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Corrigé 6 : Ondes stationnaires et diffraction

1 Figures de Chladni sur une plaque carrée
Les figures de Chladni sont des motifs élégants pouvant être
observés sur une plaque en vibration. Celles-ci correspondent
aux modes propres de vibration de la plaque. Quand certains
de ces modes sont excités, la poudre placée sur la plaque
se concentrera alors aux points correspondant aux nœuds
des ondes stationnaires excités par la vibration. On souhaite
décrire un modèle simple de ces figures de Chladni. Pour ce
faire, on considère une plaque rectangulaire de dimensions
Lx et Ly. On va tout d’abord considérer que les vibrations
respectent l’équation d’onde. La définition des conditions
aux bords de la plaque n’est pas évidente. Par simplicité, on
va considérer que la déformation principale de la plaque est
une déformation sous forme de cisaillement. Pour ce type de
déformation, la pente de la déformation doit être nulle au
bord dans la direction perpendiculaire au bord, c’est-à-dire

∂ψ

∂x
(0, y, t) = ∂ψ

∂x
(Lx, y, t) = ∂ψ

∂y
(x, 0, t) = ∂ψ

∂y
(x, Ly, t) = 0, x ∈ [0, Lx], y ∈ [0, Ly]. (∗)

(a) En utilisant la méthode de séparation des variables, dériver les modes propres de la plaque.
L’équation d’onde en deux dimensions est donnée par :

∂2ψ

∂t2
= u2∇2ψ = u2

(
∂2ψ

∂x2 + ∂2ψ

∂y2

)
. (1)

dont les conditions aux bords sont données par les équations (∗). Les conditions initiales
peuvent être écrites de manière générale comme :

ψ(x, y, 0) = f(x, y) et ∂ψ

∂t
(x, y, 0) = g(x, y). (2)

En posant que ψ(x, y, t) = X(x)Y (y)T (t) et en injectant cette expression dans l’équation
d’onde (1), il est possible de réécrire l’équation différentielle de sorte à isoler chaque variable :

T ′′(t)
T (t) = u2

(
X ′′(x)
X(x) + Y ′′(y)

Y (y)

)
= −u2(k2 + l2) = −ω2. (3)

On obtient donc trois équations différentielles pour les fonctions X(x), Y (y) et T (t) :
X ′′(x) + k2X(x) = 0,
Y ′′(y) + l2Y (y) = 0,
T ′′(t) + ω2T (t) = 0.

(4)

Dans l’expression (4), on note que l’on a imposé k, l, ω ∈ R, tel que −k2, −l2, −ω2 ≤ 0.
Cela s’explique car une constante positive ne permet pas d’obtenir une solution compatible
avec les conditions aux bords décrites en (∗). En effet, considérons par exemple l’équation
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X ′′(x) − m2X(x) = 0. La solution générale de cette équation est donnée par X(x) =
Aemx +Be−mx. En utilisant les conditions aux bords (∗), on observe alors :

∂ψ

∂x
(0, y, t) = 0 =⇒ X ′(0) = m(A−B) = 0 =⇒ A = B, (5)

∂ψ

∂x
(L, y, t) = 0 =⇒ x′(Lx) = mA(emLx − e−mLx) = 2mA sinh(mLx) = 0. (6)

Cette dernière égalité n’est possible que si m = 0, ce qui est contradictoire.
Par conséquent, on résout les équations harmoniques obtenues en (4) et on obtient les
formes générales suivantes :

X(x) = Ax sin(kx) +Bx cos(kx),
Y (y) = Ay sin(ly) +By cos(ly),
T (t) = At cos(ωt) +Bt sin(ωt).

