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Le formalisme de Lagrange qu’on vient de développer est une conséquence des lois de Newton. On va maintenant montre
qu’on peut les dériver & partir d'une formulation complétement différente. Pour le faire, il faut introduire le calcul des

variations.

Calcul des variations

Il faut d’abord définir le concept de "fonctionnelle". Une fonction est une opération qui prend un nombre en R" et le
transforme en R : f : R™ — R (bien évidemment on ne doit pas se limiter & R), mais on le fait par simplicité). L’argument

d’une fonction est un nombre.
Une fonctionnelle est une opération qui prend une fonction et la transforme en R : [ : R" - R

Un exemple typique est
b
1= [ P aa) e
Ou f: R — R (f(x))
L’argument de I est donc une fonction, et pour chaque choix de la fonction, I prend une valeur différent.

Par exemple :
F(f)=aff
Alors .
1= [ F.rod

et

1

g O
Note : Les fonctionnelles sont étudiées dans 1’Analyse Fonctionnelle, une branche trés belle et
riche des mathématiques. Elle généralise ’analyse a des objets (arguments) qui sont des fonc-

tions.

Quelle est la question & la base du calcul des variations ?
Soit donné la fonctionnelle I[y]|, dont Pargument sont les fonctions y : R — R, y(x) avec x € [a, b].

b
Ily] :/ F(y,y',x)dx

avec y(a) et y(b) fixées pour tous choix de y
y(a) = Ya
v
{ y®) =y

Alors on cherche la fonction y qui minimise I[y].
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e Route formelle (voir notes sur le moodle): on utilise la dérivée fonctionnelle

ol
o= 0 on utilise § pour la dérivée fonctionnelle
Y

(en effet trés similaire a 'analyse, aprés avoir définis ce qu’est la dérivée par rapport & une fonction.)

e On retourne a 'analyse.

Si on connait la solution ¢(x), on peut écrire toutes les autres fonctions de la forme
y(z) =y(z) +an(z) a€eR

avec les conditions

(a) =

car y(x) et y(x) doivent satisfaire { Z(b) (@) = ya

{ n(a) =0
(0) = s

n(b) =0

<@

®)

(9)

(10)

Alors, si n(x) est arbitraire (sauf pour les conditions en a et b), la dérivée de I par rapport & a doit étre nulle en

a=10

En effet, pour chaque n(z) donné,
Iyl = I[n; o] = I(«) est une fonction de «

I[n; o] dépend paramétriquement de .

donc .
M= [ Fo+ang +an.e)ds
“ dl
— =0 Vn
dov a=0
On développe cette derniére expression :
ar| /” OF (7 + an) oF (Y +an') "
dal,_o  Ja L0y +an) da oy +an') O o

_/b aj _‘_81/ dx
L. Yo "oy
- =~

Et on travaille par parties sur la deuxiéme intégrale

dI boF OF
= [ =nde+< 550

da

o 99 9y’

a=0

”_/bd OF\
o Jo dx \O¥ g
_/*’ OF d (0F\\ , . OF
“ ). Vay dr\ay ) ST oy

mais 77(a) = n(b) = 0 et donc le dernier terme est nulle.

a

Finalement
dI /b{ d <8F> 6F}
— =— — = )——=—=¢ndz=0
dal,_, « ldz \ 0y ay
d
car on sait que — =0
dov a=0
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D’autre coté, n est arbitraire, et donc cet intégrale est nulle pour n’importe quel choix de 7 seulement si

d [OF oOF
= (57) -5 =0 (@)

qui en réalité est une équation différentielle en §. Autrement dit, ’hypothése que 4 soit solution est consistante si
elle satisfait cette équation, qui s’appelle I’équation d’Euler.

A ce point I’analogie avec le formalisme de Lagrange est clair :

F— L
y—q (22)
T —t
et on définit TACTION S[q]
to
. q(t) =a
Slql= | Li(qgq,t)dt 23
[4] /tl (4,4,t) aVGC{q<t2)a2 (23)

La fonction qui minimise S, et qui doit donc satisfaire ’équation de Euler-Lagrange
d (0L oL
— =) -5 =0 (24)
dt \ 9¢ dq

est la trajectoire du systéme.

On dit alors que le systéme évolue selon une trajectoire qui minimise l'action selon le PRINCIPE DE MOINDRE
ACTION

A noter : pour résoudre les équations de Lagrange, on posait les conditions initiales : ¢(¢;) et
q(t1)

Dans la dérivation qui nous a mené au principe de moindre action et & I’équation de Euler-
Lagrange, on a uniquement posé q(t1) et g(t2) (aucune condition sur la dérivée).

Il est important de marquer le fait que I’équation différentielle peut étre résolue avec les deux
types de conditions.

Extension a plusieurs degrés de liberté {g;} On définit, comme précédemment :

25 = dj+ an; | (25)
avec  n;(t1) =mn;(ta) =0 Vj  carz;(t1) = g; (t1) = g1 et zj (t2) = g5 (t2) = gj2

Ot g; est la solution recherchée

Alors
to
S[{z)] = / L({g; +am} . {d; + iy} 1) di (26)
ds t2 oL oL .
%QZO—L Z{aqj”j*aqj”j}dt—o @)

J
On intégre par partie le terme en 7); et on obtient

t2 oL d <8L>] {aL ]tz
- Rl dt + . 28
/tl ; [6% at \ag; )| " 2 9, " %)

J 1

ﬁ
da

a=0
N———
=0 car 7;(t1)=n;(t2)=0
Puisque les 7; sont arbitraires, alors il est nécessaire que chaque terme soit nul et on aboutit encore aux équations de

FEuler-Lagrange :
d (0L oL
il 2 =0 Y 29

dt <3%) dq; ! (29



Invariance de Jauge et Principe de moindre action

Le principe de moindre action permet de découvrir que le Lagrangien n’est pas définit de facon unique. En effet, on peut
lui ajouter la dérivée totale d’une fonction ne dépendant que de {g;} et du temps, mais pas des vitesses généralisées, et

on obtient exactement les mémes équations :

L/({aj}’{Qj}vt) = L({ij}7{qj}7t) + W

Alors
S'[{z)] = / L) Gt =
:/tZL({zj},{z‘j},t)dH/:Wdt:

=Sz + F({q (t2)},t) = F({g; (1)}, 1)

indép. de «
n; (t1) =m; (t2) =0

Donc & la fin
48’ [z} _ dS[{z}
da do

qui engendre les mémes équations.
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