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Transformations canoniques

Pour rappel,
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ṗi +

@F

@t

| {z }
dF
dt

(1)

On cherche F de la forme F ({qi} , {Pi} , t) (avec une nouvelle impulsion)
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En regardant les différents termes, on voit qu’on ne peut pas satisfaire l’égalité. Donc il faut modifier la fonction F comme
suit :
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Et on peut satisfaire l’égalité avec
(

pi =
@F2
@qi

Qi =
@F2
@Pi

et K = H +
@F2

@t
(5)

De manière similaire on peut chercher des F qui dépendent uniquement de ({pi} , {Qi}) ou de ({pi} , {Pi}) (regarder
le polycopié). On remarque que l’on avait Pi = � @F1

@Qi
et Qi = �@F1

@Pi
qui est exactement la relation qui découle des

transformations de Legendre.
En effet les différentes façon d’engendrer les transformations sont liées par des transformations de Legendre.

Pourquoi insiste-t-on sur les transformations canoniques ?

On écrit les équations canoniques de Hamilton au temps t :
(

q̇i(t) =
@H

@pi

ṗi(t) = �@H

@qi

(6)

En connaissant qi(t) et pi(t), on va calculer qi(t0) et qi(t) :
⇢

qi ({qi(t)} , {pi(t)} , t� t
0)

pi ({qi(t)} , {pi(t)} , t� t
0)

(7)

Donc à partir de qi(t), pi(t) on trouve qi(t), qi(t0) et puisque l’on peut inverser le temps, on à la relation inverse. Mais le
système obéit les équations canoniques de Hamilton aussi au temps t

0, donc :
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L’évolution du système transforme les variables au temps t (qui obéissent les équations canoniques de Hamilton) dans les
variables au temps t

0 (qui obéissent les équations canoniques de Hamilton)

L’évolution du système est une transformation canoniques !!!

Intégration à la Verlet

Si on veut intégrer numériquement les équations du mouvement, on doit discrétiser le temps (ici on le fait pour un seul
degré de liberté, pour simplicité)
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La question est : quels q et p on utilise dans H ? q(t) et p(t) ? q(t+�t) et p(t+�t) ? un mélange ?
Dans la limite (mathématique mais pas accessible à l’ordinateur), chaque choix donne le même résultat. Mais on sait que
l’évolution du système est une transformation canonique. Donc un algorithme qui est une transformation canonique est
plus appropriée (plus proche) à la vrai dynamique du système.
On doit le construire. D’abord on appelle :

⇢
q(t+�t) = Q

p(t+�t) = P

⇢
q = q(t)
p = p(t)

(9)

On ré-écrit d’abord : Q = q +�t
@H

@p
on fixe cette première égalité et on décide d’utiliser P dans H.

Donc on va chercher une fonction génératrice du type F (p,Q,�t). On reprend l’invariance de jauge
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il est évident qu’il faut ajouter un morceau

F (q, p,Q, P,�t) = qp+ F (p,Q,�t) (11)
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On avait écrit Q = q +�t
@H

@p
qui devient q = Q��t

@H
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et donc

F (p,Q) = �Qp+�tH(p,Q) (14)

qui engendre P = p��t
@H

@Q
, Donc dans H il faut utiliser p(t) et q(t+�t) = Q qui est l’algorithme de Verlet !

Cas particulier de transformation canonique

F1 ({qi} , {Qi}) =
P

i
qiQi

)
(
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= Qi

Pi = � @Fi
@Qi

= �qi
donc

⇢
Qi = pi

Pi = �qi

(15)

Donc, a part un changement de signe, on peut aisément échanger coordonnés et impulsions. Leur rôle, mathématiquement
est le même.
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Propriétés des transformations canoniques

D’abord, on définit le Jacobien M (est une matrice) d’une transformation canonique. Dans l’espace de phase (dim = 6N)
on définit
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Donc la transformation est
~y(~x) et Mij =
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(17)

La transformation inverse est
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@xi

@yj
(18)
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Il est d’ailleurs bien évidement que @yi
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= �ij

On peut construire une nouvelle propriété à partir de M :
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Démo :
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En utilisant les autres relations on peut trouver que chaque élément de M est associé à un élément de M
�1
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Les relations que l’on vient de trouver sont :
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et similairement pour les autres.

