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Série 2 : L’équation d’onde et sa solution

1 Onde d’Alfvén : Modele MHD idéal

En 1942, Hannes Alfvén chercha a expliquer la formation et le mouvement des taches solaires.
[l proposa la premiére formulation du modéle magnétohydrodynamique (MHD) qui combine les
équations d'électrodynamique avec les équations provenant de la mécanique des fluides. Ce modéle
prédit qu'il existe des ondes au sein des plasmas et valut a Alfvén le prix Nobel de physique en 1970.
Il proposera que ces ondes sont responsables du mouvement des taches solaires et suggérera plus
tard, en 1947, qu’elles pourraient expliquer les températures tres élevées observées dans la couronne
solaire. Dans cet exercice, on cherche a exprimer la relation entre la pulsation et le nombre d'onde,
c'est-a-dire la relation de dispersion, w = f(k) pour ces ondes en utilisant le modéle MHD :
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(a) A partir des 8 équations du modeéle, en éliminant la dépendance en E et en J, réduire le modéle
MHD aux 4 équations suivantes dans le cas du modele MHD idéal (n = 0) :
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(b) A I'équilibre, on considere le plasma est au repos. Linéariser p, p, B et u comme pour I'exercice 2
de la série 1. En approximant au plus petit ordre dans I'amplitude de perturbation, déduire que
les équations dérivées au point @) peuvent étre écrites en termes de B, 1, p et p :
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On note ¢s = \/vpo/po la vitesse du son.

Afin de simplifier ces équations, on suppose que les perturbations B, @, p et p peuvent étre exprimées

avec I'Ansatz général suivant : A(x,t) = Aetlkx—wt),

(c) En utilisant I'Ansatz et en éliminant la dépendance en p, reformuler les équations trouvées au
point ([b)).

On consideére des ondes d'Alfvén transverses, c’est-a-dire des ondes pour lesquelles @ = (0, @y, 0)

k = (k;,0, k) ainsi que Bg = ByZ.

(d) A partir des équations trouvées en ([d), montrer que la relation de dispersion s'écrit : w? = % k2
ot cy = Bo/\/1opo est la vitesse d'Alfvén.

On considére désormais que 1 = (4, 0,7,). Cette nouvelle hypothése permet de prédire deux
nouveaux types d'onde : les ondes d’Alfvén compressionelles et les ondes magnétosonores.
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W (e) Montrer que cette hypothése permet de dériver deux relations de dispersion,

1 1
w? = 5(0124 + Ak + \/4(0?4 + ¢2)2k* — A c2k2k2.

Commenter le résultat en absence de champ magnétique By.

2 Ondes cylindriques
En cours, il a été vu comment dériver |'expression générale d'une onde sphérique et le calcul de
diverses quantités associées comme son intensité. Dans cet exercice, on propose de dériver ces
mémes expressions, avec une approche similaire, mais dans le cas d'une onde cylindrique.

(a) En partant de I'équation d'onde générale et en utilisant la méthode de séparation des variables
&(x,t) = R(r)O(0)Z(z) cos(wt+ ¢), montrer que les fonctions R, O, Z satisfont les propriétés
suivantes :
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avec w? = u?k? ol k? = k2 + k2 et u est la vitesse de phase de I'onde. Résoudre les équations
données ci-dessus et obtenir la forme générale des solutions d'onde en coordonnées cylindrique
dans le cas k, # 0. Note : on cherche les solutions définies pour r € [0, o0].

(b) On s'intéresse aux solutions ot il n'y a pas de dépendance en 6 et z. Donner la forme approchée
de la solution de I'équation d'onde cylindrique pour r — oo. Discuter du sens de la propagation
ainsi que de la dépendance en 7 de la solution trouvée.

(c) Soit &(r,t), une onde sonore cylindrique sinusoidale donnée par :

&o sin(k,r — wt)
§(r,t) = ’ :

N
Montrer que I'intensité moyenne de |'onde est proportionnelle a 1/7 et donner la signification
physique de cette dépendance.

Indications
— La forme du laplacien en coordonnées cylindriques est donnée par I'expression suivante :
1a< 8f)+ 1 0°f O%*f
——|r= ===+ —.
ror\ Or r2 002 = 022
— Les fonctions de Bessel de premiere espéce J, et seconde espéce Y, (aussi appelées fonctions
de Neumann) sont les solutions de I'équation différentielle suivante :
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— Le comportement asymptotique des fonctions J,(x) et Y, (z) pour z — 0 est donné par
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V2 f(r,0,z2) =

et, pour x — 00, par



