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Série 13 : Test à blanc

1 Spaghetti vibranti
Forte du succès de ses expériences de l’année passée, Paoletta désire appliquer ce qu’elle a appris
récemment. Elle prend un spaghetti non cuit , que l’on modélise par un cylindre de longueur L,
de diamètre ` et de masse par unité de longueur µ, qu’elle maintient par l’une de ses extrémité et le
fait vibrer. On note u(x, t) le déplacement transverse du spaghetti en un point x et au temps t.

x

L

z
u(x, t)

En négligeant les effets externes tels que la gravité ou les frottements, on trouve que le déplacement
transverse de petite amplitude u(x, t) du spaghetti vérifie une équation similaire à celle d’une onde,
l’équation d’Euler-Bernoulli utilisée en théorie des poutres

EI∂4
xu(x, t) + µ∂2

t u(x, t) = 0, (∗)

où E est le module de Young du spaghetti et I = π`4/64 un coefficient caractérisant sa géométrie,
tout deux supposées constants et connus, et où l’on utilise la notation ∂x = ∂/∂x et ∂t = ∂/∂t pour
exprimer les dérivées. Paoletta veut trouver la solution de l’équation (∗) et comprendre la dynamique
des oscillations.
(a) Afin de simplifier les calculs, Paoletta commence par chercher les solutions stationnaires. Ce

faisant, elle suppose que les solutions cherchées sont de la forme

u(x, t) = q(t)φ(x), (†)

où q(t) = A cos(ωt) + B sin(ωt), avec A, B et ω constants. Montrer que φ(x) satisfait une
équation différentielle de la forme

∂4
xφ(x) − β4φ(x) = 0, (‡)

où β est à exprimer en fonction des paramètres connus. En déduire une relation de dispersion
entre β et ω. Montrer qu’une solution de (‡) est donnée par

φ(x) = A cosh(βx) + B sinh(βx) + C cos(βx) + D sin(βx),

avec A, B, C, et D des constantes.
(b) Paoletta maintient fermement le spaghetti à son extrémité x = 0 de sorte à ce qu’en ce point il ne

bouge pas et reste horizontal en tout temps. L’autre côté du spaghetti, x = L, est libre d’osciller.
Par conséquent, l’extrémité libre ne subit aucun moment de flexion, M(x, t) = EI∂2

xu(x, t) = 0,
et aucune force de cisaillement, V (x, t) = EI∂3

xu(x, t) = 0. Donner les quatres conditions aux
bords nécessaires à la résolution de (‡).

(c) Montrer qu’une solution stationnaire de (∗) de la forme (†) ne peut exister que si

cosh(βL) cos(βL) + 1 = 0. (§)

Combien de solutions de l’équation (§), β = βn, existe-t-il ?
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(d) Montrer que la solution générale (†) qui satisfait les conditions au bord en x = 0 et x = L est
donnée par

u(x, t) =
∑

n

Anqn(t)
[[

cosh(βnx) − cos(βnx)
]

− Rn
[
sinh(βnx) − sin(βnx)

]]
,

où les coefficients Rn sont à déterminer en fonction de βn et L, avec An des constantes.
(e) L’équation (§) étant transcendante, il n’est pas possible de trouver ses solutions analytiquement.

On peut cependant s’intéresser à une approximation asymptotique de la solution pour βL → +∞.
Montrer que pour n suffisamment grand, les solutions de (§) peuvent être approximées par

βnL ≈ (n + 1/2)π + (−1)n

cosh
[
(n + 1/2)π

]
(f) Montrer que les solutions φn de l’équation (‡), pour β = βn, sont orthogonales et peuvent

donc être utilisées comme base de fonctions. Esquisser la procédure à suivre pour étudier les
vibrations du spaghetti pour un déplacement transversal initial u(x, t = 0), ∂tu(x, t = 0) donné.

Paoletta impose une petite oscillation à l’extrémité x = 0 du spaghetti, sans le déplacer verticalement
mais tel que la pente en x = 0 soit donnée par

∂xu(0, t) = α(t) = α0 sin(Ωt),

avec α0 � 1.
(g) On choisit de décomposer la solution en

u(x, t) = g(x, t) + w(x, t),

où g(x, t) = xα(t). Expliquer pourquoi une telle décomposition est opportune. Que représentent
g(x, t) et w(x, t) ?

(h) Montrer que l’on peut écrire w(x, t) =
∑

n Anqn(t)φn(x), où qn(t) satisfait l’équation d’un
oscillateur forcé

∂2
t qn(t) + ωnqn(t) = InΩ sin(Ωt),

où φn(x) est solution de l’équation (‡) pour β = βn avec les conditions au bord appropriées.
Déterminer wn et In.

(i) Donner l’expression complète de u(x, t). On partira du principe que qn(0) = ∂tqn(0) = 0. Que
se passe-t-il lorsque Ω approche ωn ?

Dans un second temps, Paoletta cherche à mesu-
rer précisément l’amplitude des vibrations obte-
nues à l’aide d’une technique non invasive. Pour
ce faire, elle met en place une source lumineuse
que l’on modélisera par des ondes planes d’inci-
dence horizontale, de longueur d’onde λ = 2π/k,
se propageant dans la direction y, que l’on définit
perpendiculaire à la verticale z et perpendiculaire
à la direction du spaghetti x. Une petite fraction
de la lumière incidente est bloquée par la section
du spaghetti et produit une figure de diffraction
sur un écran vertical placé à distance D � `,
diffraction que l’on propose d’étudier.

y

z

x D

écran

Z

` h(t)
k

(j) Discuter la relation entre la figure de diffraction de cette installation et celle d’une fente de
hauteur `.
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(k) On suppose le spaghetti infiniment long, parfaitement rectiligne et positionné en y = 0. Par
le principe d’Huygens, chaque élément infinitésimal de l’onde lumineuse en (y = 0, z), se
comporte comme une source secondaire ds(z), d’amplitude s0 dz, émettant une onde cylindrique
se propageant dans le plan (y, z) perpendiculaire au spaghetti. Montrer que, pour un point sur
l’écran de coordonée verticale Z, la contribution d’un élément de source est approximée par

ds(Z) ≈ s0√
D

exp
(

− ikZ2

2D

)
exp

(
ikZz

D

)
eiωt dz.

On fera ici l’approximation de Fraunhofer `2 � λD, ainsi que z, Z � D.
(l) Les vibrations sont modélisées par un déplacement vertical constant dans l’espace, c’est-à-dire

u(x, t) = h(t), du spaghetti. Calculer l’intensité lumineuse de la diffraction observée sur l’écran
à la position Z. Est-il possible de mesurer h(t) à partir de celle-ci ? Pourquoi ?
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