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Corrigé 5 : Ondes stationnaires

Ondes stationnaires dans une colonne d’eau

Un long cylindre vertical de rayon R et de longueur L, ouvert a son extrémité supérieure, est rempli
d'une colonne d'eau de hauteur k. La hauteur de la colonne d'air est notée H = L. — h. Une pompe
de débit ) permet d'ajuster h. Un diapason, dont la fréquence propre est v, est placé au sommet du
cylindre. Dans un premier temps, on suppose que I'eau est un milieu opaque (qui ne permet pas la
transmission d'ondes sonores).

(a)

Déterminer les hauteurs de la colonne d'air H,, pour lesquelles on observe une résonance associée
au n° mode propre de I'onde sonore du diapason. On note u,;; la vitesse de propagation des
ondes sonores dans |'air.

On commence par s’intéresser aux modes propres dans la colonne d’air pour une hauteur H
fixée. On exprime la fonction d’onde stationnaire a partir de I’indication,

&(z,t) = &osin(kz + a) cos(wt + ¢y), (1)

ou ¢ correspond a un déphasage temporel. On choisit 'origine x = 0 a l'interface entre
I’eau et lair, et x = H > 0 a 'extrémité supérieure, ouverte, du cylindre. Les conditions
aux limites a imposer sont donc
— un noeud en x = 0 (P’eau étant considérée comme un milieu opaque), ce qui implique
que a =0, et
— un ventre en x = H, puisque 'extrémité supérieure du cylindre est ouverte.
La dérivée spatiale de la fonction d’onde est nulle au ventre, ce qui donne
23

%(H,t) = {okcos(kH) cos(wt) =0 = cos(kH) = 0. (2)

On obtient ainsi les nombres d’onde k,, et les fréquences propres v,, des modes :

knu 2n+1
kol = (204 1), == 204D

9 Uajr, (3)

oun=0,1,2,... et uyj; est la vitesse de propagation.

On remarque cependant que, selon les instructions de I'exercice, la fréquence v du diapason
est fixée, alors que la hauteur de la colonne d’air H est variable. On transforme donc la
condition de résonance (3) afin de fixer v pour obtenir un ensemble de hauteurs H,, pour
lesquelles une onde stationnaire existe,

2n+1
H, = ( Ay )uair- (4)

A I'aide de la pompe, on fait monter le niveau d’eau. Déterminer le temps At séparant deux
instants ou le cylindre entre en résonance avec le diapason.

On a une résonance lorsque la fréquence du diapason est égale a une des fréquences propres.
La distance entre deux hauteurs de liquide pour deux résonances consécutives est donc :

Uajir
AH=H, 1 H, = 2‘; : (5)



La variation de hauteur AH dans un temps At est : AH = (Q/nR%)At. Finalement :

7 R%up;,

Dans un second temps, on ne considére plus I'eau comme étant un milieu opaque. On considére
d'abord une onde progressive incidente sinusoidale d’amplitude £ et de fréquence w. A l'interface
entre |'eau et I'air, I'onde incidente se décompose en une onde réfléchie, se propageant dans I'air, et
une onde transmise dans |'eau.

(c) En posant les conditions de continuité de I'amplitude du déplacement et de la pression a
I'interface, dériver les amplitudes ¢¥ et &Y des ondes transmises et réfléchies en fonction de
['amplitude incidente 5?. On note Kajr et Keau les coefficients de compressibilités des milieux
respectifs.

