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Corrigé de l’examen final

1. Origine d’un tsunami.
Lors d’un séisme ou d’un glissement de terrain du fond océanique, une perturbation se forme à la sur-
face de l’océan, d’une hauteur de quelques dizaines de centimètres et d’une largeur pouvant atteindre
plusieurs centaines de kilomètres. Nous allons voir que sous certaines conditions, cette perturbation
se propage sans se disperser, et augmente en hauteur.

Pour commencer, on considère une vague sur
l’océan, dont le fond est à une profondeur h.
L’écart de hauteur de la surface de l’eau par rap-
port à sa position d’équilibre z = 0 est définie
par z = η(x). On considère le problème invariant
selon y, donc ∂y = 0.
L’équation de Navier-Stokes (où l’on a négligé la
viscosité) décrit l’évolution de la vitesse de l’eau :

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + ρg (1)

z
x

h

η(x)

0
y

avec ρ la densité de l’eau, u sa vitesse, P la pression et g l’accélération de la pesanteur. L’eau
est traitée comme un fluide incompressible, ∇ · u = 0, et irrotationnel, ∇ × u = 0. Cela permet
d’introduire la fonction scalaire ϕ tel que u = ∇ϕ. À l’équilibre, u = 0. Sur le fond de l’océan, la
vitesse verticale est nulle.

(a) Montrer que ϕ est solution de :

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 avec

∂ϕ

∂z

∣∣∣
z=−h

= 0.

Pour résoudre l’évolution d’une vague se propageant selon x, on cherche ϕ de la forme
ϕ(x, z, t) = f(z)ei(kx−ωt). Montrer que f(z) = ϕ0 cosh[k(z + h)].

La vitesse s’écrit (avec uy = 0 par invariance de ϕ selon y) : u = uxex+uzez =
∂ϕ
∂xex+

∂ϕ
∂z ez

La condition d’incompressibilité donne donc :

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (2)

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 (3)

Les équations considérées sont découplées en termes de dérivées spatiales et temporelles.
On peut séparer les variables. Et puisque l’on veut étudier l’évolution d’une perturbation
se propageant selon x, on pose ϕ(x, z, t) = f(z)ei(kx−ωt).
L’équation d’incompressibilité s’écrit pour ϕ :

f ′′ − k2f = 0 (4)

Donc f(z) = ϕ0 cosh(kz +B), avec (ϕ0, B) ∈ R2. Comme la vitesse verticale de l’eau est
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nulle au niveau du fond marin :

vz|z=−h = 0 =
∂ϕ

∂z

∣∣∣
z=−h

= f ′(−h)ei(kx−ωt) (5)

ϕ0k sinh(−kh+B) = 0 (6)
B = kh (7)

On obtient f(z) = ϕ0 cosh(k(z + h)).

Alternativement, on peut déduire de l’équation différentielle que f(z) = Aekz+Be−kz. Puis
f ′(−h) = 0 implique que B = Ae−2hk. Finalement :

f(z) = Aekz +Ae−kz−2kh = Ae−kh(ekz+kh + e−kz−kh) = ϕ0 cosh(k(z + h)) (8)

en posant ϕ0 = Ae−kh/2.

(b) En linéarisant l’équation (1) et en négligeant les produits de termes de fluctuations, montrer que
la pression dans l’eau peut s’écrire P = Peq + p̃, avec Peq = p0 − ρgz la pression à l’équilibre
et p̃ = −ρ∂ϕ

∂t la variation de pression (dite "pression dynamique"). En considérant l’équilibre,
justifier que p0 est la pression atmosphérique.

On considère une petite variation de pression et de vitesse par rapport à l’équilibre : P =
Peq + p̃ et u = ũ. En reprenant l’équation (1), où on néglige le terme non-linéaire d’ordre
deux, projetée sur z :

ρ
∂uz
∂t

= ρ
∂2ϕ

∂t∂z
= −∂P

∂z
− ρg (9)

∂

∂z

(
P + ρ

∂ϕ

∂t

)
= −ρg (10)

P = p0 − ρgz − ρ
∂ϕ

∂t
(11)

avec p0 la constante d’intégration.
La pression atmosphérique est donnée par Patm = P (η).
À l’équilibre, comme η = 0 et ∂

∂t = 0 :

P (η) = p0 − ρgη − ρ
∂ϕ

∂t
= p0 (12)

(c) Pour un élément quelconque de la surface de l’eau, une tension s’exerce sur les bords de la
surface, dans la direction tangente à la surface, et perpendiculairement au bord où elle s’applique.
Montrer que la force nette de tension s’excerçant sur un élément infinitésimal de surface dxdy
s’écrit :

Fγ = γdxdy
∂2η

∂x2
ez.

avec γ la tension de surface en N/m.
Indication : on considère que la surface fait de petits angles par rapport à l’horizontale.
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Considérons un élément de surface dxdy, en notant θ l’angle entre l’horizontale et la surface.
La surface est uniquement inclinée par rapport à x, donc les forces de tension selon y
s’annulent, et on a :

Fγ = γdy(cos(θ(x+ dx))ex + sin(θ(x+ dx))ez − cos(θ(x))ex − sin(θ(x))ez

Comme θ ≪ 1 on a

cos(θ(x)) ≈ 1

sin(θ(x)) ≈ θ(x) ≈ tan(θ(x)) = (η(x+ dx)− η(x))/dx ≈ ∂η(x)

∂x

Donc :

Fγ = γdy(sin(θ(x+ dx))− sin(θ(x)))ez

= γdy

(
∂η(x+ dx)

∂x
− ∂η(x)

∂x

)
ez

= γdxdy
∂2η

∂x2
ez

(d) En utilisant l’équilibre des forces s’appliquant sur un élément infinitésimal de la surface de l’eau,
déduire la relation de dispersion des ondes de surface, dans la limite η(x) ≪ h :

ω2 =

(
gk +

γ

ρ
k3
)
tanh(kh).

