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Corrigé 5 : Ondes stationnaires

1 Ondes stationnaires dans une colonne d’eau
Un long cylindre vertical de rayon R et de longueur L, ouvert à son extrémité supérieure, est rempli
d’une colonne d’eau de hauteur h. La hauteur de la colonne d’air est notée H = L− h. Une pompe
de débit Q permet d’ajuster h. Un diapason, dont la fréquence propre est ν, est placé au sommet du
cylindre. Dans un premier temps, on suppose que l’eau est un milieu opaque (qui ne permet pas la
transmission d’ondes sonores).
(a) Déterminer les hauteurs de la colonne d’air Hn pour lesquelles on observe une résonance associée

au ne mode propre de l’onde sonore du diapason. On note uair la vitesse de propagation des
ondes sonores dans l’air.
On commence par s’intéresser aux modes propres dans la colonne d’air pour une hauteur H
fixée. On exprime la fonction d’onde stationnaire à partir de l’indication,

ξ(x, t) = ξ0 sin(kx+ α) cos(ωt+ φt), (1)

où φt correspond à un déphasage temporel. On choisit l’origine x = 0 à l’interface entre
l’eau et l’air, et x = H > 0 à l’extrémité supérieure, ouverte, du cylindre. Les conditions
aux limites à imposer sont donc

— un nœud en x = 0 (l’eau étant considérée comme un milieu opaque), ce qui implique
que α = 0, et

— un ventre en x = H, puisque l’extrémité supérieure du cylindre est ouverte.
La dérivée spatiale de la fonction d’onde est nulle au ventre, ce qui donne

∂ξ

∂x
(H, t) = ξ0k cos(kH) cos(ωt) = 0 =⇒ cos(kH) = 0. (2)

On obtient ainsi les nombres d’onde kn et les fréquences propres νn des modes :

knH = (2n+ 1)π2 , νn = knu

2π = (2n+ 1)
4H uair, (3)

où n = 0, 1, 2, ... et uair est la vitesse de propagation.
On remarque cependant que, selon les instructions de l’exercice, la fréquence ν du diapason
est fixée, alors que la hauteur de la colonne d’air H est variable. On transforme donc la
condition de résonance (3) afin de fixer ν pour obtenir un ensemble de hauteurs Hn pour
lesquelles une onde stationnaire existe,

Hn = (2n+ 1)
4ν uair. (4)

(b) À l’aide de la pompe, on fait monter le niveau d’eau. Déterminer le temps ∆t séparant deux
instants où le cylindre entre en résonance avec le diapason.
On a une résonance lorsque la fréquence du diapason est égale à une des fréquences propres.
La distance entre deux hauteurs de liquide pour deux résonances consécutives est donc :

∆H = Hn+1 −Hn = uair
2ν . (5)
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La variation de hauteur ∆H dans un temps ∆t est : ∆H = (Q/πR2)∆t. Finalement :

∆t = πR2uair
2Qν = 237 s. (6)

Dans un second temps, on ne considère plus l’eau comme étant un milieu opaque. On considère
d’abord une onde progressive incidente sinusoïdale d’amplitude ξ0

i et de fréquence ω. À l’interface
entre l’eau et l’air, l’onde incidente se décompose en une onde réfléchie, se propageant dans l’air, et
une onde transmise dans l’eau.
(c) En posant les conditions de continuité de l’amplitude du déplacement et de la pression à

l’interface, dériver les amplitudes ξ0
r et ξ0

t des ondes transmises et réfléchies en fonction de
l’amplitude incidente ξ0

i . On note κair et κeau les coefficients de compressibilités des milieux
respectifs.