A Tl’interface entre les deux milieux, I’onde transmise ne change pas de fréquence w, mais
uniquement de longueur d’onde, caractérisée par le nombre d’onde k. Il en découle que

W = kairair = Keauleau- (7)

On pose donc la forme générale des ondes progressives pour ’onde incidente, réfléchie et

transmise :
Onde incidente :  ;(x,t) = £ sin(kapx — wt) (8)
Onde réflechie : b, (x,t) = €2 sin(—kapz — wi) (9)
Onde transmise : (1) = & sin(keaur — wt) (10)

Sans perte de généralité, on pose x = 0 la position de I'interface. Il est nécessaire d’imposer
des conditions de continuité a I'interface. La premiere condition est celle de continuité des
amplitudes, imposant que 'amplitude des ondes résultantes dans 'air 17 = 9; + 1, et dans
Ieau 1o = 9y soient égales a l'interface :

Y1(0,1) = € sin(—wt) + 0 sin(—wt) = &) sin(—wt) = ¥o(0,1) = &+ =¢).  (11)
La deuxieme condition est la condition de continuité sur la pression. La pression est donnée

par 'expression suivante (vue en cours) :

oY
p(fE,t) :pU_K%(xvt)a (12)
ol pg est la pression d’équilibre qui est uniforme dans 'eau et I'air. Ceci donne donc la
condition suivante :
oy Othy

air — Peau . 13
" ox " ox (13)

Explicitement, ceci donne une deuxiéme condition sur les amplitudes &7, €2 et £, valable
en tout temps ? :

’fairkair(fzo - 619) = /feaukeaué?- (14)
En résolvant les équations (11) et (14) pour £° et &Y, on obtient les expressions suivantes :
KeauKeau — KairKair 0 0
& = & = Re, 15
" KeauKeau 1 KairKair ! ! ( )
2K airkai
6 = ) = T, (16)

KeauKeau 1 KairKair

ou R et T sont appelés « coefficients de Fresnel ».



Finalement, on s’intéresse a la possibilité d'observer des ondes stationnaires qui se développent dans

I'eau et I'air.

(d) Déterminer les conditions nécessaires pour qu'une onde stationnaire soit présente dans les deux
milieux en fonction des nombres d’onde k,i- et keau, des coefficients de compressibilité x,; et
Keau, de H ainsi que L.

L’onde transmise a l'interface posseéde une longueur d’onde différente, mais une fréquence
est égale a 'onde incidente. Par conséquent, par la relation d’onde dans 'air et 1’eau, on
trouve que les nombres d’onde kair et keay doivent satisfaire la relation donnée en (7). On
écrit la solution d’onde

dans Vair :  91(z,t) = Asin(kapx + 1) cos(wt + @), (17)
et dans 'eau :  a(x,t) = Bsin(keau® + a2) cos(wt + ¢y). (18)

Pour simplifier les développements, on choisit de poser z = 0 le fond du cylindre, et donc
r = L Dextrémité ouverte du cylindre ainsi que z = L — H la position de l'interface. Les
conditions aux limites sont :

— un neeud en x = 0 (fond du cylindre), ce qui donne : ag = mm, m € N,

— un ventre en x = L, car 'extrémité supérieure du cylindre est ouverte, ce qui donne

a1 + koL =7/2+nm, n € N.

Selon l'indication, on se concentre sur les modes fondamentaux par simplicité, donc n =
m = 0 pour obtenir

dans l'air :  ¢1(x,t) = Acos(kair(L — x)) cos(wt + ¢1), (19)
dans 'eau  ¢2(x,t) = Bsin(keau) cos(wt + ¢¢). (20)
A linterface, on impose la continuité des solutions d’onde. En effet, ¢ représente le dépla-
cement infinitésimal du milieu. Puisque le déplacement de 'interface doit étre le méme
dans les deux milieux, cela implique donc que Y1 (H,t) = 1po(H,t). Ceci donne 1’équation

suivante :

A cos(kair (L — H)) = Bsin(keanH). (21)

Comme au point (c), la pression doit également étre continue a l'interface. On applique de
la méme maniere qu’en (14)

Kairkair A sin(kair (L — H)) = KeaukeauB €08 (keau H). (22)

Ces deux équations (21) et (22) peuvent s’écrire sous forme matricielle :

cos(kair (L — H)) — sin(keanH) A [0 (23)
Kairkair A sin(kair (L — H))  —Keaukeau €08 (keauH) ) \ B) — \0
Pour que (A, B) donne une solution non triviale, il faut imposer que le déterminant de la
matrice soit nul,
Kairkair $in(Kair (L — H)) sin(keauH) — Keaukeau CO8(kair (L — H)) cos (keauH) = 0. (24)