Indication : pour cela justifier et utiliser que ∂η
∂t = ∂ϕ

∂z

∣∣∣
z=η

. Négliger également la masse de

l’élément de surface.

L’équilibre des forces s’excerçant sur un élement infinitésimal dS de la surface de l’eau (donc
de masse nulle) donne :

p0dS − p(η)dS − TdS
∂2η

∂x2
= 0 (13)

ρgη + ρ
∂ϕ

∂t
− T

∂2η

∂x2
= 0 (14)

On utilise ensuite le lien entre η et ϕ sur la surface, qui vient simplement du fait que la
vitesse verticale de la surface s’écrit :

∂η

∂t
= vz|z=η =

∂ϕ

∂z

∣∣∣
z=η

(15)

On dérive par rapport au temps, et avec l’équation (15) on obtient :

∂2ϕ

∂t2
+ g

∂ϕ

∂z
− γ

ρ

∂3ϕ

∂x2∂z
= 0 (16)

Puis avec ϕ(x, z = η, t) = ϕ0 cosh[k(η + h)]ei(kx−ωt) :

−ω2 cosh[k(η + h)] + gk sinh[k(η + h)] +
γ

ρ
k3 sinh[k(η + h)] = 0 (17)

Comme η ≪ h on a η + h ≈ h, et on en déduit la relation de dispersion.
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(e) Écrire la relation de dispersion en faisant apparaître les nombres d’onde kh et kc, correspondant
respectivement aux longeurs d’ondes caractéristiques λh = 2πh et λc = 2π

√
γ
gρ . Quelle est la

signification physique associée à λh et à λc ? Estimer l’ordre de grandeur de ces longueurs d’ondes
caractéristiques. Dans le cas de longueurs d’ondes beaucoup plus petites que la profondeur de
l’océan (λ ≪ λh), et telles que λ ≪ λc, calculer les expressions de la vitesse de phase et de la
vitesse de groupe.
Indication : à l’interface air/eau γ = 74 · 10−3 N/m. On considère une profondeur de l’océan de
7 km.

ω2 =

(
gk +

γ

ρ
k3
)
tanh(kh) = gk

(
1 +

γ

gρ
k2
)
tanh(kh) (18)

ω2 = gk

(
1 +

k2

k2c

)
tanh

(
k

kh

)
(19)

Les comportements limites k/kh ≫ 1 ou k/kh ≪ 1, selon que λ ≪ λh ou λ ≫ λh, corres-
pondent physiquement aux situations où les effets liés à la profondeur sont importants ou
négligeables. Et on a ici :

λh = 2πh ≈ 44 km

De plus, la forme de la relation de dispersion et donc le comportement des ondes de surface
dépendent fortement du terme 1 + γ

gρk
2, selon que γ

gρk
2 ≫ 1 ou γ

gρk
2 ≪ 1. Physiquement,

ces deux situations correspondent respectivement aux régimes où les effets de tnesion de
surface dominent, ou sont négligeables, devant les effet liés à la gravité. Et on peut calculer :

λc = 2π

√
γ

gρ
≈ 17 mm

Dans le où cas λ ≪ λh, on a kh ≫ 1 donc tanh(kh) ≈ 1. La relation de dispersion devient :

ω2 =

(
1 +

γ

gρ
k2
)
gk (20)

• Pour les ondes capillaires, λ ≪ λc donc γ
gρk

2 ≫ 1 :

ω2 ≈ γ

ρ
k3 (21)

Les vitesses de phase et de groupe sont respectivement :

vϕ =
ω

k
=

√
γk

ρ
et vg =

∂ω

∂k
=

3

2

√
γk

ρ
(22)

Remarque (non demandé dans l’examen) :
• Pour les ondes de gravité, λ ≫ λc donc γ

gρk
2 ≪ 1 :

ω2 ≈ gk (23)

Les vitesses de phase et de groupe sont respectivement :

vϕ =

√
g

k
et vg =

∂ω

∂k
= −1

2

√
g

k3/2
(24)
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On considère maintenant des longueurs d’ondes beaucoup plus grandes que la profondeur de l’océan,
λ ≫ λh, ainsi que λ ≫ λc. De plus, on considère une perturbation de la surface de l’eau d’une
amplitude max[η(x)] = A et de largeur λ0, qui se propage selon x. Cette vague peut être exprimée
comme une superposition d’ondes harmoniques de nombres d’ondes k ∈ [0, 2πλ0

].