À l’interface entre les deux milieux, l’onde transmise ne change pas de fréquence ω, mais
uniquement de longueur d’onde, caractérisée par le nombre d’onde k. Il en découle que

ω = kairuair = keauueau. (7)

On pose donc la forme générale des ondes progressives pour l’onde incidente, réfléchie et
transmise :

Onde incidente : ψi(x, t) = ξ0
i sin(kairx− ωt) (8)

Onde réflechie : ψr(x, t) = ξ0
r sin(−kairx− ωt) (9)

Onde transmise : ψt(x, t) = ξ0
t sin(keaux− ωt) (10)

Sans perte de généralité, on pose x = 0 la position de l’interface. Il est nécessaire d’imposer
des conditions de continuité à l’interface. La première condition est celle de continuité des
amplitudes, imposant que l’amplitude des ondes résultantes dans l’air ψ1 = ψi + ψr et dans
l’eau ψ2 = ψt soient égales à l’interface :

ψ1(0, t) = ξ0
i sin(−ωt) + ξ0

r sin(−ωt) = ξ0
t sin(−ωt) = ψ2(0, t) =⇒ ξ0

i + ξ0
r = ξ0

t . (11)

La deuxième condition est la condition de continuité sur la pression. La pression est donnée
par l’expression suivante (vue en cours) :

p(x, t) = p0 − κ
∂ψ

∂x
(x, t), (12)

où p0 est la pression d’équilibre qui est uniforme dans l’eau et l’air. Ceci donne donc la
condition suivante :

κair
∂ψ1
∂x

= κeau
∂ψ2
∂x

. (13)

Explicitement, ceci donne une deuxième condition sur les amplitudes ξ0
i , ξ0

r et ξ0
t , valable

en tout temps t :
κairkair(ξ0

i − ξ0
r ) = κeaukeauξ

0
t . (14)

En résolvant les équations (11) et (14) pour ξ0
r et ξ0

t , on obtient les expressions suivantes :

ξ0
r = κeaukeau − κairkair

κeaukeau + κairkair
ξ0

i = Rξ0
i , (15)

ξ0
t = 2κairkair

κeaukeau + κairkair
ξ0

i = Tξ0
i , (16)

où R et T sont appelés « coefficients de Fresnel ».
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Finalement, on s’intéresse à la possibilité d’observer des ondes stationnaires qui se développent dans
l’eau et l’air.
(d) Déterminer les conditions nécessaires pour qu’une onde stationnaire soit présente dans les deux

milieux en fonction des nombres d’onde kair et keau, des coefficients de compressibilité κair et
κeau, de H ainsi que L.
L’onde transmise à l’interface possède une longueur d’onde différente, mais une fréquence
est égale à l’onde incidente. Par conséquent, par la relation d’onde dans l’air et l’eau, on
trouve que les nombres d’onde kair et keau doivent satisfaire la relation donnée en (7). On
écrit la solution d’onde

dans l’air : ψ1(x, t) = A sin(kairx+ α1) cos(ωt+ φt), (17)
et dans l’eau : ψ2(x, t) = B sin(keaux+ α2) cos(ωt+ φt). (18)

Pour simplifier les développements, on choisit de poser x = 0 le fond du cylindre, et donc
x = L l’extrémité ouverte du cylindre ainsi que x = L−H la position de l’interface. Les
conditions aux limites sont :

— un nœud en x = 0 (fond du cylindre), ce qui donne : α2 = mπ, m ∈ N,
— un ventre en x = L, car l’extrémité supérieure du cylindre est ouverte, ce qui donne

α1 + kairL = π/2 + nπ, n ∈ N.
Selon l’indication, on se concentre sur les modes fondamentaux par simplicité, donc n =
m = 0 pour obtenir

dans l’air : ψ1(x, t) = A cos(kair(L− x)) cos(ωt+ φt), (19)
dans l’eau ψ2(x, t) = B sin(keaux) cos(ωt+ φt). (20)

À l’interface, on impose la continuité des solutions d’onde. En effet, ψ représente le dépla-
cement infinitésimal du milieu. Puisque le déplacement de l’interface doit être le même
dans les deux milieux, cela implique donc que ψ1(H, t) = ψ2(H, t). Ceci donne l’équation
suivante :

