Cours de physique IV — Prof. Paolo Ricci — SPC

24 juin 2024

Corrigé de I'examen final

1. Origine d’un tsunami.

Lors d'un séisme ou d'un glissement de terrain du fond océanique, une perturbation se forme a la sur-
face de I'océan, d'une hauteur de quelques dizaines de centimétres et d'une largeur pouvant atteindre
plusieurs centaines de kilométres. Nous allons voir que sous certaines conditions, cette perturbation
se propage sans se disperser, et augmente en hauteur.

Pour commencer, on considére une vague sur
I'océan, dont le fond est & une profondeur h.
L'écart de hauteur de la surface de I'eau par rap- z nx)

N .. T L . /f\ X
port a sa position d'équilibre z = 0 est définie Oy
par z = n(x). On considére le probléme invariant
selon y, donc 9, = 0. h
L'équation de Navier-Stokes (ot I'on a négligé la
viscosité) décrit I'évolution de la vitesse de I'eau :

0
p(£+u-Vu>:—VP+pg (1)

avec p la densité de I'eau, u sa vitesse, P la pression et g |'accélération de la pesanteur. L'eau
est traitée comme un fluide incompressible, V - u = 0, et irrotationnel, V x u = 0. Cela permet
d'introduire la fonction scalaire ¢ tel que u = V¢. A I'équilibre, u = 0. Sur le fond de I'océan, la
vitesse verticale est nulle.

(a) Montrer que ¢ est solution de :

82791) a2—¢—0 avec @ =0
ox2 022 0z lz=—n

Pour résoudre |'évolution d'une vague se propageant selon x, on cherche ¢ de la forme
bz, 2,t) = f(2)e!F*=w) Montrer que f(z) = ¢gcosh[k(z + h)].

La vitesse s’écrit (avec u, = 0 par invariance de ¢ selon y) : u = uze, +u.e, = g—ﬁez + %ez
La condition d’incompressibilité donne donc :

ou,  Ou ou,

V.u= + 2+ =0 2

Ox oy 0z (2)
0% 0%

—+—=0 3

0x? + 022 (3)

Les équations considérées sont découplées en termes de dérivées spatiales et temporelles.
On peut séparer les variables. Et puisque 'on veut étudier I’évolution d’une perturbation
se propageant selon x, on pose ¢(z, z, ) = f(z)e'kz—wt),

L’équation d’incompressibilité s’écrit pour ¢ :
fr=Kf=0 (4)

Donc f(z) = ¢ocosh(kz + B), avec (¢g, B) € R?. Comme la vitesse verticale de I'eau est



nulle au niveau du fond marin :

0 / i(kx—w
Vslpmp, =0 = a—f T f'(=h)e (kz—wt) (5)
ook sinh(—kh + B) =0 (6)
B =kh (7)

On obtient f(z) = ¢ cosh(k(z + h)).

Alternativement, on peut déduire de 'équation différentielle que f(z) = Aek? + Be™"*. Puis
f'(=h) = 0 implique que B = Ae~2"*_ Finalement :

f(Z) — Aekz +Ae—kz—2kh — Ae—kh(ekz-i-kh +e—kz—kh) — ¢0 COSh(]{(Z—I—h)) (8)

en posant ¢y = Ae /2.

En linéarisant I'équation et en négligeant les produits de termes de fluctuations, montrer que
la pression dans |'eau peut s’écrire P = P, + p, avec P.; = po — pgz la pression a |'équilibre
et p = —p% la variation de pression (dite "pression dynamique"). En considérant I'équilibre,
justifier que pg est la pression atmosphérique.

On considére une petite variation de pression et de vitesse par rapport a ’équilibre : P =
Py + p et u = 1. En reprenant 1'équation ({1}, ot on néglige le terme non-linéaire d’ordre
deux, projetée sur z :

du. 9%  oP

Por ~Poto: a2 MY )
B 9\
P (P+ p8t> = —pg (10)
_ 9¢
P =po—pgz—pg, (11)

avec pg la constante d’intégration.
La pression atmosphérique est donnée par Py, = P(n).
A Déquilibre, comme 1 = 0 et % =0:

0
P(n) = po —pgn—p£ = po (12)

Pour un élément quelconque de la surface de I'eau, une tension s'exerce sur les bords de la
surface, dans la direction tangente a la surface, et perpendiculairement au bord ou elle s’applique.
Montrer que la force nette de tension s'excercant sur un élément infinitésimal de surface dxdy
s'écrit :

2

0
F, = vdxdya—wzez.

avec v la tension de surface en N/m.
Indication : on considére que la surface fait de petits angles par rapport a I'horizontale.



