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Cours de physique IV (PHYS-206) — Prof. Paolo Ricci — SPC

21 février 2025

Série 1 : Introduction a I’équation d’onde

1 Onde sinusoidale
(a) Montrer que la fonction sinusoidale f(z,t) = Asin(kz — wt) est solution de I'équation d'onde

Pf_ L0Pf
o =" a2
en précisant |'expression de wu et la relation entre k et w.

(b) Donner la longueur d’onde A (distance entre deux crétes d'une onde) et la période T de f(z,t).
Trouver I'amplitude maximale max|f|, 'amplitude moyenne (f) et I'amplitude quadratique
moyenne (f2). Déterminer la vitesse et direction de propagation de I'onde u. Dessinez cette
fonction aux temps ¢ =0, t = m/3w et t = 27/3w.

2 Onde acoustique unidimensionnelle

Dans cet exercice, on propose une dérivation alternative (par rapport au cours) de I'équation d'onde
pour une onde acoustique unidimensionnelle dans un gaz. On considére les trois quantités physiques
suivantes : p(z,t) le champ de densité massique du gaz, v(z,t) le champ de vitesse dans le gaz et
p(z,t) le champ de pression dans le gaz. Dans |'approximation des faibles perturbations, ces trois
quantités peuvent étre réécrites de la facon suivante :

p(z,t) = po+pz,t); vz, t)=vo+0(z,t);  plx,t) =po+px,1),

ou les termes pg, vy et po sont les valeurs constantes de la densité massique, de la vitesse et de la
pression lorsque le gaz est a I'équilibre et les termes p(z,t), 0(x,t) et p(x,t) sont des perturbations
par rapport a I'équilibre telles que p(z,t) < po, |0(z,t)| < |vo| et p(z,t) <K po. Pour approcher
ce probléme, on part du modéle fluide tridimensionnel décrit par les équations de Navier-Stokes.
On considére ici en particulier I'équation de conservation de la masse et le bilan de la quantité de
mouvement, dans lesquelles 1 est la viscosité du fluide et fﬂ la densité de force externe s'exercant
sur celui-ci,

op = L
E#»V-(pv)f(),

o, = -~ - >
p(a + (- V)v> = —Vp+uVi+ f.
(a) En utilisant le bilan de la quantité de mouvement, montrer que le champ de vitesse v(z,t)
satisfait I'équation différentielle suivante,
oo 10p )
ot~ poox’
en ne conservant que les termes de 1°" ordre dans |'amplitude des perturbations. On néglige
par ailleurs la viscosité u du gaz et on considére également qu'aucune force externe ne s'exerce
sur celui-ci. On considére le gaz comme étant au repos a I'équilibre.
(b) On considére que le gaz est sujet a une transformation adiabatique (pV? = const), avec V' le

volume occupé par le gaz. A partir de I'équation de conservation de la masse, montrer que :

p 9%
a1 = P0g (1)

Les séries

(c) En combinant les deux résultats précédents, conclure que le champ de pression p obéit a une
équation d’onde dont |a vitesse de propagation c est donnée par /YRT /M ou M est la masse
molaire du gaz et R la constante des gaz parfaits.

(d) Comparer la vitesse du son de I'air a 20°C avec celle de I'hélium (He). Application numérique :
My = 29 g/mol, My, = 4.003 g/mol, Vair = 1.4, Ype = 1.66, R = 8.314 J - mol~!. K~1 .

3 Onde élastique dans un barreau

Dans cet exercice, on dérive I'équation d'onde qui régit la propagation d'une onde de déformation

longitudinale dans un barreau élastique de longueur L. Dans un premier temps, on adopte une

approche discréte ol on considére un systéme de N masses m; reliées une a une par des ressorts de
raideur k et de longueur au repos lg. A I'équilibre, les masses sont équidistantes et la distance entre

chacune est égale a ly. On suppose x; > x;_1 et que toutes les masses sont similaires m; = m.

(a) Dériver I'équation du mouvement d'une masse m; en négligeant les effets dus a la longueur
finie du barreau.