(7)

En suivant un raisonnement similaire à celui réalisé ci-dessus, on obtient une condition pour
les coefficients Ax, Bx, Ay et By. On raisonne pour X(x) et de même pour Y (y) puisque
les conditions aux bords sont similaires :

∂ψ

∂x
(0, y, t) = 0 =⇒ X ′(0) = kAx = 0 =⇒ Ax = 0, (8)

∂ψ

∂x
(Lx, y, t) = 0 =⇒ X ′(Lx) = −kBx sin(kLx) = 0. (9)

La dernière égalité impose donc que kLx = nπ pour que Bx soit non nul. Par conséquent,
on a que kn = nπ/Lx et de même, lm = mπ/Ly où n et m sont des entiers. La fréquence
angulaire ω peut être écrite en fonction de n et m, éq. (3) :

ωn,m = u
√
k2

n + l2m = uπ

√
n2

L2
x

+ m2

L2
y

. (10)

La forme générale des modes propres est donc donnée par l’expression suivante :

ψn,m(x, y, t) = cos
(
nπx

Lx

)
cos
(
mπy

Ly

)[
An,m cos(ωn,mt) +Bn,m sin(ωn,mt)

]
, (11)

où on a rassemblé les constantes An,m = A
(n)
x A

(m)
y A

(n,m)
t et Bn,m = A

(n)
x A

(m)
y B

(n,m)
t pour

simplifier les expressions. On peut finalement distinguer les cas où m 6= n = 0 ou n 6= m = 0
et le cas où n = m = 0. Les cas m 6= n = 0, respectivement n 6= m = 0, correspondent aux
modes dont la perturbation est constante le long l’axe x, respectivement l’axe y. Le cas
particulier où n = m = 0 correspond au cas trivial où le mode propre correspond à une
perturbation constante, c.-à-d. ψ0,0(x, y, t) = A0,0. La solution recherchée est en général
formée d’une combinaison des modes propres et s’écrit :

ψ(x, y, t) = ψ0,0
4 + 1

2

∞∑
n=1

ψn,0(x, y, t) + 1
2

∞∑
m=1

ψ0,m(x, y, t) +
∞∑

n=1

∞∑
m=1

ψn,m(x, y, t). (12)

Les facteurs 1/2 et 1/4 sont introduits afin que les définitions des coefficients donnés ci-
dessous soient valides pour tous n et m. Ces coefficients An,m et Bn,m se calculent de la
façon suivante :

An,m = 2
Lx

2
Ly

∫ Lx

0

∫ Ly

0
f(x, y) cos

(
nπx

Lx

)
cos
(
mπy

Ly

)
dx dy, (13)

Bn,m = 2
Lx

2
Ly

∫ Lx

0

∫ Ly

0

1
ωm,n

g(x, y) cos
(
nπx

Lx

)
cos
(
mπy

Ly

)
dx dy. (14)
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(b) Quels motifs de Chladni les modes propres trouvés donneraient-ils ? Commenter avec les résultats
présentés ci-contre.
Les nœuds des modes propres correspondent aux points où ψn,m(x, y, t) = 0 pour tout
temps t. En utilisant l’expression pour ψn,m, on en déduit que les nœuds correspondent à
des lignes verticales et horizontales dont le nombre et la position dépendent de n et de m,

cos
(
nπx

Lx

)
= 0 =⇒ xi = Lx

n

(1
2 + i

)
, avec i = 0, 1, ..., n, (15)

cos
(
mπy

Ly

)
= 0 =⇒ yj = Ly

m

(1
2 + j

)
, avec j = 0, 1, ..., m. (16)

Ceci veut dire que les lignes nodales des modes propres trouvées en (a) correspondent à des
motifs en grille. À première vue, on observe qu’il y a des différences majeures avec les figures
de Chladni obtenues expérimentalement (cf. figure). Ceci est dû à deux raisons principales :

1. L’équation d’onde considérée n’est en réalité pas adéquate pour décrire la physique
des vibrations d’une plaque. Il faudrait plutôt considérer une équation différentielle
différente, de la forme suivante :

∂2ψ

∂t2
= A∇4ψ.