Pour montrer que cette équation est cohérente, il est intéressant de considérer le cas ou les
deux milieux sont les mémes, c.-a.-d. k = ki = Kkeau ainsi que kK = Kajr = Keau- L’équation

donne
kksin(k(L — H))sin(kH) — kkcos(k(L — H)) cos (kH) =0 (25)
cos(kL — 2kH) — cos(kL) — cos(kL) — cos(kL — 2kH) =0 (26)
cos(kL) = 0, (27)

ce qui est la condition pour une onde stationnaire dans une cavité semi-ouverte.



2 Timbre d’un instrument a cordes

Dans cet exercice, on propose d'étudier les vibrations d'une corde de longueur L dans les cas ou elle

est initialement pincée ou frappée. On considére la corde sujette a une tension 7" et de masse linéique

u. La corde est fixe a chacune de ses extrémités.

Pour commencer, on considére une corde pincée en son milieu, c’est-a-dire que la corde est initialement

de forme triangulaire, avec le sommet situé a égale distance des extrémités fixes. Le sommet est

déplacé de A par rapport a la position au repos de la corde.

(a) Déterminer la forme générale de la solution de I'équation d'onde. Identifier les modes propres
du systéme.

On remarque que la condition initiale exhibe un profil qui ne correspond pas a la forme
sinusoidale habituelle de la solution a I’équation d’onde. En revanche, ce profil peut étre
décomposé en une superposition de modes propres, c’est-a-dire ’ensemble de fonctions
solutions de I’équation d’onde satisfaisant aux conditions aux bords. Afin de déterminer
I’évolution de la fonction d’onde totale ¥ (z,t), on procéde par I’approche suivante,

1. On cherche une solution générale a I’équation d’onde par séparation des variables afin
d’identifier les modes propres,

2. On projette la condition initiale sur la base fonctionnelle formée par les modes propres
trouvés au point précédent,

3. Les coefficients obtenus par projection de la condition initiale sont insérés dans
I’expression de la solution totale en tenant compte de la dépendance temporelle de
chaque mode propre déterminé a I’étape 1.

On résout I’équation d’onde unidimensionnelle par séparation de variables. On utilise
I'indication en écrivant v, (x,t) = X, (x)T,(t), qu'on introduit dans I’équation d’onde afin
d’obtenir des équations harmoniques, associées au n® mode propre, séparées pour X, (x) et
To(t),

X(2) + k2 Xn(z) =0, (28)
T/ (t) + u’k2T,(t) = 0. (29)
En résolvant les équations (28) et (29), on obtient les solutions de forme générale suivantes :
X (z) = AM cos(knx) + BM sin(k,x), (30)
T, (t) = A" cos(knut) + B™ sin(knut). (31)
Les conditions aux bords fixes s’expriment

Y (0,t) = (L, t) = 0. (32)

En imposant (32), on obtient des conditions sur les parameétres Ag(cn), Bg(cn) et ky :
X,(0)=0 = AWM =0, (33)
X,(L) =0 = BWsin(k,L) = 0. (34)

Cette dernieére égalité impose que sin(k, L) = 0. Par conséquent, on obtient que k, = n7/L.

Cette condition sur le nombre d’onde permet d’identifier les modes propres du systéme,
Un(z,t) = X (2)T, () = sin(k,z) [by, cos(knput) + ¢ sin(kyut)], (35)

ou on a rassemblé les constantes b,, = Bé”)A,E”) et ¢, = B;E;n)Bt(n) . Une solution générale,
satisfaisant les conditions aux bords, s’écrit donc

U(,t) = Yala,t). (36)
n=1

Ceci conclut la premiere partie du raisonnement (étape 1. de la liste en page 4).