A cos(kair(L−H)) = B sin(keauH). (21)
Comme au point (c), la pression doit également être continue à l’interface. On applique de
la même manière qu’en (14)

κairkairA sin(kair(L−H)) = κeaukeauB cos (keauH). (22)

Ces deux équations (21) et (22) peuvent s’écrire sous forme matricielle :(
cos(kair(L−H)) − sin(keauH)

κairkairA sin(kair(L−H)) −κeaukeau cos (keauH)

)(
A
B

)
=
(

0
0

)
(23)

Pour que (A,B) donne une solution non triviale, il faut imposer que le déterminant de la
matrice soit nul,

κairkair sin(kair(L−H)) sin(keauH) − κeaukeau cos(kair(L−H)) cos (keauH) = 0. (24)

Pour montrer que cette équation est cohérente, il est intéressant de considérer le cas où les
deux milieux sont les mêmes, c.-à.-d. k = kair = keau ainsi que κ = κair = κeau. L’équation
donne

κk sin(k(L−H)) sin(kH) − κk cos(k(L−H)) cos (kH) = 0 (25)
cos(kL− 2kH) − cos(kL) − cos(kL) − cos(kL− 2kH) = 0 (26)

cos(kL) = 0, (27)

ce qui est la condition pour une onde stationnaire dans une cavité semi-ouverte.
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2 Timbre d’un instrument à cordes
Dans cet exercice, on propose d’étudier les vibrations d’une corde de longueur L dans les cas où elle
est initialement pincée ou frappée. On considère la corde sujette à une tension T et de masse linéique
µ. La corde est fixe à chacune de ses extrémités.
Pour commencer, on considère une corde pincée en son milieu, c’est-à-dire que la corde est initialement
de forme triangulaire, avec le sommet situé à égale distance des extrémités fixes. Le sommet est
déplacé de A par rapport à la position au repos de la corde.
(a) Déterminer la forme générale de la solution de l’équation d’onde. Identifier les modes propres

du système.
On remarque que la condition initiale exhibe un profil qui ne correspond pas à la forme
sinusoïdale habituelle de la solution à l’équation d’onde. En revanche, ce profil peut être
décomposé en une superposition de modes propres, c’est-à-dire l’ensemble de fonctions
solutions de l’équation d’onde satisfaisant aux conditions aux bords. Afin de déterminer
l’évolution de la fonction d’onde totale ψ(x, t), on procède par l’approche suivante,

1. On cherche une solution générale à l’équation d’onde par séparation des variables afin
d’identifier les modes propres,

2. On projette la condition initiale sur la base fonctionnelle formée par les modes propres
trouvés au point précédent,

3. Les coefficients obtenus par projection de la condition initiale sont insérés dans
l’expression de la solution totale en tenant compte de la dépendance temporelle de
chaque mode propre déterminé à l’étape 1.

On résout l’équation d’onde unidimensionnelle par séparation de variables. On utilise
l’indication en écrivant ψn(x, t) = Xn(x)Tn(t), qu’on introduit dans l’équation d’onde afin
d’obtenir des équations harmoniques, associées au ne mode propre, séparées pour Xn(x) et
Tn(t),

X ′′
n(x) + k2

nXn(x) = 0, (28)
T ′′

n (t) + u2k2
nTn(t) = 0. (29)

En résolvant les équations (28) et (29), on obtient les solutions de forme générale suivantes :

Xn(x) = A(n)
x cos(knx) +B(n)

x sin(knx), (30)

Tn(t) = A
(n)
t cos(knut) +B

(n)
t sin(knut). (31)

Les conditions aux bords fixes s’expriment

ψn(0, t) = ψn(L, t) = 0. (32)

En imposant (32), on obtient des conditions sur les paramètres A(n)
x , B(n)

x et kn :

Xn(0) = 0 =⇒ A(n)
x = 0, (33)

Xn(L) = 0 =⇒ B(n)
x sin(knL) = 0. (34)

Cette dernière égalité impose que sin(knL) = 0. Par conséquent, on obtient que kn = nπ/L.
Cette condition sur le nombre d’onde permet d’identifier les modes propres du système,

