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1.1 U'équation d’onde




1.1.2 U'équation d’'onde (de d’Alembert)

0%¢ _ 207
R

u —_
Ox?




1.1.2.3 Ondes a la surface d’un liquide

Combinaison d’un déplacement vertical

\D/ (transversal) et horizontal (longitudinal)
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1.1.2 U'équation d’'onde (de d’Alembert)
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1.1.3 Solution de I'équation d’'onde
§(x,t) = &z —ut) + &o(x + ut)

Cas particulier: &(x,t) = &y sinlk(x — ut))
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1.1.4 Ondes a trois dimensions
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1.1.5 Histoire
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1.2 Propriétés de base des ondes

 Ce que ce propage dans un
mouvement ondulatoire

e Leffet Doppler
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1.2.1.1 Densité d'énergie d’'une onde
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Série 2 : L’équation d’onde et sa solution

1 Onde de Alfvén : Modéle MHD idéal

En 1942, Hannes Alfvén chercha a expliquer pourquoi la couronne solaire était plus chaude que la
surface-méme du soleil. Pour expliquer ceci, il introduit le modéle MHD qui combine les équations
d’électrodynamique (Maxwell, Ohm) avec I'équation provenant de la mécanique des fluides (Navier-
Stokes, Laplace, conservation de la masse). Ce modéle prédit qu’il existe des ondes au sein des plasmas
qui pourraient expliquer les transports d'énergie de la surface du soleil & la couronne solaire. Cette
prédiction lui a valu le prix Nobel en 1970. Dans cet exercice, on cherche a exprimer la relation entre
la pulsation et le nombre d'onde, c’est-a-dire la relation de dispersion, w = f(k) pour ces ondes en
utilisant le modéle MHD :
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(a) A partir des 8 équations du modele, en éliminant la dépendance en E et en J, réduire le modéle
MHD aux 4 équations suivantes dans le cas du modéle MHD idéal ( = 0)

op _ ou 1
E+V<(pu)—0 Por = Vp+HO(V><B)><B
0B d

o B Ly =
5 = VX (uxB) P ) =0

(b) Linéariser les quantités p, p, B et u comme pour I'exercice 2 de la série 1. En approximant au
plus petit ordre dans I'amplitude de perturbation, déduire que les équations dérivées au point
(a) peuvent &tre écrites en termes de B, 1, p et p

9p i o 1 _
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ol ¢s = /Ypo/po est la vitesse du son. Le plasma est au repos a I'équilibre.

Ces équations sont difficilement solvables. Afin de les simplifier, on suppose que les perturbations B,

1, et P peuvent &tre exprimées avec I'Ansatz général suivante : A(z,t) = Aeilkx—«t)

(c) En utilisant I'Ansatz donné et en éliminant la dépendance en p, reformuler les équations trouvées
au point (b).

On se propose de dériver la relation de dispersion des ondes de Alfvén transverses. Pour se faire, on
impose que & = (0, iy, 0) et que k = (k;,0, k) ainsi que Bg = ByZ.

S . . 2
(d) A partir des équations trouvées en (c), montrer que la relation de dispersion s'écrit : w = ¢ k2
ol cg = By/+/1opo est la vitesse de Alfvén.
On considére désormais que G = (@, 0, U ). Cette nouvelle hypothése permet de prédire deux nou-

veaux types d'onde : les onde de Alfvén compressionelles et les ondes magnétosonores.

g
W (e) Montrer que cette hypothése permet de dériver 2 relations de dispersion ;

1 1
w2 = 5(0124 + A+ \/Z(c?4 + c2)2k* — 2 c2k2k? (21)

En absence de champ magnétique By, que peut-on dire sur la relation de dispersion ?

2 Ondes cylindriques

Dans le cours, il a été vu comment dériver |'expression générale d'une onde sphérique et le calcul

de diverses quantités associées comme son intensité. Dans cet exercice, on propose de dériver ces

mémes expressions,avec une approche similaire, mais dans le cas d'une onde cylindrique.

(a) Montrer, en utilisant la méthode de séparation de variables £(x,t) = R(r)©(0)Z(z) cos(wt + ¢),
que les fonctions R, ©, Z satisfont les propriétés suivantes :

r2 (rﬁR) +[(ker)? =n*]R=0

or \ or
0" +n?0 =0
7"+ k2Z =0
B =k +k W=

Résoudre les équations données ci-dessus et obtenir la forme générale des solution d’onde en
coordonnées cylindriques dans le cas k;. # 0.

(b) On s’intéresse aux solutions ol il n'y a pas de dépendance en 6 et z. Donner la forme approchée
de la solution de I'équation d'onde cylindriques pour »r — oo. Discuter de la dépendance en r
de la solution trouvée.

(c) Soit &(r,t), une onde sonore cylindrique sinusoidale donnée par :
&osin(kr — wt)
\/,F

Montrer que I'intensité de I'onde est proportionnelle & 1/r et donner la signification physique de
cette dépendance.

§(r,t) =
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