Considérons un élément de surface dxdy, en notant 6 'angle entre ’horizontale et la surface.
La surface est uniquement inclinée par rapport a x, donc les forces de tension selon y
s’annulent, et on a :

F., = vdy(cos(0(z + dx))e, + sin(f(x + dx))e. — cos(f(x))e, — sin(f(x))e.
Comme § < 1 on a
cos(f(x)) =~ 1

sin(f(z)) =~ 0(z) ~ tan(f(x)) = (n(x + dx) — n(x))/dx ~

Donc :

F., = vdy(sin(6(z 4 dx)) — sin(6(x)))e.

on(z + dx on(x
(1252

0%n
= 'yd:cdywez

En utilisant I'équilibre des forces s’appliquant sur un élément infinitésimal de la surface de I'eau,
déduire la relation de dispersion des ondes de surface, dans la limite n(z) < h :

w? = <gk + 7l<:3> tanh(kh).
p

Indication : pour cela justifier et utiliser que % = % . Négliger également la masse de

z=n

|'élément de surface.

L’équilibre des forces s’excergant sur un élement infinitésimal dS de la surface de ’eau (donc
de masse nulle) donne :

0°n
Ioler 0%n B
Pt pay ~Tgm =0 (14)

On utilise ensuite le lien entre 1 et ¢ sur la surface, qui vient simplement du fait que la
vitesse verticale de la surface s’écrit :

on 00

zZ=n

On dérive par rapport au temps, et avec I’équation (|15)) on obtient :

P 99 v P9
—_—— — p— 1
ot2 +gaz p 0120z 0 (16)

Puis avec ¢(z,z = 1,t) = ¢o cosh[k(n + h)]eke—wt) .

—w? cosh[k(n + h)] + gk sinh[k(n + h)] + %k?’ sinh[k(n + h)] = 0 (17)

Comme n < h on an-+h= h, et on en déduit la relation de dispersion.



(e) Ecrire la relation de dispersion en faisant apparaitre les nombres d’onde kj, et k., correspondant
respectivement aux longeurs d'ondes caractéristiques A\, = 27h et A, = 27, /%. Quelle est la

signification physique associée a \j, et & \. 7 Estimer |'ordre de grandeur de ces longueurs d'ondes
caractéristiques. Dans le cas de longueurs d'ondes beaucoup plus petites que la profondeur de
I'océan (A < \p), et telles que A < A, calculer les expressions de la vitesse de phase et de la
vitesse de groupe.

Indication : a I'interface air/eau v = 74-10~3 N/m. On considére une profondeur de I'océan de
7 km.

Wt = <gl<: + 715’) tanh(kh) = gk (1 + 7k2> tanh(kh) (18)
p 9p

w? = gk l—i-li2 tanh L (19)
— 9 2 kn

Les comportements limites k/kp, > 1 ou k/k, < 1, selon que A < Ay ou A > \p,, corres-
pondent physiquement aux situations ou les effets liés & la profondeur sont importants ou
négligeables. Et on a ici :

A = 2mh ~ 44 km

De plus, la forme de la relation de dispersion et donc le comportement des ondes de surface
dépendent fortement du terme 1 + glpkz, selon que glka > 1 ou glpk2 < 1. Physiquement,
ces deux situations correspondent respectivement aux régimes ou les effets de tnesion de
surface dominent, ou sont négligeables, devant les effet liés a la gravité. Et on peut calculer :

Ae = 27 lzl?mm
gp

Dans le ot cas A < A\p, on a kh > 1 donc tanh(kh) ~ 1. La relation de dispersion devient :

w? = <1 + 7k2> gk (20)
9p

e Pour les ondes capillaires, A < A, donc glpk;Q >1:

2., 7.3
w® =~k (21)
P
Les vitesses de phase et de groupe sont respectivement :
w vk ow 3 [~k
Vg k P e Ug Ok 9 P) ( )

Remarque (non demandé dans 'examen) :
e Pour les ondes de gravité, A > A, donc glpk2 <1:

w? ~ gk (23)

Les vitesses de phase et de groupe sont respectivement :

g Cow 1 4\/g
U¢—\/; et Ug—%——im (24)



On considére maintenant des longueurs d'ondes beaucoup plus grandes que la profondeur de |'océan,
A > Ay, ainsi que A > A.. De plus, on considére une perturbation de la surface de I'eau d'une
amplitude max[n(x)] = A et de largeur Ao, qui se propage selon x. Cette vague peut étre exprimée
comme une superposition d'ondes harmoniques de nombres d'ondes k£ € [0, %\—g]

Comme précedemment, |'amplitude reste petite z

devant la profondeur, A < h. La profondeur va- 0
rie selon z, mais suffisamment lentement pour
considérer qu'on a localement sur la largeur de
la perturbation h(z) ~ h, de sorte que les déve-

loppement prédédents restent valides.

