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Le formalisme de Lagrange qu’on vient de développer est une conséquence des lois de Newton. On va maintenant montre

qu’on peut les dériver à partir d’une formulation complètement différente. Pour le faire, il faut introduire le calcul des

variations.

Calcul des variations

Il faut d’abord définir le concept de "fonctionnelle". Une fonction est une opération qui prend un nombre en Rn
et le

transforme en R : f : Rn ! R (bien évidemment on ne doit pas se limiter à R), mais on le fait par simplicité). L’argument

d’une fonction est un nombre.

Une fonctionnelle est une opération qui prend une fonction et la transforme en R : I : Rn ! R

Un exemple typique est

I[f ] =

Z b

a
F (f, f 0, f 00, . . . , x) dx (1)

Où f : R ! R (f(x))

L’argument de I est donc une fonction, et pour chaque choix de la fonction, I prend une valeur différent.

Par exemple :

F (f) = xff 0
(2)

Alors

I[f ] =

Z 1

0
F (f, f 0, x) dx (3)

et

I[x] =

Z 1

0
x · x · 1dx =

x3

3

����
1

0

=
1

3
(4)

I[x] =

Z 1

0
x · x2 · 2xdx =

2

5
x5

����
1

0

=
2

5
(5)

Note : Les fonctionnelles sont étudiées dans l’Analyse Fonctionnelle, une branche très belle et

riche des mathématiques. Elle généralise l’analyse à des objets (arguments) qui sont des fonc-

tions.

Quelle est la question à la base du calcul des variations ?

Soit donné la fonctionnelle I[y], dont l’argument sont les fonctions y : R ! R, y(x) avec x 2 [a, b].

I[y] =

Z b

a
F (y, y0, x) dx (6)

avec y(a) et y(b) fixées pour tous choix de y ⇢
y(a) = ya
y(b) = yb

8y (7)

Alors on cherche la fonction y qui minimise I[y].
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• Route formelle (voir notes sur le moodle): on utilise la dérivée fonctionnelle

�I

�y
= 0 on utilise � pour la dérivée fonctionnelle (8)

(en effet très similaire à l’analyse, après avoir définis ce qu’est la dérivée par rapport à une fonction.)

• On retourne à l’analyse.

Si on connaît la solution ȳ(x), on peut écrire toutes les autres fonctions de la forme

y(x) = ȳ(x) + ↵⌘(x) ↵ 2 R (9)

avec les conditions

⇢
⌘(a) = 0
⌘(b) = 0

car y(x) et ȳ(x) doivent satisfaire

⇢
y(a) = ȳ(a) = ya
y(b) = ȳ(b) = yb

(10)

Alors, si ⌘(x) est arbitraire (sauf pour les conditions en a et b), la dérivée de I par rapport à ↵ doit être nulle en

↵ = 0

En effet, pour chaque ⌘(x) donné,

I[y] = I[⌘;↵] = I(↵) est une fonction de ↵ (11)

I[⌘;↵] dépend paramétriquement de ↵.

donc

I[y] =

Z b

a
F (ȳ + ↵⌘, ȳ0 + ↵⌘0, x) dx (12)

et
dI

d↵

����
↵=0

= 0 8⌘ (13)

On développe cette dernière expression :

dI

d↵

����
↵=0

=

Z b

a

⇢
@F

@(ȳ + ↵⌘)
· @(ȳ + ↵⌘)

@↵
+

@F

@ (ȳ0 + ↵⌘0)
· @ (ȳ0 + ↵⌘0)

@↵

������
↵=0

dx (14)

=

Z b

a

8
>><

>>:

@F

@ȳ|{z}
↵=0

⌘ +
@F

@ȳ0|{z}
↵=0

⌘0

9
>>=

>>;
dx (15)

=

Z b

a

@F

@ȳ
⌘dx+

Z b

a

@F

@ȳ0
· ⌘0dx (16)

Et on travaille par parties sur la deuxième intégrale

dI

d↵

����
↵=0

=

Z b

a

@F

@ȳ
⌘dx+

(
@F

@ȳ0
⌘

����
b

a

�
Z b

a

d

dx

✓
@F

@ȳ0

◆
· ⌘dx

)
(17)

=

Z b

a

⇢
@F

@ȳ
� d

dx

✓
@F

@ȳ0

◆�
⌘dx+

@F

@ȳ0
⌘

����
b

a

(18)

mais ⌘(a) = ⌘(b) = 0 et donc le dernier terme est nulle.