ψn(x, t) = Xn(x)Tn(t) = sin(knx)
[
bn cos(knut) + cn sin(knut)

]
, (35)

où on a rassemblé les constantes bn = B
(n)
x A

(n)
t et cn = B

(n)
x B

(n)
t . Une solution générale,

satisfaisant les conditions aux bords, s’écrit donc

ψ(x, t) =
∞∑

n=1
ψn(x, t). (36)

Ceci conclut la première partie du raisonnement (étape 1. de la liste en page 4).
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(b) Imposer que la solution de l’équation d’onde trouvée au point (a) satisfasse les conditions
initiales, en déduire que

ψ(x, t = 0) =
∞∑

n=0

8A(−1)n

(2n+ 1)2π2 sin
((2n+ 1)πx

L

)
.

On écrit formellement les conditions initiales et les conditions aux bords de la corde pincée.
Aux conditions initiales, la corde est pincée en son centre et immobile. Ceci ce traduit par
une fonction d’onde « chapeau » dont la dérivée temporelle est nulle :

∂ψ

∂t
(x, 0) = 0, ∀x ∈ [0, L], et ψ(x, 0) =


2Ax
L

si 0 ≤ x ≤ L/2,

2A
L

(L− x) sinon.
(37)

On cherche dès à présent à déterminer les coefficients bn et cn de telle sorte que les conditions
initiales (37) soient satisfaites, notamment,

ψ(x, 0) =
∞∑

n=1
bn sin(knx), (38)

∂ψ

∂t
(x, 0) =

∞∑
n=1

cnknu sin(knx) = 0. (39)

L’équation (39) doit être satisfaite pour n’importe quel choix de kn = nπ/L et x ∈ [0, L], ce
qui implique en particulier que les coefficients cn s’annulent, cn = 0. Il reste donc à projeter
la condition chapeau initiale (37) sur une base de fonctions sinus (38). On remarque que
cette base représente un sous-ensemble de celle utilisée pour une série de Fourier, c’est-à-dire
que l’expression (38) est une série de Fourier dont les coefficients associés aux termes cosinus
s’annulent (voir note en fin de question). Similairement à une série de Fourier, on note que
les fonctions de base sont orthogonales,

2
L

∫ L

0
sin
(
πnx

L

)
sin
(
πmx

L

)
dx = δnm. (40)

Cette propriété peut être exploitée afin de déterminer les coefficients bn : par multiplication
de l’éq. (38) par (2/L) sin(πnx/L) suivi d’une intégration entre x = 0 et L, on obtient :

bn = 2
L

∫ L

0
ψ(x, 0) sin

(
πnx

L

)
dx. (41)

On substitue l’expression de la fonction chapeau pour poursuivre l’intégration,

bn = 2
L

∫ L/2

0

2A
L
x sin

(
nπx

L

)
dx+ 2

L

∫ L

L/2

2A
L

(L− x) sin
(
nπx

L

)
dx (42)

= 4A
L2

[∫ L/2

0
x sin

(
nπx

L

)
dx+

∫ L/2

0
y sin

(
nπ

L
(L− y)

)
dy

]
(avec y = L− x) (43)

= 4A
L2
(
1 − (−1)n) ∫ L/2

0
x sin

(
nπx

L

)
dx (44)

= 4A
(
1 − (−1)n) ∫ 1/2

0
z sin(nπz) dz (avec z = x/L). (45)

Entre l’équation (43) et (44), on a substitué

sin
(
nπ− nπy

L

)
= (−1)n sin

(
−nπy

L

)
= −(−1)n sin

(
nπy

L

)
. (46)
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On remarque que les coefficients bn tels que n soit pair s’annulent, b2m = 0. Ce résultat
est effectivement attendu en remarquant que la condition initiale est une fonction paire
sur l’intervalle d’intégration (autour de x = L/2), alors que les fonctions de bases pour
n = 2m sont impaires. On évalue l’intégrale restante pour le cas où n = 2m+ 1 est impair
en procédant par parties,