(b) Imposer que la solution de I'équation d’onde trouvée au point (a) satisfasse les conditions
initiales, en déduire que

L= BA(-D) L (2n4 D)7z
Y(x, t=0) = ,;) Gn £ 1) Sln< 7 )

On écrit formellement les conditions initiales et les conditions aux bords de la corde pincée.
Aux conditions initiales, la corde est pincée en son centre et immobile. Ceci ce traduit par
une fonction d’onde « chapeau » dont la dérivée temporelle est nulle :

2A
- Tx si0<x<L/2
E(:c,()) =0, Vzel0,L], et P(z,0) = oA (37)
T(L —x) sinon.

On cherche dés a présent a déterminer les coeflicients b, et ¢, de telle sorte que les conditions
initiales (37) soient satisfaites, notamment,

= i by, sin(kpz), (38)
n=1
%—Z}(x, 0) = niojl cnknusin(k,x) = 0. (39)

L’équation (39) doit étre satisfaite pour n’importe quel choix de k,, = nw/L et x € [0, L], ce
qui implique en particulier que les coefficients ¢, s’annulent, ¢, = 0. Il reste donc a projeter
la condition chapeau initiale (37) sur une base de fonctions sinus (38). On remarque que
cette base représente un sous-ensemble de celle utilisée pour une série de Fourier, c’est-a-dire
que 'expression (38) est une série de Fourier dont les coefficients associés aux termes cosinus
s’annulent (voir note en fin de question). Similairement & une série de Fourier, on note que
les fonctions de base sont orthogonales,

2 L /anx\ | /mmzx
E/o sm(L) SIH(L) dr = dpm. (40)

Cette propriété peut étre exploitée afin de déterminer les coefficients b, : par multiplication
de I’éq. (38) par (2/L)sin(mnz/L) suivi d’'une intégration entre z = 0 et L, on obtient :

by, L/waSln<L>d$ (41)

On substitue 'expression de la fonction chapeau pour poursuivre l'intégration,

by, =7 /L/2 %x in(n2x> dx + % LI;Q %(L —x) sin(nzx> dz (42)
=12 [/OL/2w81n<m£ )dx—i—/L/stm(T(L—y)) dy] (avecy =L —z) (43)
ij;l (1-(-1)") /OL/2 xsin(nzx) dx (44)

1/2
=4A(1-(-1)") /0 zsin(nwz)dz  (avec z =z /L). (45)

Entre ’équation (43) et (44), on a substitué

sin(mr - ”7LTy> - (—1)”sin(—nzy> _ —(—1)nsm(”zy>. (46)



On remarque que les coefficients b, tels que n soit pair s’annulent, by, = 0. Ce résultat
est effectivement attendu en remarquant que la condition initiale est une fonction paire
sur intervalle d’intégration (autour de x = L/2), alors que les fonctions de bases pour
n = 2m sont impaires. On évalue I'intégrale restante pour le cas ou n = 2m + 1 est impair
en procédant par parties,

1/2 2 2=1/2 1/2 1
/ zsin(nmz) dz = —— cos(nmz) + / — cos(nmz)dz = ---
0 nm 2=0 0 nw
1 z=1/2  gin(mm + 7/2) (=)™
=0 = = .47
T a2 0| = T @mr 2 ~ @mr e 40
On a donc, pour le cas impair, que le coefficient bay, 1 est donné par
8A(—1)™
bom41 = ———5—. 4

Ce dernier résultat conclut la deuxiéme partie du raisonnement proposé en page 4 (étape 2).

Note sur les séries de Fourier. On remarque que si le coefficient A, n’était pas contraint
a étre nul, éq. (33), 'équation (38) aurait pris la forme

P(z,0) = flx) = % + niojl(an cos<n7£x) + by, Sjﬂ(n;m))) (49)

qui est la forme générale de la série de Fourier d’une fonction f(x) sur un intervalle
périodique z € [0, L] Le facteur 1/2 est introduit afin que la définition des coefficients a,,
donnés ci-dessous soit valide pour tout n. Les coefficients satisfont

ap = 12L/0L f(z) c0s<nzx) dr, et b, = E/OL f(z) sin<nz$) dx. (50)

La base de fonctions trigonométriques est orthogonale, c.-a-d. que les relations (40), et (51)
sont satisfaites :

2 L 9 L
Z/o cos<m2$> cos(mlix) dx = Omn, Z/o cos<m2x) sin(nzx) dr =0. (51)

Dériver |'évolution temporelle du déplacement de la corde. Quelle est I'intensité de I'onde sur la
corde en fonction du temps?