2. Les conditions aux bords libres sont en réalité bien plus complexes à décrire. En effet,
la forme exacte de ces conditions aux bords est donnée par :

∂2ψ

∂x2 + ν
∂2ψ

∂y2 = ∂3ψ

∂x3 + (2 − ν) ∂3ψ

∂x∂y2 = 0, pour x = 0, L, (17)

∂2u

∂y2 + ν
∂2u

∂x2 = ∂3u

∂y3 + (2 − ν) ∂3u

∂x2∂y
= 0, pour y = 0, L, (18)

∂2u

∂y∂x
= 0, aux coins x, y ∈ {0, L}. (19)

2 Diffraction par un trou circulaire
La diffraction par un trou circulaire produit ce qu’on appelle une tâche d’Airy. Cette tâche est
notamment la cause d’une limite de résolution angulaire des instruments optiques. Dans cet exercice,
on souhaite décrire la figure de diffraction produite par un trou circulaire de rayon R, illuminé par
une onde plane incidente de longueur λ = 2π/k, placé à une distance d d’un écran
(a) En supposant que, selon le principe de Huygens, chaque élément de surface du trou circulaire

émet une onde sphérique d’amplitude ξ0, montrer que l’amplitude totale de l’onde sur un point P
de l’écran est donnée par :

ξ(X,Y ) = ξ0
d

exp
(
i(kd− ωt)

)
exp

(
ik
X2 + Y 2

2d

)∫
trou

exp
(

−ikxX + yY

d

)
dx dy,

où (X,Y ) et (x, y) sont, respectivement, les coordonnées du point P sur l’écran et d’un point
sur la surface du trou. Faire les hypothèses x, y, X, Y � d (approximation de Fraunhofer),
x � X et y � Y pour dériver ce résultat.
On note un point P sur l’écran et on suppose que chaque élément de surface dx dy, noté
M , du trou est émetteur d’une onde sphérique d’amplitude ξ0 (principe de Huygens). On
dénote de manière générale les coordonnées du point P par (X,Y, d) et celles de l’élément
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de surface M par (x, y, 0). La distance entre ces deux points est donnée par :

∆r(x, y,X, Y ) = ‖MP‖ =
√

(X − x)2 + (Y − y)2 + d2

=
√
x2 + y2 +X2 + Y 2 + d2 − 2(xX + yY ).

(20)

Puisque l’écran est considéré suffisamment loin, on a donc que x, y, X, Y � d.

∆r(x, y,X, Y ) ≈ d

(
1 − xX + yY

d2 + x2 +X2 + y2 + Y 2

2d2

)
. (21)

De plus, en utilisant les hypothèses x, y, X, Y � d, x � X et y � Y on a :

∆r(x, y,X, Y ) ≈ d

(
1 − xX + yY

d2 + X2 + Y 2

2d2

)
. (22)

En tenant compte de l’hypothèse que chaque élément de surface dx dy est émetteur d’une
onde sphérique de même amplitude ξ0, l’amplitude totale de l’onde au point P est donnée
par l’expression suivante :

ξ(X,Y ) =
∫

trou

ξ0
∆re

i(k∆r(x,y,X,Y )−ωt) dx dy. (23)

Par simplicité, on ne considère que le terme ξ0/∆r peut être approximé à l’ordre 0 par ξ0/d
afin de considérablement simplifier les calculs. Cette approximation peut être justifiée de
manière similaire à celle présentée à l’exercice 1, série 4, sur les fentes de Young décalées.
En remplaçant l’expression de ∆r dans l’exponentielle, on trouve finalement :

ξ(X,Y ) = ξ0
d
ei(kd−ωt) exp

(
ik
X2 + Y 2

2d

)∫
trou

exp
(

−ikxX + yY

d

)
dx dy. (24)

(b) En utilisant des coordonnées polaires, r =
√
X2 + Y 2, démontrer que l’expression de l’intensité

moyenne est donnée par :

I(r) = I0

(2J1(krR/d)
krR/d

)2
. (†)

Dans le cas d’un trou circulaire, il est intéressant de considérer des coordonnées polaires
pour les coordonnées (x, y) et (X,Y ). On paramétrise donc P par les coordonnées (r, θ) et
M par (ρ, φ) et on utilise le fait que x, y, X, Y � d. La distance séparant M de P , ∆r,
s’écrit donc :

∆r =
√
x2 + y2 +X2 + Y 2 + d2 − 2(xX + yY ) (25)

=
√
ρ2 + r2 + d2 − 2(ρr cosφ cos θ + ρr sinφ sin θ) (26)

≈
√
d2 − 2rρ cos θ cosφ− 2rρ sin θ sinφ. (27)