∫ 1/2

0
z sin(nπz) dz = − z

nπ
cos(nπz)

∣∣∣z=1/2

z=0
+
∫ 1/2

0

1
nπ

cos(nπz) dz = · · ·

· · · = 0 + 1
(nπ)2 sin(nπz)

∣∣∣z=1/2

z=0
= sin(mπ+ π/2)

((2m+ 1)π)2 = (−1)m

(2m+ 1)2π2 . (47)

On a donc, pour le cas impair, que le coefficient b2m+1 est donné par

b2m+1 = 8A(−1)m

(2m+ 1)2π2 . (48)

Ce dernier résultat conclut la deuxième partie du raisonnement proposé en page 4 (étape 2).

Note sur les séries de Fourier. On remarque que si le coefficient Ax n’était pas contraint
à être nul, éq. (33), l’équation (38) aurait pris la forme

ψ(x, 0) = f(x) = a0
2 +

∞∑
n=1

(
an cos

(
nπx

L

)
+ bn sin

(
nπx

L

))
, (49)

qui est la forme générale de la série de Fourier d’une fonction f(x) sur un intervalle
périodique x ∈ [0, L] Le facteur 1/2 est introduit afin que la définition des coefficients an

donnés ci-dessous soit valide pour tout n. Les coefficients satisfont

an = 2
L

∫ L

0
f(x) cos

(
nπx

L

)
dx, et bn = 2

L

∫ L

0
f(x) sin

(
nπx

L

)
dx. (50)

La base de fonctions trigonométriques est orthogonale, c.-à-d. que les relations (40), et (51)
sont satisfaites :

2
L

∫ L

0
cos
(
mπx

L

)
cos
(
nπx

L

)
dx = δmn,

2
L

∫ L

0
cos
(
mπx

L

)
sin
(
nπx

L

)
dx = 0. (51)

(c) Dériver l’évolution temporelle du déplacement de la corde. Quelle est l’intensité de l’onde sur la
corde en fonction du temps ?
On substitue les coefficients bn et cn = 0 dérivés ci-dessus dans la solution générale de
l’équation d’onde (36) pour finalement obtenir

ψ(x, t) =
∞∑

m=0

8A(−1)m

(2m+ 1)2π2 sin
((2m+ 1)πx

L

)
cos
((2m+ 1)πut

L

)
(52)

=
∞∑

m=0
βm(t) sin

((2m+ 1)πx
L

)
. (53)

On calcule l’intensité de l’onde sur l’intervalle [0, L], définie comme :

I(t) = 1
L

∫ L

0
|ψ(x, t)|2 dx. (54)

En utilisant l’orthogonalité des modes sinusoïdaux, comme donné en (40), il est possible de
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montrer que, par substitution de (53),

I(t) = 1
L

∫ L

0
|ψ(x, t)|2 dx (55)

= 1
L

∞∑
m=0

∞∑
n=0

∫ L

0
βm(t)βn(t) sin

((2m+ 1)πx
L

)
sin
((2n+ 1)πx

L

)
dx (56)

= 1
2

∞∑
m=0

βm(t)2 =
∞∑

m=0
Im(t). (57)

L’intensité de chaque harmonique Im(t) est donnée par :

Im(t) = 1
2

[ 8A
(2m+ 1)2π2 cos

((2m+ 1)πut
L

)]2
. (58)

(d) Refaire les points (a)–(c) en considérant une corde pincée au 1/3 de sa longueur.
Le raisonnement reste identique à celui du point (c). Il faut cependant adapter l’inté-
grale (42)–(45) associée au calcul des coefficients bn aux nouvelles conditions initiales
décrites par l’énoncé :

ψ(x, 0) =


3A
L
x si 0 ≤ x ≤ L

3 ,

3A
2L (L− x) sinon,

(59)

et ∂ψ

∂t
(x, 0) = 0, ∀x ∈ [0, L]. (60)

