Corrigé : Examen Mécanique Analytique 2021

Paolo De Los Rios

Exercice 1
a) On choisit comme coordonnées généralisées z1, ¢1, 22 et @2 de sorte que :

x1 = Ricosgr y1 = Rising (1)
To = Rycosgy Yo = Raysings (2)

b) L =T —V, on commence par ’énergie cinétique :

i1 = —Ridising; 1 = Ridycos (3)
iy = —Rydasingy 5o = Radhy cos éy (4)
(5)
Donc i ]
T= §m1(R%¢% + 1) + §m2(R§¢§ + £5)

Enfin le potentiel du ressort est définie par V = 1k(I — ly)? ou
L= /(21— 22)2 + (1 — 42)2 + (21 — 22)? (6)
= \/R% + R3 — 2R;1 Ra(cos ¢ cos ¢a + sin ¢y sin ¢o) + (21 — 22)2 (7)
= /R + R — 2Ry Ry cos(91 — ¢) + (21 — 22)? (8)

On obtient donc finalement

1 . 1 . 1
L= S (B3 + 22) + 5ma(R363 + 28) — Sh(\ R + B — 2RuRacos(61 — do) + (21 — 22)2 o) (9)

2 2
Equations d’Euler-Lagrange : %% _ % _
26 : (I—1lo)
miRi¢p1 + kRyRosin(¢pr — ¢2) i =0 (10)
5 . -1

ma R — KRy R sin(on — 62)° I o) g (11)

=1
Ak - 22)¥ =0 (12)

-1
ma% — k(1 — ) L — 0 (13)

avec | = \/R% + R3 — 2R Ry cos(¢p1 — ¢2) + (21 — 22)?
¢) Les quantités conservées sont :

e Invariance par translation selon ’axe z. La transformation z; — z; + s n’entraine pas de modification du
Lagrangien : z1 — 29 — 21 — 22 et 2; — 2;. Par le théoréme de Noether

C, = ——— =M% + Moo =MZ 14

! zz: 822 0s 1= 2e2 ( )

miz1 + moz .

est une quantité conservée, ot M = mq + mo et Z = w L’impulsion total selon z P, = M Z

mi + meo
est donc une grandeur conservée.



e Similairement, on observe une invariance par rotation autour de 'axe z. La transformation ¢; — ¢; + s

ne modifie pas le Lagrangien. Donc

oL 96, . .
Csy = Z 67@ ;; =miRip1 + maR5¢ps = [

%

mlR%@ + m2R§¢52
mlR% + ngg

est conservé, avec I = miR? + maR3 et & =

conserveé.

(15)

e Le systéme est isolé, ’hamiltonien h (I’énergie totale du systéme) est donc une quantité conservée.

d) Pour passer du Lagrangien a 'Hamiltonien on utilise les formules suivantes :

oL

. Le moment cinétique total est donc

i = - 16
i = o (16)
H(qi,pirt) = > dkpr — L(gi» i, 1) (17)
k
On obtient donc
Do, = miRigy Doy = MaR3ps = ¢1= P 5 by = p¢22
mlRl m2R2
_ . _ : N . _ Pz
Pz =M1z Pzy = M222 == 1= iy Z2 = -
2 2 2 2
H = p¢'1 + p¢2 _1_19731_’_@_1 p¢1 p¢2 +@+@ (18)
mlR% ngg mi mo 2 mlR% ngg mq mao
1
+ §k(\/R% + R% — 2R1R2 COS(¢1 — ¢2) + (21 — 222)2 — 10)2 (19)
R 7 - AN J
== - - —k(\/R? + R} — 2R R - —29)2 —lp)? 20
2<m1R§ ol T T ) T2 (\/ Bt + R3 1R2 cos(d1 — d2) + (21 — 22)* — lo) (20)
Les équations canoniques sont définies par
OH
¢ = (21)
" Op
0OH
Di = — (22)
9q;
ce qui nous donne :
by = Lo Gy = Do 5, = —k O R Ry sin(ér — 62) i, — kO Ry Ry sin(ér — én)
1 mlRf 2 ngg Poq ] 1472 1 2 Poo I 1472 1 2
. _ Dz . D= : l—1o . l—1o
Zl:mil Zzszz D2y = —k I (21 — 22) Pz =k I (21 — 22)
avec | = \/R? + R3 — 2R 1 Ry cos(¢1 — o) + (21 — 22)2.
e) Le changement de variable ¢; — Q; et p; — P; est canonique si {Qi,Pj}}%pi = 0;; et {Qi,Q;} =

