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Série 1 : Introduction à l’équation d’onde

1 Onde sinusoïdale
(a) Montrer que la fonction sinusoïdale f(x, t) = A sin(kx − ωt) est solution de l’équation d’onde

∂2f

∂t2 = u2 ∂2f

∂x2 ,

en précisant l’expression de u et la relation entre k et ω.
(b) Donner la longueur d’onde λ (distance entre deux crêtes d’une onde) et la période T de f(x, t).

Trouver l’amplitude maximale max|f |, l’amplitude moyenne 〈f〉 et l’amplitude quadratique
moyenne 〈f2〉. Déterminer la vitesse et direction de propagation de l’onde u. Dessinez cette
fonction aux temps t = 0, t = π/3ω et t = 2π/3ω.

2 Onde acoustique unidimensionnelle
Dans cet exercice, on propose une dérivation alternative (par rapport au cours) de l’équation d’onde
pour une onde acoustique unidimensionnelle dans un gaz. On considère les trois quantités physiques
suivantes : ρ(x, t) le champ de densité massique du gaz, v(x, t) le champ de vitesse dans le gaz et
p(x, t) le champ de pression dans le gaz. Dans l’approximation des faibles perturbations, ces trois
quantités peuvent être réécrites de la façon suivante :

ρ(x, t) = ρ0 + ρ̃(x, t); v(x, t) = v0 + ṽ(x, t); p(x, t) = p0 + p̃(x, t),

où les termes ρ0, v0 et p0 sont les valeurs constantes de la densité massique, de la vitesse et de la
pression lorsque le gaz est à l’équilibre et les termes ρ̃(x, t), ṽ(x, t) et p̃(x, t) sont des perturbations
par rapport à l’équilibre telles que ρ̃(x, t) � ρ0, |ṽ(x, t)| � |v0| et p̃(x, t) � p0. Pour approcher
ce problème, on part du modèle fluide tridimensionnel décrit par les équations de Navier-Stokes.
On considère ici en particulier l’équation de conservation de la masse et le bilan de la quantité de
mouvement, dans lesquelles µ est la viscosité du fluide et ~f la densité de force externe s’exerçant
sur celui-ci,

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

ρ

[
∂~v

∂t
+ (~v · ∇)~v

]
= −∇p + µ∇2~v + ~f.

(a) En utilisant le bilan de la quantité de mouvement, montrer que le champ de vitesse v(x, t)
satisfait l’équation différentielle suivante,

∂ṽ

∂t
= − 1

ρ0

∂p̃

∂x
, (†)

en ne conservant que les termes de 1er ordre dans l’amplitude des perturbations. On néglige
par ailleurs la viscosité µ du gaz et on considère également qu’aucune force externe ne s’exerce
sur celui-ci. On considère le gaz comme étant au repos à l’équilibre.

(b) On considère que le gaz est sujet à une transformation adiabatique (pV γ = const), avec V le
volume occupé par le gaz. À partir de l’équation de conservation de la masse, montrer que :

∂p̃

∂t
= −γp0

∂ṽ

∂x
. (‡)

1



(c) En combinant les deux résultats précédents, conclure que le champ de pression p obéit à une
équation d’onde dont la vitesse de propagation c est donnée par

√
γRT/M où M est la masse

molaire du gaz et R la constante des gaz parfaits.
(d) Comparer la vitesse du son de l’air à 20◦C avec celle de l’hélium (He). Application numérique :

Mair = 29 g/mol, MHe = 4.003 g/mol, γair = 1.4, γHe = 1.66, R = 8.314 J · mol−1· K−1 .

3 Onde élastique dans un barreau
Dans cet exercice, on dérive l’équation d’onde qui régit la propagation d’une onde de déformation
longitudinale dans un barreau élastique de longueur L. Dans un premier temps, on adopte une
approche discrète où on considère un système de N masses mi reliées une à une par des ressorts de
raideur k et de longueur au repos l0. À l’équilibre, les masses sont équidistantes et la distance entre
chacune est égale à l0. On suppose xi > xi−1 et que toutes les masses sont similaires mi = m.
(a) Dériver l’équation du mouvement d’une masse mi en négligeant les effets dus à la longueur

finie du barreau.
(b) En prenant la limite N → ∞, montrer que l’équation du mouvement trouvée en (a) se réduit

à une équation d’onde dont la vitesse de propagation est donnée par : u =
√

T/µ, où µ est
la masse linéique du barreau et T = kl0 correspond à la tension dans le barreau. Indication :
utiliser comme variable le déplacement par rapport à la position d’équilibre.

L’équation d’onde dans un milieu élastique peut également être dérivée en adoptant le formalisme
de la mécanique des corps déformables. On nomme ξ(x, t) le déplacement de la section du barreau
en x à l’instant t. La densité massique ρ et la section S sont considérées constantes.
(c) Comme première étape, en écrivant la loi de Newton pour une section du barreau, dériver

l’équation suivante :
∂2ξ

∂t2 = 1
ρ

∂σ

∂x

où σ(x, t) est la contrainte au point x à l’instant t, qui est définie dans cet exercice comme
σ = F/S avec F la force appliquée sur la section en x.

(d) En mécanique des corps déformables, on appelle la déformation ε = ∆l/l la variation relative
de la longueur d’un élément infinitésimal du barreau. Dans le cas d’un régime élastique, la loi
de Hooke σ = Eε décrit la relation entre contrainte et déformation, où E est le module de
Young qui caractérise l’élasticité du matériau. En utilisant la loi de Hooke, démontrer que ξ(x, t)
est solution d’une équation d’onde dont la vitesse de propagation est donnée par c =

√
E/ρ.

Comparer cette expression de la vitesse de propagation avec celle trouvée en (b).
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