Comme précedemment, l’amplitude reste petite
devant la profondeur, A ≪ h. La profondeur va-
rie selon x, mais suffisamment lentement pour
considérer qu’on a localement sur la largeur de
la perturbation h(x) ≈ h, de sorte que les déve-
loppement prédédents restent valides.

z
x

h(x)

0 y
A

λ0 

(f) Montrer qu’au premier ordre en kh, la vitesse de groupe de la perturbation est vg =
√
gh.

En considérant λ ≫ λc, la relation de dispersion devient :

ω2 = gk tanh(kh) (25)

Et avec de plus λ ≫ λh, c’est à dire kh ≪ 1 :

ω2 = ghk2 (26)

ω =
√
ghk (27)

Donc la vitesse de groupe de la perturbation est vg =
√
gh.

(g) L’énergie mécanique de la vague, par unité de volume, est donnée en moyenne par em = ρgA2

8h .
En négligeant les effets de dissipation (due à la viscosité, aux frottements avec le fond de l’océan,
etc...), et en s’appuyant sur des considérations de conservation, montrer que la hauteur et la
largeur de la perturbation évoluent comme :

A ∝ h−1/4 λ0 ∝
√
h.

La vague se propage selon x, à une vitesse vg =
√
gh. Considérons une largeur b de la

perturbation selon la direction y. Le flux d’énergie total de la vague est donc donné par :

FE = (énergie sur une surface yOz) · (vitesse de la vague)

= emhb
√
gh

=
ρg3/2

8
A2b

√
h

Si on considère la largeur de la vague selon y constante (b = cst, ce qui est le cas dans notre
résolution), on obtient bien A ∝ h−1/4. Cette relation est appelée loi de Green.
Remarque : nous venons aussi de montrer que de manière plus générale, FE = cst permet
d’obtenir A · b1/2 · h1/4 = cst.

L’énergie mécanique moyenne totale est :

E = emhbλ0 = cst (28)

ρgA2

8
bλ0 = cst (29)

En utilisant de plus la loi de Green, on en déduit λ0 ∝ A−2 ∝ h1/2.
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(h) Suite à un séisme au niveau du fond marin à une profondeur de 7 km, une perturbation de largeur
350 km et de hauteur 60 cm se forme à la surface de l’océan. Quelle est l’ordre de grandeur
de sa vitesse ? Arrivant proche des côtes, où la profondeur de l’eau est réduite à 2 m, que sont
devenues la vitesse, hauteur et largeur de cette perturbation ?

Sa vitesse est vg =
√
gh = 262 m/s.

Lorsque la profondeur est réduite à h′ = 2 m, sa vitesse, hauteur et largeur deviennent
respectivement v′g =

√
gh′ = 4.4 m/s, A′ = A(h/h′)1/4 = 4.6 m et λ′

0 = λ0(h
′/h)1/2 =

5.9 km.
Remarque : En fait l’observation montre que cet amplification est en réalité bien plus
importante. Cela est principalement dû aux effets non-linéaire que nous n’avons pas pris en
compte dans notre résolution simplifiée.

(i) En utilisant une approximation à un ordre plus élevé en kh par rapport au point (f), montrer
que l’écart de vitesses de phase ∆vϕ, sur l’ensemble des ondes de nombre d’onde k composants
la perturbation, est de l’ordre de ∆vϕ ∼

√
ghh2

λ2
0
.

En utilisant le fait que h ≪ λ, i.e. kh ≪ 1, on peut écrire la vitesse de phase comme :

vϕ =
ω

k
=
√

gh

(
1− k2h2

3

)1/2

=
√
gh

(
1− k2h2

6

)
(30)

La différence de phase entre le plus petit nombre d’onde (k = 0) et le plus grand (k = 2π/λ0)
est donc :

∆vϕ =
√

gh−
√

gh

(
1− (2π)2h2

6λ2
0

)
∼
√
gh

h2

λ2
0

(31)

(j) L’écart de vitesses de phase tend à disperser le paquet d’onde, donc à atténuer la perturbation.
Mais un autre effet s’oppose à cette dispersion. Comme vg dépend de la hauteur, montrer que
la différence de vitesse entre le point le plus haut et plus bas de la perturbation est de l’ordre
de ∆v∗ ∼ A

√
g
h . Cela donne lieu à un raidissement de la perturbation, et un enrichissement

de son spectre spatial. Lorsque ces deux effets se compensent, la perturbation (que l’on appelle
alors "onde solitaire") arrive à se propager dans le milieu dispersif sans s’atténuer. Montrer que
cette condition de formation d’une onde solitaire peut s’exprimer U ∼ 1, avec U un nombre
sans dimension que l’on précisera. Vérifier que l’exemple de la perturbation donné en question
(h) vérifie bien cette condition.

La vitesse de groupe de la vague à une hauteur h est vg =
√
gh. Si on considère cette vitesse

au point le plus élevé de la perturbation, v+g =
√
g(h+A). Donc :

∆v∗ = v+g − v−g ≈
√
gh(1 +

A

2h
)−

√
gh ∼ A

√
g

h
(32)

Si ∆v∗ ∼ ∆vϕ, les deux effets mentionnés précédemments se compensent et le paquet d’onde
se propage sans se disperser.
Cet effet a lieu lorsque :

A

√
g

h
∼
√
gh

h2

λ2
0

(33)

A
λ2
0

h3
∼ 1 (34)
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Remarque : nous venons de définir le nombre sans dimension appelé nombre d’Ursell U =

A
λ2
0

h3 , qui définit le régime dans lequel on se trouve dans la cas d’ondes de gravité en faible
profondeur.