On note que la condition (60) implique à nouveau cn = 0, cf. éq. (39). Pour bn,

bn = 2
L

∫ L

0
ψ(x, 0) sin

(
nπx

L

)
dx (61)

= 2
L

[∫ L/3

0

3A
L
x sin

(
nπx

L

)
dx+

∫ L

L/3

3A
2L (L− x) sin

(
nπx

L

)
dx

]
(62)

= 6A
[∫ 1/3

0
z sin(nπz) dz− (−1)n

2

∫ 2/3

0
y sin(nπy) dy

]
avec y = 1 − z; z = x/L (63)

= 6A
([

−z cos(nπz)
nπ

+ sin(nπz)
n2π2

]z=1/3

z=0
− (−1)n

2

[
−y cos(nπy)

nπ
+ sin(nπy)

n2π2

]y=2/3

y=0
(64)

= 6A
[sin(nπ/3) − (nπ/3) cos(nπ/3)

n2π2 − (−1)n sin(2πn/3) − (2πn/3) cos(2πn/3)
2n2π2

]
. (65)

Entre (62) et (63), on a utilisé que

sin(nπ(1 − y)) = sin(nπ− nπy) = −(−1)n sin(nπy). (66)

L’amplitude sera donc donnée par

ψ(x, t) =
∞∑

n=1
bn sin

(
nπx

L

)
cos
(
nπut

L

)
. (67)

On remarque des différences majeures par rapport au résultat trouvé en (c). En effet, lorsque
la corde était initialement pincée au milieu, par symétrie, les coefficients b2m étaient nuls
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par parité : la fonction sin(2mπx/L) était impaire par rapport au point x = L/2 alors que
ψ(x, 0) était paire. Or, dans le cas de la corde pincée au 1/3 de la longueur, ces coefficients
sont non nuls et des ondes stationnaires antisymétriques contribuent donc aux vibrations
de la corde.

On aimerait également étudier le cas d’une corde frappée plutôt que pincée, comme pour un piano
par exemple. Initialement, la corde est supposée être à sa position d’équilibre, mais sur un intervalle
de longueur a centré en L/2, une vitesse initiale v0 est donnée aux éléments de la corde. Cette
condition se traduit en

ψ(x, 0) = 0 et ∂ψ

∂t

∣∣∣∣
t=0

=
{
v0 si x ∈ [(L− a)/2, (L+ a)/2],
0 sinon.

(e) Dériver l’évolution temporelle de la corde frappée.
Similairement aux points précédents, on détermine les coefficients de Fourier bn et cn. On
considère pose à nouveau les équations (38) et (39),

ψ(x, 0) =
∞∑

n=1
bn sin(knx) = 0, (68)

∂ψ

∂t
(x, 0) =

∞∑
n=1

cnknu sin(knx). (69)

Comme ψ(x, 0) = 0, tous les coefficients bn sont cette fois nuls. Il suffit donc de déterminer
les coefficients cn en projetant la condition initiale (∂ψ/∂t)(x, 0) sur la base de fonctions
sinus. Une approche similaire à celle aboutissant à l’équation (41) donne donc

cn = 2
L

1
ukn

∫ L

0

∂ψ

∂t
(x, 0) sin

(
nπx

L

)
dx (70)

= 2v0
nπu

∫ (L+a)/2

(L−a)/2
sin
(
nπx

L

)
dx (71)

= 2v0
nπu

[
− L

nπ
cos
(
nπx

L

)]x=(L+a)/2

x=(L−a)/2
(72)

= − 2v0L

n2π2u

[
cos
(
nπ

2 + nπa

2L

)
− cos

(
nπ

2 − nπa

2L

)]
(73)

= 4v0L

n2π2u
sin
(
nπ

2

)
sin
(
nπa

2L

)
. (74)

On a donc à nouveau une annulation des coefficients pairs c2m = 0 en raison de la parité de
la fonction projetée sur la base sinus, alors que

c2m+1 = (−1)m 4v0L

(2m+ 1)2π2u
sin
((2m+ 1)πa

2L

)
. (75)

Par conséquent, l’évolution temporelle de la corde frappée est donnée par :

ψ(x, t) =
∞∑

m=0
(−1)m 4v0L

(2m+ 1)2π2u
sin
((2m+ 1)πa

2L

)
sin
((2m+ 1)πx

L

)
sin
((2m+ 1)πut

L

)
.

