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Rappel à propos du tenseur εijk

Nous avons déjà introduit le tenseur totalement antisymétrique εijk, aussi appelé symbole de
Levi-Civita, lors de la série 1. Ce corrigé commence par un petit rappel.

Le tenseur εijk peut être défini par les règles suivantes : a) ε123 = 1 b) une permutation de deux
des trois indices produit un changement de signe c) εijk = 0 si un des indices est répété (c’est-à-dire
si i = j ou j = k ou i = k). On rappelle quelques relations utiles. La première de ces relations est

3∑
k=1

εijkεkmn = δimδjn − δinδjm,

qui peut s’obtenir facilement en voyant que pour que ce produit soit non nul, il faut que la paire (ij)
coïncide avec la paire (mn) (puisque l’indice k est commun aux ensembles {i, j, k} et {k,m, n}). Il y
a deux façons d’associer un à un les éléments de ces paires (i avec m ou i avec n), le signe provenant
de l’antisymétrie du symbole de Levi-Civita. Il découle de la relation précédente que

3∑
i,j,k=1

εijkεijk =

3∑
i,j=1

(δiiδjj − δijδji) = 3 · 3− 3 = 6

Comme l’utilisation de ce symbole fait souvent intervenir des indices muets sur lesquels on somme,
une façon particulièrement rapide d’écrire ces expressions est d’omettre de symbole de sommation.
Une somme est donc implicite dès que deux indices sont répétés. La formule suivante sera très utile
par la suite :

3∑
k=1

εijkεkmn = εijkεkmn (1)

Cette convention est appelée convention de sommation d’Einstein. Nous l’utiliserons dans l’exercice 1
de cette série. En combinant l’utilisation du tenseur εijk et la convention de sommation d’Einstein,
on simplifie potentiellement les calculs d’analyse vectorielle. En particulier, le produit scalaire et le
produit vectoriel peuvent s’écrire de façon compacte sous la forme suivante :

~v · ~w = viwjδij = viwi

~v × ~w = εijkêivjwk.

Exercice 1 : Crochets de Poisson
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a) Afin de montrer que si deux composantes du moment cinétique sont conservées, alors la
troisième l’est aussi nous allons utiliser le fait que si deux quantités sont conservées alors
leur crochet de Poisson l’est aussi. Ceci a été montré au cours et est une conséquence directe
de l’identité de Jacobi. Le but est donc maintenant de calculer le crochet de Poisson de deux
composantes du moment cinétique.
En utilisant le symbole de Levi-Civita défini plus haut, nous pouvons écrire

~L = ~x× ~p → Li = εijkxjpk

Dès lors nous avons :

{Li, Lj} = εiabεjcd{xapb, xcpd}
= εiabεjcd (xa{pb, xcpd}+ pb{xa, xcpd})
= εiabεjcd(xaxc {pb, pd}︸ ︷︷ ︸

=0

+xapd {pb, xc}︸ ︷︷ ︸
=−δbc

+xcpb {xa, pd}︸ ︷︷ ︸
=δad

+pbpd {xa, xc}︸ ︷︷ ︸
=0

)

= −εiabεjbdxapd + εiabεjcaxcpb = (εiabεbjd + εdibεbja)xapd

= [(δijδad − δidδaj) + (δdjδia − δdaδij)]xapd
= xapd (δiaδjd − δidδja) = xapd (εkijεkad)

= εkij (εkadxapd)︸ ︷︷ ︸
=Lk

= εijkLk

Ceci nous apprend qu’étant donnés que Li et Lj sont conservés (i 6= j), alors Lk l’est aussi.
Notez que la façon d’effectuer ce développement n’est pas unique. L’important est de prendre
son temps en calculant pour arriver à un résultat cohérent.