(P, P}, . Vi.j.
On calcule donc :

my M2 ma my
{ ’ Z} m1+m2+m1—|—m2 {Z7p} m1+m2+m1—|—m2
ml1R? m2R2 m2R2 ml1R?
(@, Pa} = e T =1 {ops} = : .

mlR? +m2R3  ml1R? + m2R2

mIR? + m2RZ | mlRZ + m2RZ



my ma2 ma —mi

Z,2}=0 Z,p.} = + =0 {Z,8}=0 Z,Pp} =0
{2, =} {Z,p:} it it Y ma i e {Z, 2} {Z, Ps}

(26} =0  {Zpo}=0 {2Pr)=1-1=0 {50}=0 {2Ps}=0 {26}=0 {zps}=0
{(DaPZ}:O {(I)apz}:() {q),¢}:0 {(I),p¢}:0 {d)aPZ}:O {¢apz}:O {¢,p¢}:1—1:0
La transformation est donc bien canonique.

On veut maintenant exprimer ’'Hamiltonien dans ce nouveau set de coordonnées. On exprime les anciennes
coordonnées en fonction des nouvelles :

MZ + moyz MZ —mqz
== =7 = 23
21 M 22 M (23)
m1PZ+Mpz mQPZ_Mpz
S T e =T @
I® + myR2 I® — mR?
b1 = 12 + ma R3¢ bo = 1® —miRi¢ (25)
1 1
m1R2P¢ + Ip ngZPq, —1Ip
Po = ———F—= Po, = ———F—=2 (26)
1 1
(27)
avec M =mi +mo et I = mlR% + ngg. En utilisant les égalités précédentes, on calcule T et V :
1{ p; v;, P Dl
T — 1 2 z1 Tz2 28
2 <m1Rf + ng% - mq * ma ( )
1 (P2 M P2 p21
— (2 e, e (29)
2 M mimso 1 mlnglRQ
1 2 2 2 2
V= ik(\/Rl + R5 — 2R Ry cos(¢y — d2) + (21 — 22)% — lo) (30)
1
- ik(\/R% 4 R2 — 2R, Ry cos() + 22 — I)? (31)
On obtient donc pour finir :
1 [ P2 p’M P2 p2I 1
H=o (2 By fo g Tor )y Ck(/R+ RS- 2RiR 252 (32
2 (M mimso + I + mlng%Rg + 2 ( 1 + 2 ! 2COS(¢) t 0) ( )
Exercice 2
a) Le potentiel V(q) est dessiné dans la figure 1.
b) Pour une énergie fixée E, on a
_ Y - Vig)
p==x/2mE —2mV(q) = £V2mE - - (33)
Calculons les points de rebroussement, i.e. =G définis par V(+g) = E. Cela correspond a p = 0 dans le portrait
de phase.
_ E
E < Bqy= +q= iﬁ (34)
1
E > Bq = +q= 2 [E+ (o — B)qo] (35)

Portrait de phase :

p=+vamp- 1~ 19 (36)

Deux cas de figure sont a distinguer : E < g9 et E > Bqo.



V(q)

-(a-B)g af (a-B)q

-Bq Bq

FIGURE 1 - Potentiel V' (¢) auquel est soumis le systéme. Dans cet exemple, les paramétres sont o = 4,8 = 1,m =
17 do = 2.