(76)
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3 Corde dans un milieu visqueux
On considère une corde de longueur L et de masse linéique µ dans un milieu visqueux. Les bords de
la corde sont considérés comme étant fixes. Chaque élément infinitésimal de corde dx est soumis à
une force de frottement infinitésimale dF = −λv dx, où λ > 0 est le coefficient de frottement par
unité de longueur. La corde est soumise à une tension T. La vitesse de propagation de la perturbation
est notée u.
(a) Montrer que l’équation d’onde, en tenant compte des frottements, s’écrit :

∂2ψ

∂t2
+ λ

µ

∂ψ

∂t
= u2∂

2ψ

∂x2 .

L’équation d’onde unidimensionnelle sans frottements est donnée par :

∂2ψ

∂t2
= u2∂

2ψ

∂x2 .

Cette équation peut s’obtenir à l’aide d’une approche Newtonienne, où l’interaction d’un
point avec son voisinage est due à la tension, à laquelle on ajoute la contribution de la force
de frottement. Puisque F = −λv, la force de frottement s’écrit donc F = −λ(∂ψ/∂t). Par
conséquent, la 2e loi de Newton pour la corde est donnée par :

µdx
∂2ψ

∂t2
=
∑

i

Fi = −λ∂ψ
∂t

dx+ Ty(x+ dx) + Ty(x). (77)

Comme vu en cours, la tension T est de norme constante en tout point de la corde et la
composante verticale s’écrit Ty(x) = T sin(θ(x)) ≈ Tθ(x) = T(∂ψ/∂x). En divisant par µdx,
on obtient le résultat souhaité, sachant que u2 = T/µ pour la corde :

∂2ψ

∂t2
+ λ

µ

∂ψ

∂t
= u2

dx

(
∂ψ

∂x
(x+ dx) − ∂ψ

∂x
(x)
)

≈ u2∂
2ψ

∂x2 . (78)

(b) En utilisant la méthode de séparation de variables, dériver les modes propres d’une corde dans
un milieu visqueux. Discuter de l’évolution temporelle des différents régimes observés pour ces
modes propres.
On utilise la méthode de séparation de variables en posant ψ(x, t) = X(x)T(t). En injectant
cette expression dans l’équation d’onde amortie et en choisissant k2 comme solution de
l’équation, on obtient :

1
u2T(t)

(
T ′′(t) + λ

µ
T ′(t)

)
= X ′′(x)

X(x) = −k2 = const. (79)

Ceci donne deux équations différentielles linéaires pour X(x) et T(t) :

X ′′(x) + k2X(x) = 0, (80)

T ′′(t) + λ

µ
T ′(t) + k2u2T(t) = 0. (81)

L’équation (80) correspond à l’équation harmonique dont la forme générale est donnée par :

X(x) = A sin(kx) +B cos(kx). (82)

Les conditions aux bords fixes imposent que :

X(0) = 0 =⇒ B = 0, (83)
X(L) = 0 =⇒ A sin(kL) = 0. (84)
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L’équation (83) impose donc que kL = nπ, ce qui implique que la partie spatiale de ψ est
donnée par : X(x) = A sin(knx) avec kn = nπ/L.
Pour la partie temporelle, on observe que l’équation (81) admet les solutions de la forme
T(t) = Aeat. En appliquant cet Ansatz, on obtient que a obéit à la relation suivante :

a2 + λ

µ
a+ u2k2 = 0, (85)

et donc

a = − λ

2µ ±
√
λ2

4µ2 − k2u2 = −Λ ±
√

∆. (86)