(f)

Montrer qu'au premier ordre en kh, la vitesse de groupe de la perturbation est v, = /gh.

En considérant A > ., la relation de dispersion devient :
w? = gk tanh(kh) (25)
Et avec de plus A > Ay, c’est & dire kh < 1 :

w? = ghk? (26)

w = +\/ghk (27)

Donc la vitesse de groupe de la perturbation est vy = \/gh.

L’énergie mécanique de la vague, par unité de volume, est donnée en moyenne par ¢, = %.
En négligeant les effets de dissipation (due a la viscosité, aux frottements avec le fond de |'océan,
etc...), et en s'appuyant sur des considérations de conservation, montrer que la hauteur et la

largeur de la perturbation évoluent comme :

Ao b4 Ao o< V.

La vague se propage selon z, a une vitesse v, = /gh. Considérons une largeur b de la
perturbation selon la direction y. Le flux d’énergie total de la vague est donc donné par :

Fgr = (énergie sur une surface yOz) - (vitesse de la vague)

= e, hb\/gh
3/2
= B —a%vh

Si on considére la largeur de la vague selon y constante (b = cst, ce qui est le cas dans notre
résolution), on obtient bien A h~1/4. Cette relation est appelée loi de Green.

Remarque : nous venons aussi de montrer que de maniére plus générale, Fr = cst permet
d’obtenir A - bY/2. B4 = cst.

L’énergie mécanique moyenne totale est :

E = e hb)g = cst (28)
pgA’

bAg = cst (29)

En utilisant de plus la loi de Green, on en déduit Ao o A=2  h1/2.



(h)

Suite & un séisme au niveau du fond marin a une profondeur de 7 km, une perturbation de largeur
350 km et de hauteur 60 cm se forme a la surface de I'océan. Quelle est I'ordre de grandeur
de sa vitesse 7 Arrivant proche des cotes, ol la profondeur de |'eau est réduite & 2 m, que sont
devenues la vitesse, hauteur et largeur de cette perturbation ?

Sa vitesse est vy = v/gh = 262 m/s.

Lorsque la profondeur est réduite & A’ = 2 m, sa vitesse, hauteur et largeur deviennent
respectivement vy, = \/gh! = 44 m/s, A" = A(R/W)Y* = 4.6 m et Ny = No(R'/h)Y/? =
5.9 km.

Remarque : En fait I'observation montre que cet amplification est en réalité bien plus
importante. Cela est principalement di aux effets non-linéaire que nous n’avons pas pris en
compte dans notre résolution simplifiée.

En utilisant une approximation a un ordre plus élevé en kh par rapport au point (f), montrer
que |'écart de vitesses de phase Avg, sur I'ensemble des ondes de nombre d'onde k composants
la perturbation, est de I'ordre de Avg ~ \/gﬁ’;—g

En utilisant le fait que h < A, i.e. kh < 1, on peut écrire la vitesse de phase comme :

w k‘2h2 1/2 ]{52h2

La différence de phase entre le plus petit nombre d’onde (k = 0) et le plus grand (k = 27/ Xo)
est donc :

7.[.22 2
Ay = /g~ (1= ) ~ " (31)

62

L'écart de vitesses de phase tend a disperser le paquet d'onde, donc a atténuer la perturbation.
Mais un autre effet s'oppose a cette dispersion. Comme v, dépend de la hauteur, montrer que
la différence de vitesse entre le point le plus haut et plus bas de la perturbation est de I'ordre

de Av* ~ A\/%. Cela donne lieu a un raidissement de la perturbation, et un enrichissement

de son spectre spatial. Lorsque ces deux effets se compensent, la perturbation (que 'on appelle
alors "onde solitaire") arrive a se propager dans le milieu dispersif sans s'atténuer. Montrer que
cette condition de formation d'une onde solitaire peut s'exprimer U ~ 1, avec U un nombre
sans dimension que |'on précisera. Vérifier que I'exemple de la perturbation donné en question
(h) vérifie bien cette condition.