— [ B< |

Dans ce cas, § < qg est la trajectoire est entiérement contenue dans le domaine g < qq

V(g) = Blgl = p=£V2mE - 1'%IQI (37)

— 2> |

La trajectoire est définie par morceau, en fonction de la valeur du potentiel

V(g) = ag — (a = B)qo ép:iVQmE-\/@ pour q > qq

Viq) = Blq] =p=+V2mFE - -/1— %|q| pour |g| < go (38)

Vig)=—aq—(a—B)gp =p==+V2mE-4/1— w pour g < —qo

L’ensemble des cas possible est illustré graphiquement dans la figure 2

p
2 — E<Bap
E=Bq,
‘ E>Bqo
3 2 1 _ 0 _ 1 2 5 q
-q q
>
~do 7 +qo

FIGURE 2 — Portrait de phase du systéme. Les paramétres sont les mémes que ceux de la figure 1. Les deux familles
de trajectoires sont dessinées, i.e. E < fqp (en bleu) et E > fBqo (en vert), ainsi que le cas limite F = gy (en
orange)

c¢) Calcul des périodes :
Pour le calcul des périodes, nous utilisons la symétrie du probléme pour ne faire le calcul explicite que dans
le cadran p, g > 0. De nouveau, distinguons les deux familles de trajectoires définies par F < Bqp et E > SBqq.



- [EZhw)

1
I=_—
5 pda (39)
9 rE/B
= —/ V2mE\/1 — éqdq (40)
™ Jo E
2 E [
= fVQmEE V1—zdz (41)
™ 0
2 E[ 2 !
= ZVomE= |-Z(1 —x)%/? 42
m " B { 3( %) ]0 42
2v2m 2
— 2 Y232z 4
— 3 (43)
4 V/2m
_ = E3/2 44
(45)
L’inversion de I'expression 44 afin d’exprimer F(I) puis calculer la période donne :
sr 8 \Y*
E=(——F—=) I3 46
(4 \/2m> (46)
B\ !
T2 (1) (47)
i
2/3
4 /2m 3
=or | —2—— s 4
i (377 I} ) 2 (48)
2/3 1/3
P e / A vem / B2 (49)
N 3r 3m
T = 4—VZmE1/2 (50)

Comme attendu, la période augmente avec I’énergie. De plus, lorsque § augmente, la période diminue

— (2> Bu]

2 E2 8 3/21% / a—pf g aq

2 2F Bao\*"? B2 E+(a— P ago 32

= QmE{w(l‘(“E) )* T e (S
(54)
(55)

Ot nous avons utilisé pour la derniére équation la définition de ¢ trouvée en 35. Ainsi I’évaluation du dernier
terme entre crochet en ¢ s’annule.



2 2 _[1 Bgo\*?\ 1 Bao\*?
Y ) L SR 1_%)‘”
3T I} 8« E
A VImE? [ Boa (. Ba)*?
1= {1+ - (1_E>

Donc finalement

1 p—a Bao 2
T=4Y"pt |1 12D yyom Pdo
Tt a( E) T, E) E?
3
1 p—a Bao\?* , B—a B Bao )\ 2
=4 Ez |1 11— — [N I - —
B R ( E> T E E

Exercice 3

a) Pour une fonction z(¢) donnée, la longueur de la corde pour faire deux tours est définie par

4an )
L:R/O 1+?d<p:
4w 2
/ a
:R/O 1+ﬁd¢:
/ a?

Ainsi, nous pouvons calculer le paramétre a qui correspond & une longueur L fixée :

JE. a?
T ler TR
L2
2 2
=q? = -
@7 162

12
— 4/ _ P2
=a 162 R

Vom 35—a<1_5qo>%ﬂqo_

(59)

(60)

(61)



b) Calculons le potentiel gravitationnel V; qui s’exerce sur '’ensemble de la corde

4m 512
Vg:ugR/O z 1+ﬁdcp
a2 4
= —pugRa 1+ﬁ/ pde
0
/ a?l
= —pgRay/1+ ﬁil&r

L? L
—_— = — 2 — 2__—
(72) 8meugR 1672 R i

2

I
THIZN 1672

Le potentiel total que nous cherchons & minimiser est donc

Viet = —2mpugLA [ L R2+1kR2
tot = —&T[G 1672 9

dViot
ar "
2rugLR L ER—
152 - R?
=R=0