La forme générale pour T(t) est donc donnée par :

T(t) = e−Λt(Ae
√

∆t +Be−
√

∆t) (87)

On peut distinguer trois cas particuliers :
√

∆ ∈ R,
√

∆ ∈ iR et
√

∆ = 0. La notation iR
dénote l’ensemble des nombres purement imaginaires, c.-à-d. les nombres complexes dont
la partie réelle est nulle. Les cas

√
∆ ∈ R et

√
∆ ∈ iR correspondent respectivement aux

régimes sur-critiques et sous-critiques comme vu pour l’équation de l’oscillateur harmonique
amorti. Pour le cas

√
∆ = 0, il faut procéder plus méthodiquement. En effet, a1 = a2 = −Λ,

ce qui implique que les deux solutions trouvées précédemment sont égales. Pour trouver
la seconde solution, on utilise la méthode de la variation de la constante. En posant
T(t) = A(t)e−Λt, on peut montrer que le terme A(t) doit satisfaire A′′(t) = 0, ce qui
implique que A(t) = A + Bt. Le cas

√
∆ = 0 est appelé régime critique et la partie

temporelle est donnée par T(t) = e−Λt(A + Bt). Finalement, les modes propres peuvent
s’écrire de la manière suivante :√

∆n ∈ R (sur-critique) : ψn(x, t) = e−Λt sin(knx)(Ae
√

∆nt +Be−
√

∆nt), (88)√
∆n = 0 (critique) : ψn(x, t) = e−Λt sin(knx)(A+Bt), (89)√

∆n ∈ iR (sous-critique) : ψn(x, t) = e−Λt sin(knx)(Aei|
√

∆n|t +Be−i|
√

∆n|t), (90)

où ∆n = Λ2 − k2
nu

2.
(c) Obtenir la relation de dispersion ω = ω(k).

On rappelle l’expression de la transformée de Fourier d’une fonction ψ(x, t)

F(ψ(x, t)) = ψ̃(k, ω) =
∫
dx

∫
dt ψ(x, t)e−i(kx−ωt). (91)

Les propriétés de la transformée de Fourier implique que

F
(
∂ψ

∂t

)
= −iωF(ψ), F

(
∂2ψ

∂t2

)
= −ω2F(ψ) et F

(
∂2ψ

∂x2

)
= −k2F(ψ). (92)

Ces propriétés peuvent être trouvées en utilisant l’intégration par parties et en considérant
qu’aux limites t → +∞ et x → ±∞, la fonction d’onde s’annule ψ(x, t) → 0. En considérant
la transformée de Fourier de l’équation d’onde amortie, on obtient :

F
(
∂2ψ

∂t2
+ λ

µ

∂ψ

∂t
− u2∂

2ψ

∂x2

)
= 0 =⇒

(
−ω2 − i

λ

µ
ω+ u2k2

)
ψ̃(k, ω) = 0. (93)

Puisque ψ̃(k, ω) est non nul pour une solution non triviale, on obtient donc que la relation
de dispersion peut être écrite comme suit :

u2k2 = ω2 + i
λ

µ
ω. (94)
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On remarque que cette relation de dispersion est très similaire à la relation de dispersion
pour un milieu sans dissipation ω2 = u2k2. Le terme complexe iλω/µ implique donc une
décroissance exponentielle dans le temps.

(d) En considérant ω ∈ C et k ∈ R, que peut-on dire sur l’évolution temporelle d’un paquet d’onde ?
En résolvant (94) pour la variable ω, on obtient que :

ω = −i λ2µ ±
√
u2k2 − λ2

4µ2 . (95)

Cette expression est analogue à (86). Cela veut donc dire que pour certaines valeurs du
nombre d’onde k, ω peut être purement imaginaire, c.-à-d. ω ∈ iR, ce qui correspondrait à
un amortissement sur-critique de ces solutions d’onde. Ce résultat coïncide donc avec les
modes de Fourier trouvés en (88).
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