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Série 2 : L’équation d’onde et sa solution

1 Onde d’Alfvén : Modèle MHD idéal
En 1942, Hannes Alfvén chercha à expliquer la formation et le mouvement des taches solaires.
Il proposa la première formulation du modèle magnétohydrodynamique (MHD) qui combine les
équations d’électrodynamique avec les équations provenant de la mécanique des fluides. Ce modèle
prédit qu’il existe des ondes au sein des plasmas et valut à Alfvén le prix Nobel de physique en 1970.
Il proposera que ces ondes sont responsables du mouvement des taches solaires et suggérera plus
tard, en 1947, qu’elles pourraient expliquer les températures très élevées observées dans la couronne
solaire. Dans cet exercice, on cherche à exprimer la relation entre la pulsation et le nombre d’onde,
c’est-à-dire la relation de dispersion, ω = f(k) pour ces ondes en utilisant le modèle MHD :

∂ρ

∂t
+ ∇ · (ρu) = 0 (Continuité) ∇ · J = 0 (Conserv. charge)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= J × B − ∇p (Q. de mouv.) E + u × B = ηJ (Loi d’Ohm)

d

dt
(pρ−γ) = 0 (Éq. d’état) ∇ × B = µ0J (Loi d’Ampère)

∇ × E = −∂B
∂t

(Loi de Faraday) ∇ · B = 0 (Éq. de Maxwell-Thomson)

(a) À partir des 8 équations du modèle, en éliminant la dépendance en E et en J, réduire le modèle
MHD aux 4 équations suivantes dans le cas du modèle MHD idéal (η = 0) :

∂ρ

∂t
+ ∇ · (ρu) = 0

∂B
∂t

= ∇ × (u × B)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + 1
µ0

(∇ × B) × B

d

dt
(pρ−γ) = 0

(b) À l’équilibre, on considère le plasma est au repos. Linéariser ρ, p, B et u comme pour l’exercice 2
de la série 1. En approximant au plus petit ordre dans l’amplitude de perturbation, déduire que
les équations dérivées au point (a) peuvent être écrites en termes de B̃, ũ, ρ̃ et p̃ :

∂ρ̃

∂t
+ ∇ · (ρ0ũ) = 0 ρ0

∂ũ
∂t

= −∇p̃ + 1
µ0

(∇ × B̃) × B0

∂B̃
∂t

= ∇ × (ũ × B0) p̃ = γp0
ρ0

ρ̃ = c2
sρ̃

On note cs =
√

γp0/ρ0 la vitesse du son.

Afin de simplifier ces équations, on suppose que les perturbations B̃, ũ, ρ̃ et p̃ peuvent être exprimées
avec l’Ansatz général suivant : Ã(x, t) = Aei(k·x−ωt).
(c) En utilisant l’Ansatz et en éliminant la dépendance en p̃, reformuler les équations trouvées au

point (b).

On considère des ondes d’Alfvén transverses, c’est-à-dire des ondes pour lesquelles ũ = (0, ũy, 0)
k = (kx, 0, kz) ainsi que B0 = B0ẑ.
(d) À partir des équations trouvées en (c), montrer que la relation de dispersion s’écrit : ω2 = c2

Ak2
z

où cA = B0/
√

µ0ρ0 est la vitesse d’Alfvén.

On considère désormais que ũ = (ũx, 0, ũz). Cette nouvelle hypothèse permet de prédire deux
nouveaux types d’onde : les ondes d’Alfvén compressionelles et les ondes magnétosonores.
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(e)challenge
Montrer que cette hypothèse permet de dériver deux relations de dispersion,

ω2 = 1
2(c2

A + c2
s)k2 ±

√
1
4(c2

A + c2
s)2k4 − c2

Ac2
sk2k2

z .

Commenter le résultat en absence de champ magnétique B0.

2 Ondes cylindriques
En cours, il a été vu comment dériver l’expression générale d’une onde sphérique et le calcul de
diverses quantités associées comme son intensité. Dans cet exercice, on propose de dériver ces
mêmes expressions, avec une approche similaire, mais dans le cas d’une onde cylindrique.
(a) En partant de l’équation d’onde générale et en utilisant la méthode de séparation des variables

ξ(x, t) = R(r)Θ(θ)Z(z) cos(ωt+φ), montrer que les fonctions R, Θ, Z satisfont les propriétés
suivantes :

r
d

dr

(
r

d

dr
R

)
+ [(krr)2 − n2]R = 0,

d2Θ
dθ2 + n2Θ = 0,

d2Z

dz2 + k2
zZ = 0,

avec ω2 = u2k2 où k2 = k2
r + k2

z et u est la vitesse de phase de l’onde. Résoudre les équations
données ci-dessus et obtenir la forme générale des solutions d’onde en coordonnées cylindrique
dans le cas kr 6= 0. Note : on cherche les solutions définies pour r ∈ [0, ∞[.

(b) On s’intéresse aux solutions où il n’y a pas de dépendance en θ et z. Donner la forme approchée
de la solution de l’équation d’onde cylindrique pour r → ∞. Discuter du sens de la propagation
ainsi que de la dépendance en r de la solution trouvée.

(c) Soit ξ(r, t), une onde sonore cylindrique sinusoïdale donnée par :

ξ(r, t) = ξ0 sin(krr − ωt)√
r

.

Montrer que l’intensité moyenne de l’onde est proportionnelle à 1/r et donner la signification
physique de cette dépendance.

Indications
— La forme du laplacien en coordonnées cylindriques est donnée par l’expression suivante :

∇2f(r, θ, z) = 1
r

∂

∂r

(
r

∂f

∂r

)
+ 1

r2
∂2f

∂θ2 + ∂2f

∂z2 .

— Les fonctions de Bessel de première espèce Jα et seconde espèce Yα (aussi appelées fonctions
de Neumann) sont les solutions de l’équation différentielle suivante :

x
d

dx

(
x

d

dx
y

)
+ (x2 − α2)y = 0.

— Le comportement asymptotique des fonctions Jα(x) et Yα(x) pour x → 0 est donné par

Jα(x) ∼ 1
Γ(α + 1)

(
x

2

)α

,

Yα(x) ∼ −Γ(α)
π

( 2
x

)α

,

et, pour x → ∞, par

Jα(x) ∼
√

2
πx

cos
(

x − απ

2 − π

4

)
,

Yα(x) ∼
√

2
πx

sin
(

x − απ

2 − π

4

)
.
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