On substitue les coefficients b,, et ¢, = 0 dérivés ci-dessus dans la solution générale de
I’équation d’onde (36) pour finalement obtenir

P(x,t) = mio:o (;::(_1__11)):# Sﬁ}((Qm—;l)ww) cos<(2m+Ll)7rut> (52)

= 2 1
=3 Bult) Sin((m%—)m:) (53)
L
m=0
On calcule I'intensité de 'onde sur Uintervalle [0, L], définie comme :

=1 [ 0P (54)

En utilisant 'orthogonalité des modes sinusoidaux, comme donné en (40), il est possible de



montrer que, par substitution de (53),

1 L
_ Z/ ()2 d (55)
1 mzonzo/ Bon () )Sm((Qm —;1)7r:1:> sin<(2n +Ll)7m) Iz (56)

= 5 Z Bm(t)Q = Z Im(t)' (57)
m=0 m=0

L’intensité de chaque harmonique I, (t) est donnée par :

I,(t) = % [(2m—8:11)27r2 cos(W)} 2. (58)

(d) Refaire les points (a)—(c) en considérant une corde pincée au 1/3 de sa longueur.

Le raisonnement reste identique & celui du point (c¢). Il faut cependant adapter l'inté-
grale (42)—(45) associée au calcul des coefficients b, aux nouvelles conditions initiales
décrites par ’énoncé :

3A L
Tl‘ si0<zx< Ex
E(L —x) sinon,
ot aaf (2,0)=0, Vze[0,I] (60)

On note que la condition (60) implique & nouveau ¢, = 0, cf. éq. (39). Pour b,,

2 L . (nnx
by = Z/o P(z,0) SID<L) dx (61)
27 (L/33A . [nrx L 34 . [nTx
=7 {/0 T sm( 7 ) dx + » E(L —x) sm(L) da:} (62)

6A [/1/3 zsin(nmz) (_21)n

2/3
/ ysin(nmy) dy] avecy=1—z,z=xz/L (63)
0

_ 6A<[ zcos(nmz) N sin(;w;z)r:l/g (= [_ycos(mry) N sin(;w;y)rﬂ/3 (64)
nem =0 2 nmw nem =0
_ 6A[Sm n7r/3 (nm/3) cos(nm/3) (_1)nsm(27m/3) (27 /3) cos(27m/3)] (65)
n2m? 2n2m?
Entre (62) et (63), on a utilisé que
sin(nm(1 — y)) = sin(nm — nry) = —(—1)" sin(nny). (66)

L’amplitude sera donc donnée par

P(x,t) = nio:l by, sin(nzx> cos<m;m>. (67)

On remarque des différences majeures par rapport au résultat trouvé en (c). En effet, lorsque
la corde était initialement pincée au milieu, par symétrie, les coeflicients bo,, étaient nuls




par parité : la fonction sin(2mmz/L) était impaire par rapport au point x = L/2 alors que
Y(x,0) était paire. Or, dans le cas de la corde pincée au 1/3 de la longueur, ces coefficients
sont non nuls et des ondes stationnaires antisymétriques contribuent donc aux vibrations
de la corde.

On aimerait également étudier le cas d'une corde frappée plutét que pincée, comme pour un piano
par exemple. Initialement, la corde est supposée étre a sa position d'équilibre, mais sur un intervalle
de longueur a centré en L/2, une vitesse initiale vy est donnée aux éléments de la corde. Cette
condition se traduit en

o

P(x,0) =0 et 5t

_ {vo size[(L—a)/2,(L+a)/2,
0  sinon.

t=0

(e) Dériver I'évolution temporelle de la corde frappée.