(b) En prenant la limite N — oo, montrer que I'équation du mouvement trouvée en (a) se réduit
a une équation d'onde dont la vitesse de propagation est donnée par : u = \/T/u, ol p est
la masse linéique du barreau et T' = kly correspond a la tension dans le barreau. Indication :
utiliser comme variable le déplacement par rapport a la position d’équilibre.

L'équation d'onde dans un milieu élastique peut également étre dérivée en adoptant le formalisme

de la mécanique des corps déformables. On nomme £(x,t) le déplacement de la section du barreau

en x a l'instant ¢. La densité massique p et la section S sont considérées constantes.

(c) Comme premiere étape, en écrivant la loi de Newton pour une section du barreau, dériver
I"équation suivante :

0%¢ 100

a2 pox
ol o(x,t) est la contrainte au point  a l'instant ¢, qui est définie dans cet exercice comme
o= F/S avec F la force appliquée sur la section en x.

(d) En mécanique des corps déformables, on appelle la déformation ¢ = Al/! la variation relative
de la longueur d'un élément infinitésimal du barreau. Dans le cas d'un régime élastique, la loi
de Hooke o = E¢ décrit la relation entre contrainte et déformation. E est le module de Young
qui caractérise |'élasticité du matériau. En utilisant la loi de Hooke, démontrer que &(z,t) est
solution d'une équation d’onde dont la vitesse de propagation est donnée par ¢ = /E/p.
Comparer cette expression de la vitesse de propagation avec celle trouvée en (b).
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Buts du cours

Attendre une compréhension fondamentale de:

- la dynamique ondulatoire

Radio Microwave  Infrared Visible Ultraviol et X-Ray Gamma Ray
1

- phénomenes de base lies aux ondes
électromagnétiques

- dynamique a vitesse proche de ¢




Organisation du cours

1. Les ondes
1.1 Uéquation d'onde
1.2 Propriétés de base des ondes
1.3 Superposition d’'onde
1.4 Interaction ondes-milieu de propagation

2. Ondes électromagnétiques
2.1 Propriétés de base des ondes électromagnétiques
2.2 Propagation des ondes électromagnétiques dans la matiere
2.3 Réflexion et réfraction des ondes électromagnétiques

3. La relativité restreinte
3.1 Introduction
3.2 Cinématique relativiste
3.3 Dynamique relativiste
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1.1.1 Propagation d’une perturbation
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1.1.2 U'équation d’'onde (de d’Alembert)
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Cours de physique IV (PHYS-206) — Prof. Paolo Ricci — SPC
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Série 1 : Introduction a I’équation d’onde

1 Onde sinusoidale
(a) Montrer que la fonction sinusoidale f(z,t) = Asin(kz — wt) est solution de I'équation d'onde

Pf_ L0Pf
o =" a2
en précisant |'expression de wu et la relation entre k et w.

(b) Donner la longueur d’onde A (distance entre deux crétes d'une onde) et la période T de f(z,t).
Trouver I'amplitude maximale max|f|, 'amplitude moyenne (f) et I'amplitude quadratique
moyenne (f2). Déterminer la vitesse et direction de propagation de I'onde u. Dessinez cette
fonction aux temps ¢ =0, t = m/3w et t = 27/3w.

2 Onde acoustique unidimensionnelle

Dans cet exercice, on propose une dérivation alternative (par rapport au cours) de I'équation d'onde
pour une onde acoustique unidimensionnelle dans un gaz. On considére les trois quantités physiques
suivantes : p(z,t) le champ de densité massique du gaz, v(z,t) le champ de vitesse dans le gaz et
p(z,t) le champ de pression dans le gaz. Dans |'approximation des faibles perturbations, ces trois
quantités peuvent étre réécrites de la facon suivante :

