1
ou C est une constante a déterminer.
On divise le milieu en couches N infinitésimales d’épaisseur dy;, i =0, ..., N. A chacune de

ces couches correspond un indice de réfraction constant n(y;). On définit 6; I'angle du rayon
lumineux dans la couche dy;. En accord avec la loi de Snell-Descartes pour la réfraction, on
peut alors écrire :

n(y;)sind; =C, =0, ..N. (41)

De plus :
dx; tn sin 0; sin 0; C/n(y;)
= no, = = = .
dy; ' cost; V1—sin?6; 1—C?/n(y;)?

En passant a la limite :

(42)

dx 1

&y~ aGPIeT T

En intégrant de yo jusqu’a y quelconque :
Y dy/

W=t | e

(43)




(b) On souhaite calculer la trajectoire de la lumiére pour un milieu ot I'indice de réfraction est
linéaire, c.-a-d. n(y) = ng + ay. On suppose le point de départ en zp = yo = 0 et que la lumiére
est initialement paralléle a I'axe x. Donner une expression de la trajectoire y(z). Calculer le
rayon de courbure au point zg = yg = 0. Comparer ce résultat a celui de |'exercice 3, série 4.
Indications : dcosh™'(z)/dr = 1/v/22 — 1. La formule du rayon de courbure pour une
trajectoire y(z) est donnée par :

(1+ (¢ ()22

y"(x) ' ®)
On détermine la constante C en utilisant les conditions initiales. Puisque la lumiere est
parallele & 'axe x, en y = 0, on a que C = ng. On note que, bien que le rayon soit
initialement perpendiculaire au gradient d’indice de réfraction n(y), sa trajectoire subira
toutefois une déviation par le principe de Huygens (voir série 4, exercice 3). Par conséquent,
en utilisant I'expression (43) et 'indice de réfraction donné par n(y) = ng + ay dans laquelle
on impose (xo,y0) = (0,0),

p(z) =

0= = | Tt -
0 \/(no +ay')?/nE -1 o V(1 +ay/ne)* - (44)
1+ay/no 1+ay/n
= _dz = @cosh_l(z)‘ W0 — 10 cosh™ ( + ay)’
a J1 z2 -1 a 1 a nQ

ot on a changé de variable pour simplifier l'intégration, z = 1 + ay/ng. La trajectoire y(z)
du rayon lumineux est donc donnée par :

y(x) = % (cosh(iﬁ) — 1>. (45)

En utilisant I’expression (45) de y(z) et I’expression du rayon de courbure (§) donnée en
indication, on obtient :

1 + sinh? 3/2
Y (z) = Sinh<ax>, y'(z) = aCOSh<a:1:> = p(z) = @( + sinh*(az/no))
no no a

no

cosh(ax/ngp) (46)

Evalué en z = 0, le rayon de courbure donne p(0) = no/a. Cette solution est égale a celle
obtenue en exercice 3, série 4, ou le rayon de 'arc de cercle est donnée par R(x) = n(x)/a.

Le phénoméne de mirages est également dii a un indice de réfraction inhomogéne dans les couches
atmosphériques. L'indice de réfraction dépend de la pression, de la température et de I'humidité.
Pour simplifier, on considére que I'indice de réfraction est donné par la relation n(y) = ng\/1 + ay.
(c) Dériver la forme générale de la trajectoire y(x) d'un rayon lumineux qui entre dans le milieu en
xo = yo = 0 avec un angle 6y € 0, 7|.
On définit 0y angle initial du rayon lumineux par rapport a ’axe y. En posant, éq. (41),
que C = n(y)sin(6(y)) = nosin(fp) et en utilisant ’éq. (43), on obtient donc I'intégrale
suivante avec xg =yg =0 :

Ltay NV [ (eoon+ -2 e
= —1 dy = t° 0 dy = ---
T / (81112 0o > Y 0 (CO o+t sin? 90) Y

.2
= M (\/cot2 0o + — cot 00>,

a

(47)

avec la fonction cotangente cot § = 1/tan 6. En exprimant (47) en fonction de x, on obtient



alors la forme générale de ’équation de la trajectoire d’un rayon lumineux pour un indice

de réfraction n(y) = no/1 + ay :

2
y(@) > + 2 cot b (48)

( z
=a

2sin 00
La trajectoire observée est donc parabolique.

En quoi cette trajectoire permet-elle d'expliquer le phénoméne de mirage ? Considérer pour cela
une source lumineuse en (zg,y0) = (0,0) qu'un observateur regarde depuis (x,y) = (L,0).
Discuter I'influence du signe du paramétre a sur le type de mirage observé.