Le calcul précédent sans la notation d’Einstein se fait ainsi :

{L1, L2} = {x2p3 − x3p2, x3p1 − x1p3}
= {x2p3, x3p1} − {x2p3, x1p3} − {x3p2, x3p1}+ {x3p2, x1p3}

Ici, au lieu de calculer quatre crochets de Poisson, nous reprenons le calcul ci-dessus, lignes 1
à 4 :

{xapb, xcpd} = −δbcxapd + δadxcpb

pour obtenir
{L1, L2} = −x2p1 − 0− 0 + x1p2 = L3

Le calcul en notation d’Einstein permet de faire d’un coup les crochets de Poisson pour tout
couple {Li, Lj}.

b) i. L’équation définissant le potentiel donne

kg m2 s−2 =
[G] kg2

m
→ [G] = kg−1 s−2 m3

La mesure de G se fait par exemple à l’aide d’un pendule de torsion et de la loi de Hooke,
il s’agit de l’expérience de Cavendish. On trouve G ' 6.67 · 10−11 kg−1 s−2 m3.
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Si l’on se trouve à une distance h de la surface terrestre, le potentiel gravitationnel est
donné par :

V (R⊕ + h) = −GM⊕m
R⊕ + h

oùR⊕ ' 6370 km est le rayon de la terre etM⊕ ' 5.97×1024 kg sa masse. On la détermine
aussi à partir de l’expérience de Cavendish (qui n’avait pas lui-même déterminé G, mais
c’est une autre histoire. . .). Si h� R⊕, on peut approximer V (R⊕ + h) par :

V (R⊕ + h) ' V (R⊕) + V ′(R⊕)h = V (R⊕) +m
GM⊕
R2
⊕
h ≡ V (R⊕) +mgh

où g ≡ GM⊕R−2
⊕ ' 9.81m s−2. Comme V (R⊕) est une constante, on l’omet généralement

et l’on utilise donc pour des hauteurs h� R⊕ le potentiel approximé V = mgh.

ii. Afin de montrer que le moment cinétique et l’énergie sont des quantités conservées, il
suffit de voir qu’elles satisfont toutes deux

df
dt

=
∂f

∂t
+ {f,H} = 0

L’Hamiltonien est donné par

H(xj , pj) =
pjpj
2m
− GMm
√
xjxj

Le moment cinétique et l’Hamiltonien ne dépendent pas explicitement du temps. Le fait
qu’ils soient conservés revient donc à voir que leur crochet de Poisson avec l’Hamiltonien
est nul, ce qui est trivial pour l’Hamiltonien puisque {H,H} = 0. Le crochet de Poisson
de la i-ème composante du moment cinétique avec l’Hamiltonien s’écrit

{Li, H} = εijk{xjpk, H} = εijk (xj{pk, H}+ pk{xj , H})

Voyons tout d’abord {pi, H} et {xi, H} :

{pi, H} =
3∑

k=1

(
∂pi
∂xk

∂H

∂pk
− ∂pi
∂pk

∂H

∂xk

)
= −∂H

∂xi
= −GMmxi

r3

{xi, H} =

3∑
k=1

(
∂xi
∂xk

∂H

∂pk
− ∂xi
∂pk

∂H

∂xk

)
=
∂H

∂pi
=
pi
m

où l’on a utilisé que pour tout vecteur ~t

∂ti
∂tj

= δij

En injectant ces deux résultats dans {Li, H} on obtient :

{Li, H} = εijk

(
−GMm

r3
xjxk +

pjpk
m

)
= 0
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En effet, la multiplication d’un objet symétrique en (jk) par un autre antisymétrique en
(jk) donne zéro. 1

iii. Afin de montrer que le vecteur de Laplace-Runge-Lenz est une constante du mouvement
nous devons voir que son crochet de Poisson avec l’Hamiltonien est nul. Pour pouvoir
utiliser les crochets de Poisson on doit d’abord exprimer ~K en fonction des coordonnées
et impulsions. En coordonnées cartésiennes nous avons ~̇x = ~p/m. La i-ème composante
de ~K s’écrit donc

Ki =
1

m
εijkpjLk −GMm

xi√
xjxj

=
1

m
εijkεkmnxmpjpn −GMm

xi√
xjxj

Voyons d’abord le crochet de Poisson du premier terme avec H :

1

m
εijkεkmn{xmpnpj , H} =

1

m
εijkεkmn

xmpn{pj , H}+ xmpj {pn, H}︸ ︷︷ ︸
∝xn

+pnpj {xm, H}︸ ︷︷ ︸
∝ pm


=
GM

r3

(
r2pi − xixnpn

)
Les deux derniers termes de la première ligne donnent zéro puisqu’ils contiennent le
produit de εkmn et d’un objet symétrique en (mn). Voyons maintenant la deuxième
partie du crochet de Poisson :