Similairement aux points précédents, on détermine les coefficients de Fourier b,, et ¢,. On
considére pose a nouveau les équations (38) et (39),

P(x,0) = i by, sin(kpz) = 0, (68)
n=1
ng(aﬁ, 0) = g enknusin(kyx). (69)

Comme (z,0) = 0, tous les coefficients b, sont cette fois nuls. Il suffit donc de déterminer
les coefficients ¢, en projetant la condition initiale (0v/dt)(x,0) sur la base de fonctions
sinus. Une approche similaire a celle aboutissant a I’équation (41) donne donc

2 1 L o . (nnx
Cp = Zm 0 a(ﬂ:, O) SIH(L> dr (70)
(L+a)/2
= 2% sin(m) dx (71)
nmu J(L—a)/2 L
x=(L+a)/2
= 2% [—Lcos(mmﬂ (72)
nmTu | nw L v=(L—a)/2
2uoL nT = nra nT  nra
= — —+ — ] = _— - 73
n2n?u [COS( y " 2L) COS( 2 2L )] (73)
dvgl . (nm\ . [nma
=22 sm(2) sm<2L>. (74)

On a donc & nouveau une annulation des coefficients pairs co,,, = 0 en raison de la parité de
la fonction projetée sur la base sinus, alors que

4vgL ) ((Qm + l)ﬂ'a)
sin .
(2m +1)273u 2L

Comt1 = (—1)" (75)

Par conséquent, ’évolution temporelle de la corde frappée est donnée par :

P(x,t) = n;i;o(—l)m (2mz—lf01[)/27r2u sin((2m ;Ll)ﬁa> sin<(2m —; l)ms) sin( (2m —i_Ll)mLt)
(76)




3

Corde dans un milieu visqueux

On considére une corde de longueur L et de masse linéique p dans un milieu visqueux. Les bords de
la corde sont considérés comme étant fixes. Chaque élément infinitésimal de corde dx est soumis a
une force de frottement infinitésimale dF = —Avdx, ou A > 0 est le coefficient de frottement par
unité de longueur. La corde est soumise a une tension 7. La vitesse de propagation de la perturbation
est notée u.

(a)

Montrer que I'équation d'onde, en tenant compte des frottements, s'écrit :

Py 200 _ 40
otz p ot Ox?

L’équation d’onde unidimensionnelle sans frottements est donnée par :

Y _ 20
ot? 0z?

Cette équation peut s’obtenir a ’aide d’une approche Newtonienne, ou l'interaction d’un
point avec son voisinage est due a la tension, a laquelle on ajoute la contribution de la force
de frottement. Puisque F'= —\v, la force de frottement s’écrit donc F' = —\(0v/0t). Par
conséquent, la 2° loi de Newton pour la corde est donnée par :

32¢ w

T ZF— dm+T(az+d:n)+T() (77)
Comme vu en cours, la tension 7" est de norme constante en tout point de la corde et la
composante verticale s’écrit T, (z) = T'sin(0(z)) ~ T9(x) = T(0y/0x). En divisant par pdz,
on obtient le résultat souhaité, sachant que u? = T/u pour la corde :

0? A0 0 0 0*
v A0 dx(w 0 = 228

o2 o Er G Gk

(78)

En utilisant la méthode de séparation de variables, dériver les modes propres d'une corde dans
un milieu visqueux. Discuter de I'évolution temporelle des différents régimes observés pour ces
modes propres.

On utilise la méthode de séparation de variables en posant ¢ (z,t) = X(2)T(t). En injectant
cette expression dans I’équation d’onde amortie et en choisissant k? comme solution de
I’équation, on obtient :

uzé(t) (T”(t) + 2T’(t)) - ))(((f)) — k2 = const, (79)

Ceci donne deux équations différentielles linéaires pour X(x) et 7(t) :
X" (x) + k*X(x) = 0, (80)
T"(t) + 2T’(t) + k2u?T(t) = 0. (81)
L’équation (80) correspond a 1’équation harmonique dont la forme générale est donnée par :
X(z) = Asin(kz) + Bcos(kx). (82)

Les conditions aux bords fixes imposent que :

X(0)=0 = B=0, (83)
X(L)=0 = Asin(kL) =0. (84)



L’équation (83) impose donc que kL = n, ce qui implique que la partie spatiale de v est
donnée par : X(z) = Asin(k,z) avec k, = nm/L.