— Régime linéaire : U → 0
— Onde solitaire : U ∼ 1
— Stokes : U < 10
— Mascaret : U ≫ 1

(cf. cours EPFL C. Ancey, Chap. 4).

Le nombre d’Ursell pour l’exemple donné en question (h) donne U = A
λ2
0

h3 = 0.6·3500002/70003 =
0.21. Le nombre d’Ursell de cette perturbation est bien de l’ordre de l’unité, une onde soli-
taire peut se former et se propager.

Indications : on rapelle que cosh(x) = (ex + e−x)/2 et tanh(x) ≈
x≪1

x− x3/3.
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2. Antenne réseau à commande de phase.
Un courant électrique oscillant dans un fil conducteur
génère un champ électromagnétique qui se propage dans
l’espace. En juxtaposant un ensemble de tels fils, le
signal émis par chacun d’entre eux s’additionne aux
autres. En déphasant le signal émis par chaque fil, il
est possible de modifier la direction du maximum de
l’intensité du signal total sans avoir à changer l’orien-
tation de l’appareil. Un tel dispositif peut donc servir
d’antenne directionnelle.
On modélise l’antenne par un ensemble de fils verti-
caux, alignés le long de ez, distribués sur une distance
L le long de ey. L’antenne est centrée à l’origine. Le
courant électrique J(r, t) oscillant verticalement dans
le fil décalé de y0 le long de ey par rapport à l’origine
(−L/2 ≤ y0 ≤ L/2) est déphasé de β(y0) et peut être
approximé par

−L
2

L
2

x

y

z

r

ϕ

θ

J(r, t) = J̃(r) e−iωt = J0δ(x)δ(y − y0)δ(z)ez e
i(β(y0)−ωt).

Notation. Afin de simplifier les expressions, on séparera la partie temporelle des oscillations de la
partie spatiale :

F(r, t) = F̃(r)e−iωt et f(r, t) = f̃(r)e−iωt.

(a) En partant des équations de Maxwell dans le vide, montrer que les champs électrique, E, et
magnétique, B, satisfont l’équation d’onde.

Les équations de Maxwell dans le vide sont données par

∇ ·E = 0, ∇×E = −∂B

∂t
,

∇ ·B = 0, ∇×B = µ0ϵ0
∂E

∂t
.

(35)

En prenant le rotationnel de l’équation de Maxwell-Faraday, et en utilisant l’identité vec-
torielle a× (b× c) = (a · c)b− (a · b)c, on obtient

∇× (∇×E) = ∇(∇ ·E)−∇2E = ∇×
(
−∂B

∂t

)
= − ∂

∂t
(∇×B) . (36)

On identifie facilement les termes ∇ ·E et ∇×B de (35), ce qui nous donne finalement

∇2E = µ0ϵ0
∂2E

∂t2
, (37)

où l’on reconnaît l’équation d’onde pour u2 = c2 = 1/µ0ϵ0.
Un raisonnement identique en partant de l’équation de Maxwell-Ampère permet de montrer
que

∇2B = µ0ϵ0
∂2B

∂t2
. (38)

Pour commencer, on considère un seul fil. On supposera que la distance à l’observateur, r, est grande
en comparaison aux longueurs d’ondes électromagnétiques λ, qui elles même sont grandes comparée
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à y0, i.e. r ≫ λ ≫ y0. Dans la suite, on négligera tous les termes d’ordre y0/r et λ/r ou supérieurs,
excepté dans le déphasage où on gardera les termes d’ordre y0/r et on négligera les termes d’ordre
supérieurs.

(b) Soit B(r, t) = ∇×A(r, t) avec A(r, t) un potentiel vecteur. Montrer que, sous les approxima-
tions considérées,

A(r, t) =
µ0J0
4πr

ei[kr−ωt−ky0 sin θ sinϕ+β(y0)] ez.

On rappelle l’équation de potentiel retardé

Ã(r) =
µ0

4π

∫
J̃(r′) eik∥r−r′∥

∥r− r′∥
dr′,

où k = ω/c = ω
√
µ0ϵ0

Calculer l’intégrale se fait très simplement, étant donné les distributions de Dirac, on a

Ã(r) =
µ0

4π

∫
J0δ(x)δ(y − y0)δ(z)e

i(k|r−r′|+β(y0))

|r− r′|
ezdr

′

=
µ0J0
4π

eiβ(y0)
1

∆r
eik∆rez,

(39)

où on a posé
∆r = |r− y0ey| =

√
x2 + (y − y0)2 + z2. (40)

On change pour un système de coordonnées sphériques, (r, θ, ϕ), soit

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ,

(41)

et donc

∆r =

√
r2 sin2 θ cos2 ϕ+ (r sin θ sinϕ− y0)2 + r2 cos2 θ

=
√
r2 sin2 θ cos2 ϕ+ r2 sin2 θ sin2 ϕ− 2ry0 sin θ sinϕ+ y20 + r2 cos2 θ

=
√
y20 − 2y0r sin θ sinϕ+ r2

= r

√
1 +

y20 − 2y0r sin θ sinϕ

r2
.