Donc

M
>
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�1 ) M
>
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et on peut aussi prouver que MJM
> = J :

de M
>
J = JM

�1 on prend l’inverse : J(M>)�1 = MJ (on rappelle que J
�1 = �J )

et après on multiplie à droite par M
> :
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A partir de cette propriété on peut montrer que les crochets de Poisson sont préservées par les transformations canoniques:
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Alors {f, g}~y = {f, g}~x

En particulier
{qi, pj} = �ij {Qi, Pi} = �ij

{qi, qj} = 0 ) {Qi, Qj} = 0
{pi, pj} = 0 {Pi, Pj} = 0

(39)

On peut vérifier si une transformation est canoniques de trois façons :

1. par intégration : à partir, pour exemple, de
⇢

pi = pi ({qi} , {Qi} , t)
Pi = Pi ({qi} , {Qi} , t)

on essaye de trouver F1 ({qi} , {Qi} , t) (40)

si elle existe alors la transformation est, par construction, canonique. Bien évidemment on peut le faire par biais de
F2, F3 ou F4, selon laquelle qui est plus appropriée.

2. On calcule M et on vérifie si MJM
> = J (ou M

>
JM = J)

3. On calcule {Qi, Qj} , {Pi, Pj} , {Qi, Pj} pour tous les couples et on vérifie qu’elles donnent les bons résultats
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Matrices symplectiques

Le matrices qui obéissent la propriété MJM
> = J sont appelées "sysmplectiques" et elles forment le groupe symplectiques

Sp6N (R) (élements des matrices réels)

1. 1 est part du groupe 1J1> = J triviale

2. M
�1 est part du groupe

MJM
> = J !|{z}

M�1à gauche

JM
> = M

�1
J !|{z}

(M>)�1à droite

J = M
�1

J(M>)�1 (41)

3. si M
1

et M
2

sont part du groupe, alors M
1
M

2
est part du groupe

M1M2JM1M2)
> = M1M2JM2

>
M1

> = M1JM1
> = J (42)

4. La multiplication est associative (évident pour des matrices)

Le déterminant d’une matrice symplectique M est unitaire detM = 1
En effet :

det(MJM>) = detJ (43)

) det(M) · det(J) · det(M>) = detJ (44)

) det(M) · det(M>) = 1 (45)

Donc [det(M)]2 = 1 ) det(M) = ±1
Mais on peut associer det(M) à une fonction génératrice F2 ({qi} , {Pi}) telle que

F2 ({ai} , {Pi}) = lim
"!1

F2 ({qi} , {Pi} , ") (46)

avec
F2 ({qi} , {Qi} , ") = "(F2 �

X

i

qiPi) +
X

i

qiPi (47)

Mais dans le cas " = 0 on a (
pi =

@F2("=0)
@qi

= Pi

Qi =
@F2("=0)

@Pi
= qi

qui est l’identité (48)

Donc on a une matrice symplectique M(") qui eset l’identité pour " = 0 (donc det(M(0)) = 1)
Graphiquement, dans l’espace des matrices

Par continuité (les matrices sont contines en "), le déterminant ne peut pas sauter de +1 à �1, et donc detM = 1
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Théorème de Liouville

Vt =

Z

⌃t

d~xt =

Z

⌃0

=1z }| {
|detM| d~x0 =

Z

⌃�0
d ~x0 = V0 (49)

Où l’on a utilisé ~xt = ~xt (~x0, t) dans la deuxième égalité. C’est une transformation canonique ! Donc on peut changer de
variables : ~xt ! ~x0, au prix de tenir compte du déterminant de la matrice Jacobienne, detM

Don, un système régit par une évolution canonique préserve les volumes dans l’espace de phase.
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