La vitesse de groupe de la vague a une hauteur h est vy = v/gh. Si on considere cette vitesse
au point le plus élevé de la perturbation, U;_ =+/g(h+ A). Donc :

" - A g
Av :v;—vg %\/gh(lJr%)\/ghNA\/; (32)

Si Av* ~ Avg, les deux effets mentionnés précédemments se compensent et le paquet d’onde
se propage sans se disperser.

Cet effet a lieu lorsque :
g h?
Ay =~ gh— 33
\/; "N (33)
)\2

A 1 (34)

n®



Remarque : nous venons de définir le nombre sans dimension appelé nombre d’Ursell U =

2
A%, qui définit le régime dans lequel on se trouve dans la cas d’ondes de gravité en faible

profondeur.
— Régime linéaire : U — 0
— Onde solitaire : U ~ 1
— Stokes : U < 10
— Mascaret : U > 1

(cf. cours EPFL C. Ancey, Chap. 4).

Le nombre d’Ursell pour I'exemple donné en question (h) donne U = Az—é = 0.6-3500002 /70003 =
0.21. Le nombre d’Ursell de cette perturbation est bien de I’ordre de 1'unité, une onde soli-
taire peut se former et se propager.

Indications : on rapelle que cosh(z) = (e* +e7%*)/2 et tanh(x) oA x3/3.
x



2. Antenne réseau 3 commande de phase.

Un courant électrique oscillant dans un fil conducteur
génére un champ électromagnétique qui se propage dans
I'espace. En juxtaposant un ensemble de tels fils, le
signal émis par chacun d'entre eux s'additionne aux
autres. En déphasant le signal émis par chaque fil, il
est possible de modifier la direction du maximum de
I'intensité du signal total sans avoir a changer |'orien-
tation de I'appareil. Un tel dispositif peut donc servir
d'antenne directionnelle.

On modélise I'antenne par un ensemble de fils verti-
caux, alignés le long de e, distribués sur une distance
L le long de e,. L'antenne est centrée a |'origine. Le
courant électrique J(r,t) oscillant verticalement dans
le fil décalé de yq le long de e, par rapport a |'origine
(—L/2 <yo < L/2) est déphasé de B(yp) et peut étre
approximé par

I(r,t) =J(r) e ™ = Jod(2)8(y — yo)d(2)e, e Pwo)=wt),

Notation. Afin de simplifier les expressions, on séparera la partie temporelle des oscillations de la
partie spatiale :

F(r,t) =F(r)e ™ et f(r,t) = f(r)e ™"

(a) En partant des équations de Maxwell dans le vide, montrer que les champs électrique, E, et

magnétique, B, satisfont |'équation d'onde.

Les équations de Maxwell dans le vide sont données par

V-E=0, VXE:—%B,
o (35)
VBZO, VXB:MOGOE.

En prenant le rotationnel de I’équation de Maxwell-Faraday, et en utilisant 1’identité vec-
torielle a X (b X ¢) = (a-c)b — (a- b)c, on obtient

VX(VXE):V(V~E)—V2E:VX<—681?>:—;(VXB). (36)

On identifie facilement les termes V- E et V X B de , ce qui nous donne finalement

O’E
V2E = -, 37
Ho¢€o 12 (37)
oil 'on reconnait I’équation d’onde pour u? = ¢ = 1/ppeo.

Un raisonnement identique en partant de I’équation de Maxwell-Ampére permet de montrer
que

9’B
o2’

VQB = Ho€o (38)

Pour commencer, on considére un seul fil. On supposera que la distance a |'observateur, r, est grande
en comparaison aux longueurs d'ondes électromagnétiques A, qui elles méme sont grandes comparée



a yo, i.e. 7 > X > yp. Dans la suite, on négligera tous les termes d'ordre yo /7 et \/r ou supérieurs,
excepté dans le déphasage ol on gardera les termes d'ordre yo/r et on négligera les termes d'ordre
supérieurs.

(b) Soit B(r,t) = V X A(r,t) avec A(r,t) un potentiel vecteur. Montrer que, sous les approxima-
tions considérées,

A(I‘ t) _ toJo ei[krfwtfkyo sin 6 sin ¢+ B(yo)] e..
’ 4y ?
On rappelle I'équation de potentiel retardé

) wo [ 3l
A)=Ho [AJe g
(x) 4w/ TR

ol k =w/c=wy/ e

Calculer I'intégrale se fait trés simplement, étant donné les distributions de Dirac, on a

_ — i(klr—r'|+B(yo))
A = 10 [ A0y = i) o
47T ’I‘ — I‘/‘ (39)
47 Ar
ou on a posé
Ar = [r —yoey| = Va2 + (y — y0)? + 2% (40)