On note tout d’abord que l'indice de réfraction de l'air peut étre approximé comme
n =1+ 0(p/patm)/(T/Tatm), ol § < 1 est une constante positive. Un milieu chaud aura
donc un indice de réfraction plus faible qu’un milieu froid.

Associons x & la direction horizontale et y & la direction verticale par rapport au sol. Le
signe de a, c’est-a-dire la pente du profil d’indice de réfraction, détermine ’orientation de
la parabole. Si n augmente avec altitude (sol chaud, air froid), alors a est positif et la
parabole est convexe. Inversement, quand n diminue avec laltitude (sol froid, air chaud), a
est négatif et la parabole est concave. On distingue donc deux types de mirages : le mirage
supérieur (a < 0) et inférieur (a > 0).

Dans le cas ou n augmente avec l’altitude, le chemin optique entre la source lumineuse
et 'observateur est une parabole convexe. L’observateur percevra donc une image de la
source comme si celle-ci était située au-dessous de sa position réelle. Ces mirages inférieurs,
aussi appelés mirages « chauds », sont par exemple observés sur les routes lors de fortes
températures : on a typiquement I'impression de voir des « flaques » bleutées (le ciel) sur la
route. Les mirages supérieurs se forment lorsque le chemin optique est une parabole concave
(lorsque n diminue avec l’altitude) et sont communément observés dans les régions polaires
ou le sol gele et peut étre plus froid que ’air au-dessus de celui-ci. L’observateur percevra
alors des mirages situés au-dessus de la position réelle de la source.

y(x) = +|a|x?/(2sin?0y) F xcotBy (6p=0.17m)

1.5 A

1.0

0.5 A1

0.0 A

la] - y(x)

_05 N //

—1.0 + 4
Pid —_— +(a>0)
—-1.541 PR —(a<0)

0.0 0.8 1.0 1.2

Figure 2 — Hlustration des trajectoires suivies par deux rayons passant simultanément par
(x0,90) = (0,0) et (z,y) = (L,0). Les rayons lumineux (traits plein) suivent des paraboles
données par ’équation (48). L’observateur oriente son regard le long des trajectoires en
traitillé, d’ou la dénomination de mirages inférieurs (a > 0, regard vers le sol) et supérieurs



(a < 0, regard vers le ciel).

eng® . : o " .
W (e) Le principe de Fermat affirme que la trajectoire suivie par la lumiére entre deux points A et B
est telle que le temps de trajet soit minimal. Montrer que minimiser le chemin optique L op est
équivalent a minimiser le temps de trajet,

B
Lag = / nds,
A

ou n est l'indice de réfraction du milieu. En dériver I'équation (1) pour la trajectoire.

La distance ds parcourue sur la trajectoire par la lumiére en un temps dt est donnée par :
c

ds =vdt = —dt. (49)
n

Par conséquent, le temps de trajet T4p nécessaire est donné par :

Bpds 1 B 1
TAB:/ sz/ndsszAB. (50)
A c cJA C

Il est donc justifié d’affirmer que minimiser le temps de trajet revient a minimiser le chemin
optique.

On cherche désormais a montrer I’équivalence entre la minimisation de (50) et I’équation ().
L’intégrale donnée en (50) est une intégrale curviligne qui, dans le cas ou la trajectoire est
paramétrisée par z(y), et en utilisant ds = v/dz? + dy? = /1 + (dz/ dy)? dy, s’écrit :

Lag = /ABn(y)\/ L+ 2'(y)? dy = /jﬁ(yw(y),w’(y)) dy. (51)

Afin de minimiser la quantité L4p, on applique I’équation d’Euler-Lagrange :

d (0L 0L d [ n(y)(y) \
wlor)=5 = dx<1+xf<y>> =0 52)

En intégrant (52) et en introduisant une constante C,

n(y)>'(y)
1+ 2/(y)?

=C = (n*(y) —CH2'(y)*=C* = = (53)

Y dy’
W= | e
o Vn*(y)/C?—1
La derniére expression correspond exactement au résultat trouvé en point (a). De plus, la
constante C' est également analogue. En effet, on remarque que 2/(y) = dz/ dy = tan 6(y).
De fait, cela donne que :

C = _n)*'(y) — n(y)M = n(y)sinf(y). (54)

V1+a/(y)? 1+ tan? f(y)

Ceci redonne donc le résultat précédemment obtenu par la loi de Snell-Descartes, éq. (41),
et permet de conclure sur ’équivalence des deux méthodes.
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