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Transformations canoniques

Pour rappel,
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On cherche F de la forme F ({g;},{P:},t) (avec une nouvelle impulsion)
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En regardant les différents termes, on voit qu’on ne peut pas satlsfalre I’égalité. Donc il faut modifier la fonction F comme
suit :
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Et on peut satisfaire I’égalité avec
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De maniére similaire on peut chercher des F qui dépendent uniquement de ({p;},{Q:}) ou de ({p;},{P;}) (regarder
le polycopié). On remarque que l'on avait P; = % et Q; = aF Sp- qui est exactement la relation qui découle des
transformations de Legendre. "

En effet les différentes fagon d’engendrer les transformations sont liées par des transformations de Legendre.

Pourquoi insiste-t-on sur les transformations canoniques ?
On écrit les équations canoniques de Hamilton au temps t :
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En connaissant ¢;(t) et p;(t), on va calculer ¢;(t') et g;(t) :
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Donc a partir de ¢;(t), p;(t) on trouve ¢;(t), ¢:(t') et puisque 'on peut inverser le temps, on a la relation inverse. Mais le
systéme obéit les équations canoniques de Hamilton aussi au temps ', donc :



L’évolution du systéme transforme les variables au temps t (qui obéissent les équations canoniques de Hamilton) dans les
variables au temps t' (qui obéissent les équations canoniques de Hamilton)

L’évolution du systéme est une transformation canoniques !!! ‘

Intégration a la Verlet

Si on veut intégrer numériquement les équations du mouvement, on doit discrétiser le temps (ici on le fait pour un seul
degré de liberté, pour simplicité)
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La question est : quels ¢ et p on utilise dans H ? ¢(t) et p(t) ? g(t + At) et p(t + At) 7 un mélange ?

Dans la limite (mathématique mais pas accessible a ordinateur), chaque choix donne le méme résultat. Mais on sait que
I’évolution du systéme est une transformation canonique. Donc un algorithme qui est une transformation canonique est
plus appropriée (plus proche) a la vrai dynamique du systéme.

On doit le construire. D’abord on appelle :

q(t+At) =Q q=q(t)
{p<t+At>—P {p—p(w ©)

On ré-écrit d’abord : Q = q + At%—g on fixe cette premiére égalité et on décide d’utiliser P dans H.
Donc on va chercher une fonction génératrice du type F(p, @, At). On reprend l'invariance de jauge
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il est évident qu’il faut ajouter un morceau
F(q,p,Q, P, At) = qp + F(p,Q, At) (11)
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On avait écrit Q = g + At%—g qui devient ¢ = Q — At%—g et donc
F(p,Q) = —Qp+ AtH(p,Q) (14)
qui engendre P = p — Atg—g , Donc dans H il faut utiliser p(t) et q(t + At) = Q qui est Palgorithme de Verlet !
Cas particulier de transformation canonique
Fir ({g:},{Qi}) = X2 Qi
P — aFl = : P .
= Pi 8q;9F' Qi done Qi = p; (15)
i = —ag. = — Wi P =—q

Donc, a part un changement de signe, on peut aisément échanger coordonnés et impulsions. Leur role, mathématiquement
est le méme.



Propriétés des transformations canoniques

D’abord, on définit le Jacobien M (est une matrice) d’une transformation canonique. Dans l'espace de phase (dim = 6/V)

on définit
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en effet ¢(%) = y(Z(y)) donc
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Il est d’ailleurs bien évidement que gy? = 05
J7

On peut construire une nouvelle propriété & partir de M :

MJM"=J M'JM=J MJ'=M"'J M'J=MJ"
Démo :
D’abord on rappelle que
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En utilisant les autres relations on peut trouver que chaque élément de M est associé & un élément de M -1

Pour exemple

0Qi _ 00k 00K _ Op
dq;  0q; OP, 0P, 0q;  OP;
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si on écrit
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Les relations que 'on vient de trouver sont :
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et similairement pour les autres.

Donc

et on peut aussi prouver que MJM ' = J:
de ng = JM ! on prend Vinverse : J(M')"! = MJ (on rappelle que 471 =-J)

et aprégon multiplie a droite par M T,

JMH)T'MT=MIMT = MJM' =
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A partir de cette propriété on peut montrer que les crochets de Poisson sont préservées par les transformations canoniques:
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et donc
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Alors {f, g}y ={f. 9}z

En particulier
{qivpj} = 5ij {inpi} = 51‘]’
{a.¢} =0 = {QiQ;}=0 (39)
{pi,pj} =0 {Pi, P} =0

On peut vérifier si une transformation est canoniques de trois fagons :

1. par intégration : & partir, pour exemple, de

pi =pi ({a:} ., {Qi} ) . :
{ P =P ({g}, Qi) 1) on essaye de trouver Fy ({¢;},{Q:},?t) (40)

si elle existe alors la transformation est, par construction, canonique. Bien évidemment on peut le faire par biais de
Fy, F5 ou Fy, selon laquelle qui est plus appropriée.

2. On calcule M et on vérifie si MJM" = J (ou ﬂ—r& =J)

3. On calcule {Q;,Q;},{P, Pj},{Q:, P;} pour tous les couples et on vérifie qu’elles donnent les bons résultats



Matrices symplectiques

Le matrices qui obéissent la propriété MJM " = J sont appelées "sysmplectiques" et elles forment le groupe symplectiques

Spen (R) (élements des matrices réels)
1. 1 est part du groupe g‘r = J triviale

2. %71 est part du groupe

[l

MIM'"=J -  JM'=M"' — J=M"'JM")! (41)

M~'a gauche (MT)~1a droite

3. si £1 et %2 sont part du groupe, alors %1£2 est part du groupe

My My J My My) " = My MpJ My "My " = MyJM, T = ] (42)

4. La multiplication est associative (évident pour des matrices)

Le déterminant d’une matrice symplectique M est unitaire detM =1

En effet :
det(MIM ") = detJ (43)
= det(M) - det(J) - det(M ") = detJ (44)
= det(M) - det(M") =1 (45)

Donc [det(M)]? =1 = det(M) = +1

Mais on peut associer det(M) & une fonction génératrice I ({g;},{Pi}) telle que
By ({ai}, {B}) = lim B ({gi}, {P} , €) (46)

avec

£y ({Qi}a{Qi},€)ZE(F2—ZQiH)+Zqu (47)

Mais dans le cas e = 0 on a

Q; = oFyle=0) _ 0 qui est l'identité (48)
i="op ¢

Donc on a une matrice symplectique M () qui eset 'identité pour € = 0 (donc det(M(0)) = 1)
Graphiquement, dans 1’espace des matrices

{ pi = 6F28(€=0) - P

Par continuité (les matrices sont contines en ¢), le déterminant ne peut pas sauter de +1 a —1, et donc | detM = 1
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Ou l'on a utilisé &; = & (Zo,t) dans la deuxieéme égalité. Cest une transformation canonique ! Donc on peut changer de
variables : Ty — To, au prix de tenir compte du déterminant de la matrice Jacobienne, detM

Don, un systéme régit par une évolution canonique préserve les volumes dans 1’espace de phase.