On change pour un systéme de coordonnées sphériques, (7,0, ¢), soit

x = rsinf cos ¢
y = rsinfsin ¢ (41)

z=rcosb,

et donc

Ar = \/r2 sin? f cos? ¢ + (rsin@sin ¢ — yo)2 + r2 cos? 0

= \/72sin? § cos? ¢ + r2sin? sin? ¢ — 2ryp sin O sin ¢ + y2 + r2 cos? 6

= \/yg — 2yor sin @ sin ¢ + r2

_ 7“\/1 . vg — 2y07"2sin9$in¢‘
r

Sous I'hypothése yo < 7, on peut faire le développement limité suivant, au premier ordre
en € = yo/r,

Ar(e) = Ar(0) + Ar'(0) yo/r + O(y%) = 7 — sin @ sin ¢gyo + O(e?), (43)
ou l'on garde le terme d’ordre yo/r puisque il apparait dans le déphasage.

De facon similaire, on s’intéresse a

1= 505 = a5, + 0 = 5+ 00 (44)

ot 'on néglige les termes d’ordre yo/r et supérieurs.

Et finalement I
A(I‘) ~ %ei(krfkyo sin 0 sin ¢+ S(yo)) e. (45)



Ou également

A(I‘, t) ~ /jl(;{‘() ei(kr—wt—kyg sin 0 sin ¢+8(yo)) e.. (46)

Il s’agit bien d’'une onde sphérique avec un déphasage de

B(yo) — kyo sin O sin ¢ (47)
Dériver le champ magnétique B(r, ). Montrer que, sous les approximations considérées, il peut

s'écrire sous la forme

B(I‘,t) — EF(G, ¢) ei[krfwtfkyg sin@sin¢+6(y0)]’
r

avec F une fonction a spécifier.

On calcule B(r,t) a partir du potentiel vecteur A(r,t) avec
B=VxA. (48)

Etant donné que 'opérateur différentiel V n’impacte pas la partie temporelle, on en déduit
que 3 .
B=V x A. (49)

Selon notre systéme de coordonnées sphériques on a

~ A(r) A(r) A(r)

A(r) = e, = cosfe, + ———sinfey
r r r
A, pe (50)
A(I‘) _ AO eikrefikyo sin 6 sin (bei,é’(yo)
et donc en appliquant le rotationel
B(r) = e, [ 0Ay eg [0A;]  es [O(rdp) OA,
~ rsinf oo} rsinf | 0¢ r or 00 (51)
_e;sinf 0A L eocos 0O0A ey [O(sinbA) n 109(cos0A)
~ r2sin@ 0¢p  r2sinf dp  r or r 00
Etant donné notre définition de A(r), on calcule
%é:mmxw)
A
?979 = A(r) x (—ikyo cosfsin ¢) (52)
0A : :
% = A(r) x (—ikyosin cos ¢)
et encore 9 oA
% = —(sin @ + ikyo cos’ O sin ) A(r) (53)
Ce qui nous conduit a calculer
B(r) = 2 A(r) x (—ikyosinf cos ) ~ Oe)
r
€y 1

2o QA(r) X (—tkypsinfcosp)  ~ O(e) 50
+ %A(r) X (sin @ + ikyg cos®> Osing)  ~ O(€) 4+ O(e)

— %sin 0A(r) x (ik), ~ O(1)

10



oue=y/rete =N\r.
En négligeant les termes d’ordres € et € et supérieurs, on trouve

B(r) ~ —iksin A pikr —ikyo sin 0sin 6 iB(yo) es, (55)
r
soit o
B(I‘, t) ~ Mei(kr—wt—kyo sin 0 sin ¢+8(yo)) ey (56)
r
On identifie donc
F(0) = —iksinfAgey. (57)

On observe que le champ magnétique B a également une forme proche de ’onde sphérique.
Cependant I'amplitude de la propagation est proportionnelle & sinf. On a donc un maxi-
mum lorsque § = 7/2 et deux minimums lorsque # = 0 et § = 7. La perturbation du
champ magnétique se propage donc dans toutes les directions, avec un lobe dans le plan
horizontal. Cela correspond au résultat d’une antenne centrée a ’origine, vue en cours, avec
un déphasage induit par le déplacement .

Dériver le champ électrique E(r,t). Discuter la direction du vecteur de Poynting. Est-ce que
I'intensité du signal émis par le fil posséde une symmeétrie sphérique ?