En utilisant les identités trigonométriques données dans l’énoncé, on peut simplifier l’ex-
pression :

∆r ≈ d

[
1 − rρ

d2 cos(θ − φ)
]
. (28)

En considérant l’intégrale sur la surface du trou circulaire, l’intégrale (23) devient :

ξ(r, θ) = ξ0
d
ei(kd−ωt)

∫ R

0
dρ ρ

∫ 2π

0
dφ exp

[
−ik rρ

d
cos(θ − φ)

]
. (29)
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En effectuant le changement de variable π/2 + z = φ − θ et en translatant les bornes
d’intégrations (ce que l’on peut faire car la fonction est périodique de période 2π), on
obtient une intégrale de la forme de la fonction de Bessel,

ξ(r, θ) = ξ0
d
ei(kd−ωt)

∫ R

0
dρ ρ

∫ π

−π
dz exp

[
−ik rρ

d
cos
(
π

2 + z

)]
= ξ0

d
ei(kd−ωt)

∫ R

0
dρ ρ

∫ π

−π
dz exp

(
ik
rρ

d
sin z

)
= 2πξ0

d
ei(kd−ωt)

∫ R

0
dρ ρJ0

(
krρ

d

)
.

(30)

En faisant le changement de variable u = krρ/d et en utilisant la relation de récurrence
donnée dans l’énoncé, on a∫ R

0
dρ ρJ0

(
krρ

d

)
=
(
d

kr

)2 ∫ krR/d

0
duuJ0(u) = dR

kr
J1

(
krR

d

)
. (31)

On obtient, en l’injectant dans (30), que :

ξ(r, θ) = ξ0A

d
ei(kd−ωt) 2J1(krR/d)

krR/d
. (32)

avec A = πR2 l’aire de la fente circulaire. On remarque notamment que le facteur 2 est
rassemblé avec la fonction de Bessel puisque

lim
x→0

2J1(x)
x

= 1, (33)

L’intensité I(r) étant proportionnelle au carré de l’amplitude |ξ|2,

I(r) = I0

(2J1(krR/d)
krR/d

)2
, (34)

où I0 ∝ |ξ0A/d|2 est l’intensité au centre de l’écran.

L’équation (†) ci-dessus correspond à l’intensité d’une tâche d’Airy. Cette figure de diffraction est
rencontrée dans les systèmes optiques possédants une géométrie circulaire et en limite le pouvoir de
résolution angulaire.
(c) Quelle condition entre D = 2R, le diamètre du trou, et λ est nécessaire à l’observation d’une

figure de diffraction ?
On commence par exprimer r = ∆r sinϕ ≈ d sinϕ. Par conséquent, l’intensité moyenne sur
l’écran est donnée par :

I(ϕ) = I0

(2J1(kR sinϕ)
kR sinϕ

)2
. (35)

La condition pour observer une figure de diffraction est qu’il existe un angle ϕ tel que
kR sinϕ ≈ kRϕ ≥ x1, où x1 est le premier zéro de la fonction J1. Si l’écran est trop
étroit, tel qu’un point en ϕ tombe au-delà du bord de l’écran, on ne verra pas de figure
d’interférence. On obtient que :

kRϕ = πD

λ
ϕ ≥ x1 =⇒ ϕ ≥ x1

π

λ

D
≈ 1.22 λ

D
. (36)

Pour un écran suffisamment large, on aura plutôt que kR ≥ |kR sinϕ| = x1, et on obtient
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alors une condition entre la taille de la fente et la longueur d’onde incidente,

kR = πD

λ
≥ x1 =⇒ D ≥ x1

π
λ ≈ 1.22λ. (37)

Cette condition est similaire, à un facteur près, à celle trouvée pour la diffraction par une
fente rectangulaire de l’exercice 2 de la série 4.