(42)

Sous l’hypothèse y0 ≪ r, on peut faire le développement limité suivant, au premier ordre
en ϵ = y0/r,

∆r(ϵ) = ∆r(0) + ∆r′(0) y0/r +O(y20) = r − sin θ sinϕy0 +O(ϵ2), (43)

où l’on garde le terme d’ordre y0/r puisque il apparaît dans le déphasage.
De façon similaire, on s’intéresse à

f(ϵ) =
1

∆r(ϵ)
=

1

∆(0)
+O(ϵ) =

1

r
+O(ϵ), (44)

où l’on néglige les termes d’ordre y0/r et supérieurs.
Et finalement

Ã(r) ≈ µ0J0
4πr

ei(kr−ky0 sin θ sinϕ+β(y0)) ez (45)
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Ou également

A(r, t) ≈ µ0J0
4πr

ei(kr−ωt−ky0 sin θ sinϕ+β(y0)) ez. (46)

Il s’agit bien d’une onde sphérique avec un déphasage de

β(y0)− ky0 sin θ sinϕ (47)

(c) Dériver le champ magnétique B(r, t). Montrer que, sous les approximations considérées, il peut
s’écrire sous la forme

B(r, t) =
1

r
F (θ, ϕ) ei[kr−ωt−ky0 sin θ sinϕ+β(y0)],

avec F une fonction a spécifier.

On calcule B(r, t) à partir du potentiel vecteur A(r, t) avec

B = ∇×A. (48)

Etant donné que l’opérateur différentiel ∇ n’impacte pas la partie temporelle, on en déduit
que

B̃ = ∇× Ã. (49)

Selon notre système de coordonnées sphériques on a

Ã(r) =
A(r)

r
ez =

A(r)

r
cos θ︸ ︷︷ ︸

Ar

er +−A(r)

r
sin θ︸ ︷︷ ︸

Aθ

eθ

A(r) = A0 e
ikre−iky0 sin θ sinϕeiβ(y0)

(50)

et donc en appliquant le rotationel

B̃(r) =
er

r sin θ

[
−∂Aθ

∂ϕ

]
+

eθ
r sin θ

[
∂Ar

∂ϕ

]
+

eϕ
r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
=

er sin θ

r2 sin θ

∂A

∂ϕ
+

eθ cos θ

r2 sin θ

∂A

∂ϕ
−

eϕ
r

[
∂(sin θA)

∂r
+

1

r

∂(cos θA)

∂θ

] (51)

Etant donné notre définition de A(r), on calcule

∂A

∂r
= A(r)× (ik)

∂A

∂θ
= A(r)× (−iky0 cos θ sinϕ)

∂A

∂ϕ
= A(r)× (−iky0 sin θ cosϕ)

(52)

et encore
∂(cos θA)

∂θ
= −(sin θ + iky0 cos

2 θ sinϕ)A(r) (53)

Ce qui nous conduit à calculer

B̃(r) =
er
r2

A(r)× (−iky0 sin θ cosϕ) ∼ O(ϵ)

+
eθ
r2

1

tan θ
A(r)× (−iky0 sin θ cosϕ) ∼ O(ϵ)

+
eϕ
r2

A(r)× (sin θ + iky0 cos
2 θ sinϕ) ∼ O(ϵ′) +O(ϵ)

−
eϕ
r

sin θA(r)× (ik), ∼ O(1)

(54)
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où ϵ = y0/r et ϵ′ = λ/r.
En négligeant les termes d’ordres ϵ et ϵ′ et supérieurs, on trouve

B̃(r) ≈ −ik sin θA0

r
eikre−iky0 sin θ sinϕeiβ(y0) eϕ, (55)

soit
B(r, t) ≈ −ik sin θA0

r
ei(kr−ωt−ky0 sin θ sinϕ+β(y0)) eϕ. (56)

On identifie donc
F(θ) = −ik sin θA0eϕ. (57)

On observe que le champ magnétique B a également une forme proche de l’onde sphérique.
Cependant l’amplitude de la propagation est proportionnelle à sin θ. On a donc un maxi-
mum lorsque θ = π/2 et deux minimums lorsque θ = 0 et θ = π. La perturbation du
champ magnétique se propage donc dans toutes les directions, avec un lobe dans le plan
horizontal. Cela correspond au résultat d’une antenne centrée à l’origine, vue en cours, avec
un déphasage induit par le déplacement y0.

(d) Dériver le champ électrique E(r, t). Discuter la direction du vecteur de Poynting. Est-ce que
l’intensité du signal émis par le fil possède une symmétrie sphérique ?