Pour calculer E(r), on utilise Maxwell-Ampére, soit donc
—1

V x B. (58)
WHo€o

VXB:iwuoﬁoE — E:

Etant donné que B est orienté selon es, et en se rappelant que k = w,/Ho€g, on calcule
facilement, a ’ordre zéro en € et €

B(r) = —1 e, O(sinfBy) epO(rBy)
 wipey \7sind 00 r Or
—i —ike, O(sin?A(r)) = iksinfeg OA(r)
= : +
wipeg \ r2siné 00 r or (59)
ik?sin 6 @

ezkrefzkyo sin 6 cos qﬁez,ﬁ(yo) ey

Q

Who€g T
iksin @eikrefikyo sin 6 cos ¢€iﬁ(y0)

Vo€ T

Sans surprise, E se propage de fagon similaire & B mais de fagon perpendiculaire.

Q

€y.

Etant donné que B est selon e, et que E est selon ey, on observe que le vecteur de Poynting

S = iE x B est selon e, (60)
Ho

et que par conséquent, I’énergie est transportée radialement par la perturbation. On pourrait
imaginer que ceci est dii aux approximations que nous avons faite. Cependant, si nous avions
gardé les termes d’ordres plus élevés, ceux-ci se seraient annulés les uns les autres dans
I’expression du vecteur de Poynting et nous aurions retrouvé le méme résultat. En pratique,
les expressions pour E et B que nous avons dérivées sont appelées "radiation fields", car elles
contiennent la partie de la perturbation qui radie dans toutes les directions, contrairement
aux termes correctifs que 'on nomme "storage fields".

11



On considére maintenant |'ensemble des fils de I'antenne. Pour simplifier les calculs, on supposera en
avoir une infinité de sorte a avoir un continuum de fils dans I'interval —L/2 < yo < L/2.

(e) Dans un premier temps, on supposera que S(yo) = 0. Par superposition, calculer le champ
magnétique total résultant de la somme des contributions de chaque fils, et donner I'angle ¢ qui
maximise |'intensité du signal.

Pour trouver By (r,t), on somme les contributions de chaque filament en normalisant par
la longueur L de ’antenne, i.e.,

1 L2
Bute)= 7 [ Bl (61)

L’expression du champ magnétique est reprise du résultat précédent, soit

B(I‘,t) ~ Mei(kr—wt—kyo Sin@sin¢+6(y0))é¢ (62)
T

L’angle 0 n’ayant pas d’influence sur l'intégrale, on se propose d’étudier une fonction de la
forme

B(I‘, t) _ Eaei(kr—wt—kyo sin 0 sin qﬁ)’ (63)
r

ou le déphasage en ikygsinfsin¢ vient du petit décalage en yg comme étudier dans la
question précédente.

On calcule donc

L/2
Btot — ]isei(kr—wt)l/ / e_ikyo sin0sin¢dy0

LJ rp
* B . ZL 2
— &ei(krfwt) ¢ efikyo sin 0 sin ¢ w=L/
r | kL sin 0 sin ¢ yo=—L/2
_ Bﬁsei(krfwt) [ . { ' (efik%sinﬁsin¢ _ pik% sinfsin ¢)
r | kL sin 0 sin ¢ (64)
BS i(kr—wt) I ) eik% sinfsing e—ik% sin € sin ¢
= —e
r kL sin 0 sin ¢ 2i
_ %ei(kr—wt) ' 2 i kL sin 0 sin ¢
r | kL sin 0 sin ¢ 2
_ B—Sei(kr_”t)sinc <kL sin € sin qb) ’
r 2
ol on a utilisé le sinus cardinal sinc(z) = sin(z)/x.
L’intensité est donnée par
_ k% sin? 9 A2 kL
IxB-B= *simc2 <2 sin 6 sin ¢> . (65)
r

Le maximum d’intensité est donc atteint lorsque ’argument du sinus cardinal vaut zéro
sinfsing = 0. (66)

Etant donné que B o sin 6, les angles d’observations ot § = 0 et § = 7 voient leur amplitude
tomber a zéro. Le maximum est donc donné pour § = w/2 et ¢ = 0, ce qui correspond & un
observateur se trouvant directement en face de notre antenne.
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(f) On pose maintenant 5(yo) = ayo + b, o a et b sont des constantes. Dans ce cas, calculer le
champ magnétique total et donner I'angle ¢ qui maximise |'intensité du signal.