Pour la partie temporelle, on observe que I’équation (81) admet les solutions de la forme
T(t) = Ae®. En appliquant cet Ansatz, on obtient que a obéit & la relation suivante :

a’® + 2@ +u?k% =0, (85)

A A2
a 2ui“4,u2 k2u A+ VA. (86)

La forme générale pour 7(t) est donc donnée par :

et donc

T(t) = e M(AeVAl 4 Be=VAY (87)

On peut distinguer trois cas particuliers : VA € R, VA € iR et VA = 0. La notation iR
dénote ’ensemble des nombres purement imaginaires, c.-a-d. les nombres complexes dont
la partie réelle est nulle. Les cas VA € R et VA € iR correspondent respectivement aux
régimes sur-critiques et sous-critiques comme vu pour ’équation de l'oscillateur harmonique
amorti. Pour le cas VA = 0, il faut procéder plus méthodiquement. En effet, a; = as = —A,
ce qui implique que les deux solutions trouvées précédemment sont égales. Pour trouver
la seconde solution, on utilise la méthode de la variation de la constante. En posant
T(t) = A(t)e ™, on peut montrer que le terme A(t) doit satisfaire A”(t) = 0, ce qui
implique que A(t) = A + Bt. Le cas VA = 0 est appelé régime critique et la partie
temporelle est donnée par T(t) = e*At(A + Bt). Finalement, les modes propres peuvent
s’écrire de la maniére suivante :

VA, €R (sur-critique) : ¥y (z,t) = e~ M sin(kznaz)(Ae‘/r"t + Be_mt), (88)
VA, =0 (critique) : ¥ (z,t) = e Msin(k,2)(A + Bt), (89)

VA, € iR (sous-critique) : b, (x,t) = e N Sin(knx)(Ae“mlt + Be_i‘m‘t), (90)

ot A, = A% — k202
Obtenir la relation de dispersion w = w(k).

On rappelle 'expression de la transformée de Fourier d’une fonction ¢(z, t)

Flb(a, 1)) = d(k, w) = /d:v /dw(x,t)e-i(kw—wt). (91)

Les propriétés de la transformée de Fourier implique que

H ) = ciorwy, #(20) = wrw) o F(O8)=krw. @

Ces propriétés peuvent étre trouvées en utilisant I'intégration par parties et en considérant

qu’aux limites t — +00 et x — %00, la fonction d’onde s’annule ¢)(z,t) — 0. En considérant
la transformée de Fourier de ’équation d’onde amortie, on obtient :

2 2
I<a VA P

o2 T har Vo2

Puisque 1[1(1{, w) est non nul pour une solution non triviale, on obtient donc que la relation
de dispersion peut étre écrite comme suit :

) 0 — <—w2 - z':w + u2k2>¢(k,w) —0.  (93)

wk? = w? + iiw. (94)
o
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On remarque que cette relation de dispersion est tres similaire a la relation de dispersion
pour un milieu sans dissipation w? = u?k?. Le terme complexe i \w/p implique donc une
décroissance exponentielle dans le temps.

En considérant w € C et k € R, que peut-on dire sur |'évolution temporelle d'un paquet d'onde ?

En résolvant (94) pour la variable w, on obtient que :

A A2
w=—i—F 4 u?k? — —. (95)

20 4u
Cette expression est analogue a (86). Cela veut donc dire que pour certaines valeurs du
nombre d’onde k, w peut étre purement imaginaire, c.-a-d. w € iR, ce qui correspondrait a
un amortissement sur-critique de ces solutions d’onde. Ce résultat coincide donc avec les

modes de Fourier trouvés en (88).
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