Pour calculer Ẽ(r), on utilise Maxwell-Ampère, soit donc

∇× B̃ = iωµ0ϵ0Ẽ =⇒ Ẽ =
−i

ωµ0ϵ0
∇× B̃. (58)

Etant donné que B̃ est orienté selon eϕ, et en se rappelant que k = ω
√
µ0ϵ0, on calcule

facilement, a l’ordre zéro en ϵ et ϵ′

Ẽ(r) =
−i

ωµ0ϵ0

(
er

r sin θ

∂(sin θBϕ)

∂θ
− eθ

r

∂(rBϕ)

∂r

)
=

−i

ωµ0ϵ0

(
−iker
r2 sin θ

∂(sin2 θA(r))

∂θ
+

ik sin θeθ
r

∂A(r)

∂r

)
≈ ik2 sin θ

ωµ0ϵ0

A0

r
eikre−iky0 sin θ cosϕeiβ(y0) eθ

≈ ik sin θ
√
µ0ϵ0

A0

r
eikre−iky0 sin θ cosϕeiβ(y0) eθ.

(59)

Sans surprise, E se propage de façon similaire à B mais de façon perpendiculaire.
Étant donné que B est selon eϕ et que E est selon eθ, on observe que le vecteur de Poynting

S̃ =
1

µ0
Ẽ× B̃ est selon er, (60)

et que par conséquent, l’énergie est transportée radialement par la perturbation. On pourrait
imaginer que ceci est dû aux approximations que nous avons faite. Cependant, si nous avions
gardé les termes d’ordres plus élevés, ceux-ci se seraient annulés les uns les autres dans
l’expression du vecteur de Poynting et nous aurions retrouvé le même résultat. En pratique,
les expressions pour E et B que nous avons dérivées sont appelées "radiation fields", car elles
contiennent la partie de la perturbation qui radie dans toutes les directions, contrairement
aux termes correctifs que l’on nomme "storage fields".
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On considère maintenant l’ensemble des fils de l’antenne. Pour simplifier les calculs, on supposera en
avoir une infinité de sorte à avoir un continuum de fils dans l’interval −L/2 ≤ y0 ≤ L/2.

(e) Dans un premier temps, on supposera que β(y0) = 0. Par superposition, calculer le champ
magnétique total résultant de la somme des contributions de chaque fils, et donner l’angle ϕ qui
maximise l’intensité du signal.

Pour trouver Btot(r, t), on somme les contributions de chaque filament en normalisant par
la longueur L de l’antenne, i.e.,

Btot(r, t) =
1

L

∫ L/2

−L/2
B(r, t)dy0 (61)

L’expression du champ magnétique est reprise du résultat précédent, soit

B(r, t) ≈ −ik sin θA0

r
ei(kr−ωt−ky0 sin θ sinϕ+β(y0))êϕ (62)

L’angle θ n’ayant pas d’influence sur l’intégrale, on se propose d’étudier une fonction de la
forme

B(r, t) =
B∗

0

r
ei(kr−ωt−ky0 sin θ sinϕ), (63)

où le déphasage en iky0 sin θ sinϕ vient du petit décalage en y0 comme étudier dans la
question précédente.
On calcule donc

Btot =
B∗

0

r
ei(kr−ωt) 1

L

∫ L/2

−L/2
e−iky0 sin θ sinϕdy0

=
B∗

0

r
ei(kr−ωt)

[
i

kL sin θ sinϕ
e−iky0 sin θ sinϕ

]y0=L/2

y0=−L/2

=
B∗

0

r
ei(kr−ωt)

[
i

kL sin θ sinϕ

(
e−ikL

2
sin θ sinϕ − eik

L
2
sin θ sinϕ

)]
=

B∗
0

r
ei(kr−ωt)

[
2

kL sin θ sinϕ

(
eik

L
2
sin θ sinϕ − e−ikL

2
sin θ sinϕ

2i

)]

=
B∗

0

r
ei(kr−ωt)

[
2

kL sin θ sinϕ
sin

(
kL sin θ sinϕ

2

)]
=

B∗
0

r
ei(kr−ωt)sinc

(
kL sin θ sinϕ

2

)
,

(64)

où on a utilisé le sinus cardinal sinc(x) = sin(x)/x.
L’intensité est donnée par

I ∝ B̄ ·B =
k2 sin2 θA2

0

r2
sinc2

(
kL

2
sin θ sinϕ

)
. (65)

Le maximum d’intensité est donc atteint lorsque l’argument du sinus cardinal vaut zéro

sin θ sinϕ = 0. (66)

Étant donné que B ∝ sin θ, les angles d’observations où θ = 0 et θ = π voient leur amplitude
tomber à zéro. Le maximum est donc donné pour θ = π/2 et ϕ = 0, ce qui correspond à un
observateur se trouvant directement en face de notre antenne.
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(f) On pose maintenant β(y0) = ay0 + b, où a et b sont des constantes. Dans ce cas, calculer le
champ magnétique total et donner l’angle ϕ qui maximise l’intensité du signal.