Le raisonement est identique au point précédent. Cependant, cette fois-ci, on doit intégrer

i(rke 1 L/2 o
B = 7061(7” —wt+b)/ eilayo—kyo sin sm¢)dy0

LJ_ 1,
_ . =L/2
_ %ei(kr—wt+b) [ e—iyo(k: sin 0 sin ¢p—a) w=L/
r | L(ksinfsin¢ — a) Yo——L/2
_ %ei(kr—wt—&-b) -L k. 62 (e—ié(ksiHQSinqﬁ—a) o eié(ksin@sin¢—a)):|
r* : ( smisme s a) iL (k sin 0 sin ¢p—a) —iL (ksin 0 sin p—a) (67)
_ &ei(krfwt+b) 2 €2 —€ 2
r L(ksinfsing — a) 2i
_ Eéei(kr—wt+b) [ 2 s L(ksinfsing — a)
r | L(ksinfsin¢ — a) 2
_ B—éei(k“”t/*b)sinc (k:L sin @ sin ¢ — a> 7
r 2
Et donc 'intensité est
k?sin? 0 A3L? L
I x Sm—zosimc2 (2(k sin f'sin ¢ — a)> (68)
r

On commence par observer que le parameétre b n’a pas d’influence sur l'intensité puisqu’il
ajoute un déphasage constant.
Ici encore, le maximum du sinus cardinal est donné lorsque son argument vaut zéro, ce qui

correspond cette fois-ci &
ksinfsing = a (69)

Comme le champ magnétique est proportionnel a sin 6, le maximum est donné par 6 = 7/2.
On trouve donc l'angle ¢ qui vérifie le maximum d’intensité a

¢ =sin”" (ksciln 9) (70)

Etant donné un paramétre a, on observe que le maximum d’intensité est produit pour une
certaine direction d’observation ¢. De fagon opposée, si on doit envoyer un message dans
une direction d’observation ¢, alors il est possible de choisir le paramétre a en conséquence
afin de ne pas avoir & modifier 'orientation de ’antenne.

Un vaisseau spatial muni d'une antenne directionnelle & 'avant du cockpit se déplace & vitesse
relativiste v = ve, par rapport a la Terre et cherche a y envoyer un message. Lorsqu'il émet son
message, il mesure sa distance a la Terre, 1/, et observe cette derniére sous un angle ¢, par rapport
a sa ligne de déplacement, soit r},,,. = 1’ cos ¢e, + r’ sin ¢e,. On cherche a déterminer |'angle ¢’
avec lequel il doit envoyer son message afin que la station sur Terre le recoive.

On remarque que l'image de la Terre, observée par I'astronaute, est également un signal lumineux.
On distingue donc trois événements dans |'espace-temps : |'événement A ou la terre émet son image,
I'événement B ou le vaisseau recoit I'image de la Terre et répond, et finalement |'événement C ou la
Terre recoit le message. Dans le référentiel de I'astronaute, les trois événements ont respectivement
les coordonnées (24,94, t'4), (0,0,0) et (z¢, Yo ter)-
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(g) Exprimer I'angle ¢’ en fonction de z{. et y. ainsi que 2’4, 34 et t/; en fonction de 7’ et ¢y,
On commence par définir deux référentiels R et R’ dans lesquels sont immobiles respecti-
vement la Terre et le vaisseau spatial. Depuis R, on observe R’ se déplacer a vitesse ve,.
Depuis R’ on observe R se déplacer a vitesse —ve,.

Dans un premier temps, on doit observer qu’il n’est pas possible d’identifier la position de la
Terre, vue du vaisseau, par ses coordonnées (', ¢f,) directement. En effet, 'image de la Terre
étant un signal lumineux qui se déplace a vitesse ¢, les coordonnées (', ¢f)) ne représentent
pas la position de la Terre mais la position qu’elle avait dans le passé, lorsqu’elle a émis son
image.

De fagon similaire, la direction ¢’ dans laquelle il faut envoyer sa réponse ne dépend pas de
la position observée de la cible dans le ciel, mais de la position qu’elle aura au moment ot
elle croisera la trajectoire du message.

Afin de répondre correctement, on commence par poser 3 événements dans I’espace-temps

A: La Terre envoie un signal lumineux, son image
B : Le vaisseau recoit I'image de la Terre et répond immédiatement avec un message

C : La Terre recoit le message

ct' R Y R

Vaisseau .
Y
R
C_A
Terre
¢ = ¢o
B
\ . > X
\ Vaisseau V
La lumiére se déplagant en ligne droite & vitesse ¢, les deux trajectoires aller-retour em-
pruntées sont donc les droites qui relient les vecteurs spatiaux A’B’ et B'C'.
En particulier,
A'B = (0— 24,0 —yy) = (—r' cos ¢y, =1’ sin ) (71)
et ,
Y
B'C' = (z¢; — 0,y — 0) = tan(¢') = x—,c (72)
C