(d) On considère deux sources séparées d’un angle ϑ � 1 par rapport au trou, produisant chacune
une tâche d’Airy sur l’écran, comme illustré sur la figure ci-dessus. Discuter des conditions
sur l’angle ϑ afin que les sources soient distinguables sur l’écran, c’est-à-dire que l’on puisse
distinguer leurs tâches d’Airy respectives.
On s’intéresse désormais à caractériser le pouvoir de résolution angulaire d’un instrument
optique. Pour ce faire, on considère désormais deux sources lumineuses incidentes sur la
fente, séparées d’un angle ϑ � 1. Les tâches d’Airy produites sur l’écran par ces deux
sources sont donc séparées d’une distance δ = ∆r sinϑ ≈ dϑ à leurs pics, Fig. 1.

Figure 1 – Deux sources séparées d’un angle
ϑ produisent chacune une tâche d’Airy. L’in-
tensité observée sur l’écran correspond à la
somme de ces deux tâches. Le pouvoir de réso-
lution angulaire est caractérisé par la capacité
à distinguer les deux tâches.

Plusieurs critères existent afin de définir le pouvoir de résolution angulaire d’un instrument
optique. Ils se résument à définir une limite de séparation angulaire minimale ϑcrit entre
les deux sources. Le critère de Rayleigh consiste à dire que la distance minimale entre
deux sommets d’une tâche d’Airy doit être de la valeur du premier point d’annulation.
Cela donne donc que kR sinϑcrit ≈ kRϑcrit = x1. On inverse cette relation pour obtenir
ϑcrit = 1.22λ/D. Deux sources peuvent donc être distinguées si leur séparation angulaire ϑ
est suffisante,

ϑ ≥ ϑcrit = 1.22 λ
D
, (critère de Rayleigh). (38)

Un deuxième critère, le critère de Schuster, consiste simplement à dire que le premier point
d’annulation des deux tâches doivent coïncider, cela revient donc à multiplier par deux le
critère de Rayleigh, c’est-à-dire :

ϑ ≥ ϑcrit = 2.44 λ
D
, (critère de Schuster). (39)

Finalement, le critère de Sparrow stipule que le premier point d’inflexion des deux tâches
d’Airy coïncide,

ϑ ≥ ϑcrit = 1.02 λ
D
, (critère de Sparrow). (40)

La figure ci-dessous illustre la différence entre ces trois critères.
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a) Critère de Rayleigh b) Critère de Schuster c) Critère de Sparrow

3 Trajectoire dans un milieu non homogène (revisitée)
On considère une situation analogue à l’exercice 3, série 4. Un milieu non homogène possède un
indice de réfraction variable n(y) le long de la direction y. Comme illustré sur la figure, un rayon de
lumière entre dans le milieu. On note θ l’angle entre la trajectoire du rayon et l’axe y.

(a) Montrer que l’équation de la trajectoire du rayon est :

x = x(y) = x0 +
∫ y

y0

dy′√
n2(y′)/C2 − 1

, (‡)

où C est une constante à déterminer.

On divise le milieu en couches N infinitésimales d’épaisseur dyi, i = 0, ..., N . À chacune de
ces couches correspond un indice de réfraction constant n(yi). On définit θi l’angle du rayon
lumineux dans la couche dyi. En accord avec la loi de Snell-Descartes pour la réfraction, on
peut alors écrire :

n(yi) sin θi = C, i = 0, ... N. (41)
De plus :

dxi

dyi
= tan θi = sin θi

cos θi
= sin θi√

1 − sin2 θi

= C/n(yi)√
1 − C2/n(yi)2 . (42)

En passant à la limite :
dx

dy
= 1√

n(y)2/C2 − 1
.

En intégrant de y0 jusqu’à y quelconque :

x(y) = x0 +
∫ y

y0

dy′√
n(y′)2/C2 − 1

. (43)
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(b) On souhaite calculer la trajectoire de la lumière pour un milieu où l’indice de réfraction est
linéaire, c.-à-d. n(y) = n0 +ay. On suppose le point de départ en x0 = y0 = 0 et que la lumière
est initialement parallèle à l’axe x. Donner une expression de la trajectoire y(x). Calculer le
rayon de courbure au point x0 = y0 = 0. Comparer ce résultat à celui de l’exercice 3, série 4.
Indications : d cosh−1(x)/ dx = 1/

√
x2 − 1. La formule du rayon de courbure pour une

trajectoire y(x) est donnée par :