Le raisonement est identique au point précédent. Cependant, cette fois-ci, on doit intégrer

Btot =
B∗

0

r
ei(rk−ωt+b) 1

L

∫ L/2

−L/2
ei(ay0−ky0 sin θ sinϕ)dy0

=
B∗

0

r
ei(kr−ωt+b)

[
i

L(k sin θ sinϕ− a)
e−iy0(k sin θ sinϕ−a)

]y0=L/2

y0=−L/2

=
B∗

0

r
ei(kr−ωt+b)

[
i

L(k sin θ sinϕ− a)

(
e−iL

2
(k sin θ sinϕ−a) − ei

L
2
(k sin θ sinϕ−a)

)]
=

B∗
0

r
ei(kr−ωt+b)

[
2

L(k sin θ sinϕ− a)

(
ei

L
2
(k sin θ sinϕ−a) − e−iL

2
(k sin θ sinϕ−a)

2i

)]

=
B∗

0

r
ei(kr−ωt+b)

[
2

L(k sin θ sinϕ− a)
sin

(
L(k sin θ sinϕ− a)

2

)]
=

B∗
0

r
ei(kr−ωt+b)sinc

(
kL sin θ sinϕ− a

2

)
,

(67)

Et donc l’intensité est

I ∝ k2 sin2 θA2
0L

2

r2
sinc2

(
L

2
(k sin θ sinϕ− a)

)
(68)

On commence par observer que le paramètre b n’a pas d’influence sur l’intensité puisqu’il
ajoute un déphasage constant.
Ici encore, le maximum du sinus cardinal est donné lorsque son argument vaut zéro, ce qui
correspond cette fois-ci à

k sin θ sinϕ = a (69)

Comme le champ magnétique est proportionnel à sin θ, le maximum est donné par θ = π/2.
On trouve donc l’angle ϕ qui vérifie le maximum d’intensité à

ϕ = sin−1
( a

k sin θ

)
(70)

Étant donné un paramètre a, on observe que le maximum d’intensité est produit pour une
certaine direction d’observation ϕ. De façon opposée, si on doit envoyer un message dans
une direction d’observation ϕ, alors il est possible de choisir le paramètre a en conséquence
afin de ne pas avoir à modifier l’orientation de l’antenne.

Un vaisseau spatial muni d’une antenne directionnelle à l’avant du cockpit se déplace à vitesse
relativiste v = vex par rapport à la Terre et cherche à y envoyer un message. Lorsqu’il émet son
message, il mesure sa distance à la Terre, r′, et observe cette dernière sous un angle ϕ′

0 par rapport
à sa ligne de déplacement, soit r′terre = r′ cosϕ′

0ex + r′ sinϕ′
0ey. On cherche à déterminer l’angle ϕ′

avec lequel il doit envoyer son message afin que la station sur Terre le reçoive.

On remarque que l’image de la Terre, observée par l’astronaute, est également un signal lumineux.
On distingue donc trois évènements dans l’espace-temps : l’évènement A où la terre émet son image,
l’évènement B où le vaisseau reçoit l’image de la Terre et répond, et finalement l’évènement C où la
Terre reçoit le message. Dans le référentiel de l’astronaute, les trois évènements ont respectivement
les coordonnées (x′A, y

′
A, t

′
A), (0, 0, 0) et (x′C , y

′
C , t

′
C).
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(g) Exprimer l’angle ϕ′ en fonction de x′C et y′C ainsi que x′A, y′A et t′A en fonction de r′ et ϕ′
0.

On commence par définir deux référentiels R et R′ dans lesquels sont immobiles respecti-
vement la Terre et le vaisseau spatial. Depuis R, on observe R′ se déplacer à vitesse vex.
Depuis R′ on observe R se déplacer à vitesse −vex.
Dans un premier temps, on doit observer qu’il n’est pas possible d’identifier la position de la
Terre, vue du vaisseau, par ses coordonnées (r′, ϕ′

0) directement. En effet, l’image de la Terre
étant un signal lumineux qui se déplace à vitesse c, les coordonnées (r′, ϕ′

0) ne représentent
pas la position de la Terre mais la position qu’elle avait dans le passé, lorsqu’elle a émis son
image.
De façon similaire, la direction ϕ′ dans laquelle il faut envoyer sa réponse ne dépend pas de
la position observée de la cible dans le ciel, mais de la position qu’elle aura au moment où
elle croisera la trajectoire du message.
Afin de répondre correctement, on commence par poser 3 évènements dans l’espace-temps

A : La Terre envoie un signal lumineux, son image
B : Le vaisseau reçoit l’image de la Terre et répond immédiatement avec un message
C : La Terre reçoit le message

ct′

x′

R′

B
Vaisseau

Terrev

A

C

x′

y′

R′

v
ATerre

B

C

Vaisseau

ϕ′
0

ϕ′

r′

x

y
R

v

A
Terre

B

C

Vaisseau

ϕ = ϕ0

La lumière se déplaçant en ligne droite à vitesse c, les deux trajectoires aller-retour em-
pruntées sont donc les droites qui relient les vecteurs spatiaux A′B′ et B′C′.
En particulier,

A′B′ = (0− x′A, 0− y′A) = (−r′ cosϕ′
0,−r′ sinϕ′

0) (71)

et
B′C′ = (x′C − 0, y′C − 0) =⇒ tan

(
ϕ′) = y′C

x′C
(72)

Le temps parcouru par la lumière pour parcourir A′B′ se déduit facilement de sa vitesse c
et de la distance parcourue r′.
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Ainsi on obtiens l’expression de ϕ′

tanϕ′ =
yC
xC

(73)

Et les expressions de x′A, y′A et t′A

x′A = r′ cosϕ′
0

y′A = r′ sinϕ′
0

t′A = −r′/c

(74)

Le but étant d’exprimer ϕ′, on va chercher à exprimer x′C et y′C en fonction de x′A et y′A,
puis donc de r′ et ϕ′

0.