Le temps parcouru par la lumiére pour parcourir A’B’ se déduit facilement de sa vitesse ¢
et de la distance parcourue r’.
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Ainsi on obtiens I'expression de ¢’
tan ¢’ = z—g (73)
Et les expressions de 2y, /4y et t/y

x'y =1’ cos ¢,

Yy = r'sin ¢y, (74)
t'y=—1r"/c
Le but étant d’exprimer ¢, on va chercher & exprimer zy, et y; en fonction de 2y et v/,
puis donc de ' et ¢,

Appliquer la transformation de Lorentz pour calculer les coordonnées des événements A, B, et
C' dans le référentiel ou la Terre est au repos.

On applique la transformée de Lorentz pour passer de R’ a R, soit
x =2 +ot))
o

(v
L=+ —
C

Ce qui nous donne les coordonnées des événements

v

A= Gy + ot (14 + 22))

B =(0,0,0) (76)
vk

C = (e + 0t oy (1 + 252 )

Exprimer ¢’ comme fonction des paramétres mesurés par |'astronaute.

Dans le référentiel de la terre, celle-ci est immobile. On envoie un faisceau lumineux entre
A et B qui rebondit sur B et revient. De ce point de vue, les deux trajectoires, aller-retour,
sont donc identiques. La distance parcourue est la méme, et par conséquent le temps de
parcours également. Soit

Atac = Atap + Atpe = 2At (77)

De plus, la Terre étant immobile, les coordonnées spatiales des événements A et C' sont
donc identiques.

On en déduit donc le systéme d’équations

v(2ly + vtly) = y(ze + vte)
Ya =y (78)
v (t’A + ”Z;A) +2At =~ (t’c + ”Z;C)

ol
vx! vx!
At:0—7<ti4+c214>:’7<t/c+czc>—0 (79)

Atap Atpc

Si on remplace 2At = Atap + Atpe dans (78)), on obtient une relation triviale qui ne nous
intéresse pas.
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En revanche, étant donné que Atap = Atpc = At, remplacer 2At par 2At4p on 2Atpe

permet de progresser. Ce qui nous conduit au systéme d’équations

Y@l +oty) =g+ i)
— (t;l + UZCQA> =9 (tlo + vzgc)
Et aprés simplification
oy + oty =+t
_t/A _ UZJTA — t,C + UZ;C

Ayant déja y;, = 34, on cherche z, en fonction de 2y et t/;. Soit

1
/ / / /
tC:;(wA_xC)_'_tA

/ v vy
= —ta— 3%~ 3%

. v 1\ , off v+1 ,
—— |2y =- — =4+
2 p)A A 2 y)A

1+0v2/c? , 20ty

D’ou l'on tire

/
e x = 7 A
CT 102/ T 1 =022
Du résultat précédent, (71]), on sait que z'y = 1’ cos ¢, vy = ' sin gy, et t'y = —1'/c.
Ce qui nous donne
/
”
/

To = [y ((1 +v?/c?) cos ¢fy — 2v/c)

Et finalement . ) o
tan(¢/):y£: (1 —v*/c*)sin ¢
ry  (14v%/c?)cos gy —2v/c

(80)

(82)

(83)

(84)

(85)

Dans le cas limite ot v = 0, on obtient ¢/ = ¢, ce qui correspond bien a notre intuition.

Lorsque v — ¢, étant donné que v < ¢, le numérateur tend vers 07. Dans le cas ¢f, # 0,
le dénominateur devient négatif, par conséquent, tan(¢’) — 0~. Ceci correspond en fait au

cas ou ¢ — .

Pour un angle ¢ donné, il faut envoyer le message avec un angle ¢’ légérement plus impor-

tant. Lorsque

’s 2v
cos ¢y > 70(1 ey

il faut envoyer le message vers ’arriére par rapport au sens du mouvement.

Indication : Equations de Maxwell

€0 ot

Indication : Intégration de la distribution de Dirac

/_ " f(0)s()dz = £(0)

OE
V x B = uoJ + poeo

(86)
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Indication : Opérateurs différentiels en coordonnées sphériques

__of 10f 1 of
vf_era_keg;%—'_e(ﬁrsinﬁﬁ

UxF = 1 (8(51n0F¢) 8F9> o 1 ( 1 OF, 8(TF¢)) 994‘1 (a(ng) B 3Fr> o

rsin 6 060 9o r \sinf 99  or r\ or o0
V.F— 1 9(r*F,) 1 O(sinOFy) 1 0F,
2 Or rsinf 00 rsinf 0¢
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