−GMm

{
xi√
xjxj

, H

}
= −GMm

3∑
k=1

∂
(

xi√
xjxj

)
∂xk

∂H

∂pk


= −GM

r3
(r2pi − xixkpk)

On trouve donc bien que les deux contributions se compensent et donc que le vecteur
LRL est conservé.

iv. Le moment cinétique ~L est perpendiculaire au plan défini par les vecteurs ~r et ~p, le
vecteur LRL appartient lui à ce plan et est donc perpendiculaire à ~L.

Exercice 2 : Trajectoires sur un cylindre

a) On cherche la longueur totale le long de la trajectoire. Comme d’habitude, on commence très
naïvement par :

L =

∫
dL

pour trouver dL, on utilise Pythagore :

dL =
√
dz2 +R2dφ2

1. Prenons Sij un objet symétrique en (ij) et Aij antisymétrique en (ij). Leur produit, en utilisant la convention
d’Einstein, vaut alors AijSij = −AjiSji = −AijSij = 0. La première égalité découle de la symétrie de S et de
l’antisymétrie de A. Comme les indices sont muets, on peut les renommer à volonté, d’où la seconde égalité.
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et ensuite, on peut sortir dz2 de la racine, et en remplaçant dφ/dz = φ′ on obtient la fonc-
tionnelle :

L[φ(z)] =

∫ h

0
dz
√

1 +R2φ′2(z)︸ ︷︷ ︸
∆

b) Pour minimiser L on utilise les équations d’Euler-Lagrange. Vu que ∆ ne dépend pas de φ on
a :

∂∆

∂φ′
= c =

R2φ′(z)√
1 +R2φ′2(z)

on en déduit φ′ = const, et donc :
φ(z) = az + b

où a dépend de c et R.
Maintenant il faut imposer les conditions au bord. Pour le point de départ c’est simple :

φ(0) = 0 → b = 0

Mais pour le point d’arrivée, il faut prendre en compte que φ est un angle, et donc qu’on ne
peut pas distinguer φ de φ+ 2πn :

φn(h) = anh = α+ 2πn → an =
α+ 2πn

h

et donc :
φn(z) = (α+ 2πn)

z

h

On voit que n dénombre le nombre de tours autour du cylindre que fait la trajectoire. Chacune
de ces trajectoires est la plus courte pour ce nombre de tours donné.
Ce type de décomposition (en secteurs topologiquement distincts) se retrouve souvent en phy-
sique, et un traitement plus général du sujet se fait grâce aux groupes d’homotopie.

Pour trouver la longeur d’une trajectoire donnée, il suffit de réintroduire l’expression pour
φn(z) dans L :

Ln =

∫ h

0
dz
√

1 +R2a2
n =

√
h2 + (α+ 2πn)2R2

c)

L0 =

√
h2 +

(
2
3π
)2
R2

L−1 =

√
h2 +

(
4
3π
)2
R2

L1 =

√
h2 +

(
8
3π
)2
R2

L−2 =

√
h2 +

(
10
3 π
)2
R2

On voit que L1 et L−2 sont beaucoup plus longs que les deux autres, c’est parce qu’ils font
un tour de plus, L−1 fait juste le tour dans l’autre sens.
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d) La longueur à z constant est un arc de cercle : 2π
3 R et ensuite on monte de h. La longueur de

ce chemin est donc
Ldroit = h+

2π

3
R > L0

e)

L0 =

√
h2 + (π)2R2

L−1 =

√
h2 + (π)2R2

L1 =

√
h2 + (3π)2R2

L−2 =

√
h2 + (3π)2R2

Ldroit = h+ πR > L0

Ici on voit que les longueurs sont à chaque fois doublement dégénérées. C’est ici aussi un
résultat auquel on s’attend ; vu que le point d’arrivée est juste en face, il est égal de partir
à gauche ou à droite. Pour parler en des termes un peu plus avancés, il y a une symétrie de
parité φ→ 2π − φ qui se retrouve dans les solutions.
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