p(z,t) = po+pz,t); vz, t)=vo+0(z,t);  plx,t) =po+px,1),

ou les termes pg, vy et po sont les valeurs constantes de la densité massique, de la vitesse et de la
pression lorsque le gaz est a I'équilibre et les termes p(z,t), 0(x,t) et p(x,t) sont des perturbations
par rapport a I'équilibre telles que p(z,t) < po, |0(z,t)| < |vo| et p(z,t) <K po. Pour approcher
ce probléme, on part du modéle fluide tridimensionnel décrit par les équations de Navier-Stokes.
On considére ici en particulier I'équation de conservation de la masse et le bilan de la quantité de
mouvement, dans lesquelles p est la viscosité du fluide et fﬂ la densité de force externe s'exercant
sur celui-ci,

op = L
E#»V-(pv)f(),

o, = -~ - >
p(a + (- V)v) = —Vp+uViu+f.
(a) En utilisant le bilan de la quantité de mouvement, montrer que le champ de vitesse v(z,t)
satisfait I'équation différentielle suivante,
oo 10p )
ot~ poox’
en ne conservant que les termes de 1°" ordre dans |'amplitude des perturbations. On néglige
par ailleurs la viscosité u du gaz et on considére également qu'aucune force externe ne s'exerce
sur celui-ci. On considére le gaz comme étant au repos a I'équilibre.
(b) On considére que le gaz est sujet a une transformation adiabatique (pV? = const), avec V' le

volume occupé par le gaz. A partir de I'équation de conservation de la masse, montrer que :

p 9%
a1 = P0g (1)

Série 1

(c) En combinant les deux résultats précédents, conclure que le champ de pression p obéit a une
équation d’onde dont |a vitesse de propagation c est donnée par /YRT /M ou M est la masse
molaire du gaz et R la constante des gaz parfaits.

(d) Comparer la vitesse du son de I'air a 20°C avec celle de I'hélium (He). Application numérique :
My = 29 g/mol, My, = 4.003 g/mol, Vair = 1.4, Ype = 1.66, R = 8.314 J - mol~!. K~1 .

3 Onde élastique dans un barreau

Dans cet exercice, on dérive I'équation d'onde qui régit la propagation d'une onde de déformation

longitudinale dans un barreau élastique de longueur L. Dans un premier temps, on adopte une

approche discréte ol on considére un systéme de N masses m; reliées une a une par des ressorts de
raideur k et de longueur au repos lg. A I'équilibre, les masses sont équidistantes et la distance entre

chacune est égale a ly. On suppose x; > x;_1 et que toutes les masses sont similaires m; = m.

(a) Dériver I'équation du mouvement d'une masse m; en négligeant les effets dus a la longueur
finie du barreau.

(b) En prenant la limite N — oo, montrer que I'équation du mouvement trouvée en (a) se réduit
a une équation d'onde dont la vitesse de propagation est donnée par : u = \/T/u, ol p est
la masse linéique du barreau et T' = kly correspond a la tension dans le barreau. Indication :
utiliser comme variable le déplacement par rapport a la position d’équilibre.

L'équation d'onde dans un milieu élastique peut également étre dérivée en adoptant le formalisme

de la mécanique des corps déformables. On nomme &(z,t) le déplacement de la section du barreau

en x a l'instant ¢. La densité massique p et la section S sont considérées constantes.

(c) Comme premiere étape, en écrivant la loi de Newton pour une section du barreau, dériver
I"équation suivante :

0%¢ 100

a2 pox
ol o(x,t) est la contrainte au point  a l'instant ¢, qui est définie dans cet exercice comme
o= F/S avec F la force appliquée sur la section en x.

(d) En mécanique des corps déformables, on appelle la déformation ¢ = Al/! la variation relative
de la longueur d'un élément infinitésimal du barreau. Dans le cas d'un régime élastique, la loi
de Hooke o = E¢ décrit la relation entre contrainte et déformation. E est le module de Young
qui caractérise |'élasticité du matériau. En utilisant la loi de Hooke, démontrer que &(z,t) est
solution d'une équation d’onde dont la vitesse de propagation est donnée par ¢ = /E/p.
Comparer cette expression de la vitesse de propagation avec celle trouvée en (b).
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