ρ(x) = (1 + (y′(x))2)3/2

y′′(x) . (§)

On détermine la constante C en utilisant les conditions initiales. Puisque la lumière est
parallèle à l’axe x, en y = 0, on a que C = n0. On note que, bien que le rayon soit
initialement perpendiculaire au gradient d’indice de réfraction n(y), sa trajectoire subira
toutefois une déviation par le principe de Huygens (voir série 4, exercice 3). Par conséquent,
en utilisant l’expression (43) et l’indice de réfraction donné par n(y) = n0 +ay dans laquelle
on impose (x0, y0) = (0, 0),

x(y) =
∫ y

0

dy′√
(n0 + ay′)2/n2

0 − 1
=
∫ y

0

dy√
(1 + ay/n0)2 − 1

= · · ·

· · · = n0
a

∫ 1+ay/n0

1

dz√
z2 − 1

= n0
a

cosh−1(z)
∣∣∣1+ay/n0

1
= n0

a
cosh−1

(
1 + ay

n0

)
,

(44)

où on a changé de variable pour simplifier l’intégration, z = 1 + ay/n0. La trajectoire y(x)
du rayon lumineux est donc donnée par :

y(x) = n0
a

(
cosh

(
ax

n0

)
− 1

)
. (45)

En utilisant l’expression (45) de y(x) et l’expression du rayon de courbure (§) donnée en
indication, on obtient :

y′(x) = sinh
(
ax

n0

)
, y′′(x) = a

n0
cosh

(
ax

n0

)
=⇒ ρ(x) = n0

a

(
1 + sinh2(ax/n0)

)3/2

cosh(ax/n0) . (46)

Évalué en x = 0, le rayon de courbure donne ρ(0) = n0/a. Cette solution est égale à celle
obtenue en exercice 3, série 4, où le rayon de l’arc de cercle est donnée par R(x) = n(x)/a.

Le phénomène de mirages est également dû à un indice de réfraction inhomogène dans les couches
atmosphériques. L’indice de réfraction dépend de la pression, de la température et de l’humidité.
Pour simplifier, on considère que l’indice de réfraction est donné par la relation n(y) = n0

√
1 + ay.

(c) Dériver la forme générale de la trajectoire y(x) d’un rayon lumineux qui entre dans le milieu en
x0 = y0 = 0 avec un angle θ0 ∈ ]0, π[.
On définit θ0 l’angle initial du rayon lumineux par rapport à l’axe y. En posant, éq. (41),
que C = n(y) sin(θ(y)) = n0 sin(θ0) et en utilisant l’éq. (43), on obtient donc l’intégrale
suivante avec x0 = y0 = 0 :

x =
∫ y

0

(1 + ay′

sin2 θ0
− 1

)−1/2
dy′ =

∫ y

0

(
cot2 θ0 + ay′

sin2 θ0

)−1/2
dy′ = · · ·

· · · = 2 sin2 θ0
a

(√
cot2 θ0 + ay

sin2 θ0
− cot θ0

)
,

(47)

avec la fonction cotangente cot θ = 1/ tan θ. En exprimant (47) en fonction de x, on obtient
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alors la forme générale de l’équation de la trajectoire d’un rayon lumineux pour un indice
de réfraction n(y) = n0

√
1 + ay :

y(x) = a

(
x

2 sin θ0

)2
+ x cot θ0. (48)

La trajectoire observée est donc parabolique.
(d) En quoi cette trajectoire permet-elle d’expliquer le phénomène de mirage ? Considérer pour cela