(h) Appliquer la transformation de Lorentz pour calculer les coordonnées des évènements A, B, et
C dans le référentiel où la Terre est au repos.

On applique la transformée de Lorentz pour passer de R′ à R, soit

x = γ(x′ + vt′)

y = y′

t = γ

(
t′ +

vx′

c2

) (75)

Ce qui nous donne les coordonnées des évènements

A = (γ(x′A + vt′A), y
′
A, γ

(
t′A +

vx′A
c2

)
)

B = (0, 0, 0)

C = (γ(x′C + vt′C), y
′
C , γ

(
t′C +

vx′C
c2

)
)

(76)

(i) Exprimer ϕ′ comme fonction des paramètres mesurés par l’astronaute.

Dans le référentiel de la terre, celle-ci est immobile. On envoie un faisceau lumineux entre
A et B qui rebondit sur B et revient. De ce point de vue, les deux trajectoires, aller-retour,
sont donc identiques. La distance parcourue est la même, et par conséquent le temps de
parcours également. Soit

∆tAC = ∆tAB +∆tBC = 2∆t (77)

De plus, la Terre étant immobile, les coordonnées spatiales des évènements A et C sont
donc identiques.
On en déduit donc le système d’équations

γ(x′A + vt′A) = γ(x′C + vt′C)

y′A = y′C

γ
(
t′A +

vx′
A

c2

)
+ 2∆t = γ

(
t′C +

vx′
C

c2

) (78)

où
∆t = 0− γ

(
t′A +

vx′A
c2

)
︸ ︷︷ ︸

∆tAB

= γ

(
t′C +

vx′C
c2

)
− 0︸ ︷︷ ︸

∆tBC

(79)

Si on remplace 2∆t = ∆tAB +∆tBC dans (78), on obtient une relation triviale qui ne nous
intéresse pas.
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En revanche, étant donné que ∆tAB = ∆tBC = ∆t, remplacer 2∆t par 2∆tAB où 2∆tBC

permet de progresser. Ce qui nous conduit au système d’équations{
γ(x′A + vt′A) = γ(x′C + vt′C)

−γ
(
t′A +

vx′
A

c2

)
= γ

(
t′C +

vx′
C

c2

) (80)

Et après simplification {
x′A + vt′A = x′C + vt′C

−t′A − vx′
A

c2
= t′C +

vx′
C

c2

(81)

Ayant déjà y′C = y′A, on cherche x′C en fonction de x′A et t′A. Soit

t′C =
1

v

(
x′A − x′C

)
+ t′A

= −t′A − v

c2
x′A − v

c2
x′C

(82)

D’où l’on tire
=⇒

(
v

c2
− 1

v

)
x′A = −2t′A −

(
v

c2
+

1

v

)
x′A

=⇒ x′C =
1 + v2/c2

1− v2/c2
x′A +

2vt′A
1− v2/c2

(83)

Du résultat précédent, (71), on sait que x′A = r′ cosϕ′
0, y′A = r′ sinϕ′

0 et t′A = −r′/c.
Ce qui nous donne

x′C =
r′

1− v2/c2
(
(1 + v2/c2) cosϕ′

0 − 2v/c
)

(84)

Et finalement

tan
(
ϕ′) = y′C

x′C
=

(1− v2/c2) sinϕ′
0

(1 + v2/c2) cosϕ′
0 − 2v/c

(85)

Dans le cas limite où v = 0, on obtient ϕ′ = ϕ′
0, ce qui correspond bien à notre intuition.

Lorsque v → c, étant donné que v < c, le numérateur tend vers 0+. Dans le cas ϕ′
0 ̸= 0,

le dénominateur devient négatif, par conséquent, tan(ϕ′) → 0−. Ceci correspond en fait au
cas où ϕ′ → π.
Pour un angle ϕ′

0 donné, il faut envoyer le message avec un angle ϕ′ légèrement plus impor-
tant. Lorsque

cosϕ′
0 ≥

2v

c(1 + v2/c2)
(86)

il faut envoyer le message vers l’arrière par rapport au sens du mouvement.

Indication : Equations de Maxwell

∇ ·E =
ρ

ϵ0
∇ ·B = 0 ∇×E = −∂B

∂t
∇×B = µ0J + µ0ϵ0

∂E

∂t

Indication : Intégration de la distribution de Dirac∫ ∞

−∞
f(x)δ(x)dx = f(0)
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Indication : Opérateurs différentiels en coordonnées sphériques

∇f = er
∂f

∂r
+ eθ

1

r

∂f

∂θ
+ eϕ

1

r sin θ

∂f

∂ϕ

∇×F =
1

r sin θ

(
∂(sin θFϕ)

∂θ
− ∂Fθ

∂ϕ

)
er+

1

r

(
1

sin θ

∂Fr

∂ϕ
−

∂(rFϕ)

∂r

)
eθ+

1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
eϕ

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fϕ

∂ϕ
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