Finalement

dI

d↵

����
↵=0

= �
Z b

a

⇢
d

dx

✓
@F

@ȳ0

◆
� @F

@ȳ

�
⌘dx = 0 (19)

car on sait que
dI

d↵

����
↵=0

= 0 (20)
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D’autre coté, ⌘ est arbitraire, et donc cet intégrale est nulle pour n’importe quel choix de ⌘ seulement si

d

dx

✓
@F

@ȳ0

◆
� @F

@ȳ
= 0 (21)

qui en réalité est une équation différentielle en ȳ. Autrement dit, l’hypothèse que ȳ soit solution est consistante si

elle satisfait cette équation, qui s’appelle l’équation d’Euler.

A ce point l’analogie avec le formalisme de Lagrange est clair :

F �! L
y �! q
x ! t

(22)

et on définit l’ACTION S[q]

S[q] =

Z t2

t1

L (q, q̇, t) dt avec

⇢
q (t1) = a1
q (t2) = a2

(23)

La fonction qui minimise S, et qui doit donc satisfaire l’équation de Euler-Lagrange

d

dt

✓
@L

@q̇

◆
� @L

@q
= 0 (24)

est la trajectoire du système.

On dit alors que le système évolue selon une trajectoire qui minimise l’action selon le PRINCIPE DE MOINDRE

ACTION

A noter : pour résoudre les équations de Lagrange, on posait les conditions initiales : q(t1) et

q̇(t1)
Dans la dérivation qui nous a mené au principe de moindre action et à l’équation de Euler-

Lagrange, on a uniquement posé q(t1) et q(t2) (aucune condition sur la dérivée).

Il est important de marquer le fait que l’équation différentielle peut être résolue avec les deux

types de conditions.

Extension à plusieurs degrés de liberté {qj} On définit, comme précédemment :

zj = qj + ↵⌘j
avec ⌘j (t1) = ⌘j (t2) = 0 8j carzj (t1) = qj (t1) = qj1 et zj (t2) = qj (t2) = qj2

(25)

Où qj est la solution recherchée

Alors

S [{zj}] =
Z t2

t1

L ({qj + ↵⌘j} , {q̇j + ↵⌘̇j} , t) dt (26)

dS

d↵

����
↵=0

=

Z t2

t1

X

j

⇢
@L

@qj
⌘j +

@L

@q̇j
⌘̇j

�
dt = 0 (27)

On intègre par partie le terme en ⌘̇j et on obtient

dS

d↵

����
↵=0

=

Z t2

t1

X

j


@L

@qj
� d

dt

✓
@L

@q̇j

◆�
⌘jdt+

X

j


@L

@q̇j
⌘j

�t2

t1
| {z }

=0 car ⌘j(t1)=⌘j(t2)=0

(28)

Puisque les ⌘j sont arbitraires, alors il est nécessaire que chaque terme soit nul et on aboutit encore aux équations de

Euler-Lagrange :

d

dt

✓
@L

@q̇j

◆
� @L

@qj
= 0 8j (29)
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Invariance de Jauge et Principe de moindre action

Le principe de moindre action permet de découvrir que le Lagrangien n’est pas définit de façon unique. En effet, on peut

lui ajouter la dérivée totale d’une fonction ne dépendant que de {qj} et du temps, mais pas des vitesses généralisées, et

on obtient exactement les mêmes équations :

L0 ({aj} , {qj} , t) = L ({aj} , {q̇j} , t) +
dF ({qj} , t)

dt
(30)

Alors

S0[{z}] =
Z t2

t1

L0 ({zj} , {żj}, t)dt = (31)

=

Z t2

t1

L ({zj} , {żj} , t) dt+
Z t2

t1

dF ({zj} , t)
dt

dt = (32)

=S [{zj}] + F ({qj (t2)} , t)� F ({qj (t1)} , t)| {z }
indép. de ↵
⌘j (t1) = ⌘j (t2) = 0

(33)

Donc à la fin
dS0 [{zj}]

d↵
=

dS [{zj}]
d↵

(34)

qui engendre les mêmes équations.
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