une source lumineuse en (x0, y0) = (0, 0) qu’un observateur regarde depuis (x, y) = (L, 0).
Discuter l’influence du signe du paramètre a sur le type de mirage observé.
On note tout d’abord que l’indice de réfraction de l’air peut être approximé comme
n = 1 + δ(p/patm)/(T/Tatm), où δ � 1 est une constante positive. Un milieu chaud aura
donc un indice de réfraction plus faible qu’un milieu froid.
Associons x à la direction horizontale et y à la direction verticale par rapport au sol. Le
signe de a, c’est-à-dire la pente du profil d’indice de réfraction, détermine l’orientation de
la parabole. Si n augmente avec l’altitude (sol chaud, air froid), alors a est positif et la
parabole est convexe. Inversement, quand n diminue avec l’altitude (sol froid, air chaud), a
est négatif et la parabole est concave. On distingue donc deux types de mirages : le mirage
supérieur (a < 0) et inférieur (a > 0).
Dans le cas où n augmente avec l’altitude, le chemin optique entre la source lumineuse
et l’observateur est une parabole convexe. L’observateur percevra donc une image de la
source comme si celle-ci était située au-dessous de sa position réelle. Ces mirages inférieurs,
aussi appelés mirages « chauds », sont par exemple observés sur les routes lors de fortes
températures : on a typiquement l’impression de voir des « flaques » bleutées (le ciel) sur la
route. Les mirages supérieurs se forment lorsque le chemin optique est une parabole concave
(lorsque n diminue avec l’altitude) et sont communément observés dans les régions polaires
où le sol gèle et peut être plus froid que l’air au-dessus de celui-ci. L’observateur percevra
alors des mirages situés au-dessus de la position réelle de la source.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x/L

1.5

1.0

0.5

0.0

0.5

1.0

1.5

|a
|

y(
x)

y(x) = ±|a|x2/(2sin2 0) x cot 0  ( 0 = 0.17 )

+ (a > 0)
(a < 0)

Figure 2 – Illustration des trajectoires suivies par deux rayons passant simultanément par
(x0, y0) = (0, 0) et (x, y) = (L, 0). Les rayons lumineux (traits plein) suivent des paraboles
données par l’équation (48). L’observateur oriente son regard le long des trajectoires en
traitillé, d’où la dénomination de mirages inférieurs (a > 0, regard vers le sol) et supérieurs
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(a < 0, regard vers le ciel).

(e)challenge
Le principe de Fermat affirme que la trajectoire suivie par la lumière entre deux points A et B
est telle que le temps de trajet soit minimal. Montrer que minimiser le chemin optique LAB est
équivalent à minimiser le temps de trajet,

LAB =
∫ B

A
nds,

où n est l’indice de réfraction du milieu. En dériver l’équation (‡) pour la trajectoire.
La distance ds parcourue sur la trajectoire par la lumière en un temps dt est donnée par :

ds = v dt = c

n
dt. (49)

Par conséquent, le temps de trajet TAB nécessaire est donné par :

TAB =
∫ B

A

nds

c
= 1
c

∫ B

A
nds = 1

c
LAB. (50)

Il est donc justifié d’affirmer que minimiser le temps de trajet revient à minimiser le chemin
optique.
On cherche désormais à montrer l’équivalence entre la minimisation de (50) et l’équation (‡).
L’intégrale donnée en (50) est une intégrale curviligne qui, dans le cas où la trajectoire est
paramétrisée par x(y), et en utilisant ds =

√
dx2 + dy2 =

√
1 + (dx/ dy)2 dy, s’écrit :

LAB =
∫ B

A
n(y)

√
1 + x′(y)2 dy =

∫ B

A
L(y, x(y), x′(y)) dy. (51)

Afin de minimiser la quantité LAB, on applique l’équation d’Euler-Lagrange :

d

dx

(
∂L
∂x′

)
= ∂L
∂x

=⇒ d

dx

(
n(y)x′(y)√
1 + x′(y)

)
= 0. (52)

En intégrant (52) et en introduisant une constante C,

n(y)x′(y)√
1 + x′(y)2 = C =⇒ (n2(y) − C2)x′(y)2 = C2 =⇒ x(y) =

∫ y

0

dy′√
n2(y)/C2 − 1

. (53)

La dernière expression correspond exactement au résultat trouvé en point (a). De plus, la
constante C est également analogue. En effet, on remarque que x′(y) = dx/ dy = tan θ(y).
De fait, cela donne que :

C = n(y)x′(y)√
1 + x′(y)2 = n(y) tan θ(y)√

1 + tan2 θ(y)
= n(y) sin θ(y). (54)

Ceci redonne donc le résultat précédemment obtenu par la loi de Snell-Descartes, éq. (41),
et permet de conclure sur l’équivalence des deux méthodes.
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