
Corrigé : Examen Mécanique Analytique 2021

Paolo De Los Rios

Exercice 1
a) On choisit comme coordonnées généralisées z1, φ1, z2 et φ2 de sorte que :

x1 = R1 cosφ1 y1 = R1 sinφ1 (1)
x2 = R2 cosφ2 y2 = R2 sinφ2 (2)

b) L = T − V , on commence par l’énergie cinétique :

ẋ1 = −R1φ̇1 sinφ1 ẏ1 = R1φ̇1 cosφ1 (3)

ẋ2 = −R2φ̇2 sinφ2 ẏ2 = R2φ̇2 cosφ2 (4)
(5)

Donc
T =

1

2
m1(R2

1φ̇
2
1 + ż2

1) +
1

2
m2(R2

2φ̇
2
2 + ż2

2)

Enfin le potentiel du ressort est définie par V = 1
2k(l − l0)2 où

l =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (6)

=
√
R2

1 +R2
2 − 2R1R2(cosφ1 cosφ2 + sinφ1 sinφ2) + (z1 − z2)2 (7)

=
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2 (8)

On obtient donc finalement

L =
1

2
m1(R2

1φ̇
2
1 + z2

1) +
1

2
m2(R2

2φ̇
2
2 + z2

2)− 1

2
k(
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2 − l0)2 (9)

Equations d’Euler-Lagrange :
d

dt

∂L

∂q̇
− ∂L

∂q
= 0.

m1R
2
1φ̈1 + kR1R2 sin(φ1 − φ2)

(l − l0)

l
= 0 (10)

m2R
2
2φ̈2 − kR1R2 sin(φ1 − φ2)

(l − l0)

l
= 0 (11)

m1z̈1 + k(z1 − z2)
(l − l0)

l
= 0 (12)

m2z̈2 − k(z1 − z2)
(l − l0)

l
= 0 (13)

avec l =
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2

c) Les quantités conservées sont :
• Invariance par translation selon l’axe z. La transformation zi → zi + s n’entraîne pas de modification du

Lagrangien : z1 − z2 → z1 − z2 et żi → żi. Par le théorème de Noether

C1 =
∑
i

∂L

∂żi

∂zi
∂s

= m1ż1 +m2ż2 = MŻ (14)

est une quantité conservée, où M = m1 +m2 et Z =
m1ż1 +m2ż2

m1 +m2
. L’impulsion total selon z Pz = MŻ

est donc une grandeur conservée.
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• Similairement, on observe une invariance par rotation autour de l’axe z. La transformation φi → φi + s
ne modifie pas le Lagrangien. Donc

C2 =
∑
i

∂L

∂φ̇i

∂φi
∂s

= m1R
2
1φ̇1 +m2R

2
2φ̇2 = IΦ (15)

est conservé, avec I = m1R
2
1 + m2R

2
2 et Φ =

m1R
2
1φ̇1 +m2R

2
2φ̇2

m1R2
1 +m2R2

2

. Le moment cinétique total est donc

conservé.
• Le système est isolé, l’hamiltonien h (l’énergie totale du système) est donc une quantité conservée.

d) Pour passer du Lagrangien à l’Hamiltonien on utilise les formules suivantes :

pi =
∂L

∂q̇i
(16)

H(qi, pi, t) =
∑
k

q̇kpk − L(qi, q̇i, t) (17)

On obtient donc

pφ1
= m1R

2
1φ̇1 pφ2

= m2R
2
2φ̇2 =⇒ φ̇1 =

pφ1

m1R2
1

φ̇2 =
pφ2

m2R2
2

pz1 = m1ż1 pz2 = m2ż2 =⇒ ż1 =
pz1
m1

ż2 =
pz2
m2

H =
p2
φ1

m1R2
1

+
p2
φ2

m2R2
2

+
p2
z1

m1
+
p2
z2

m2
− 1

2

(
p2
φ1

m1R2
1

+
p2
φ2

m2R2
2

+
p2
z1

m1
+
p2
z2

m2

)
(18)

+
1

2
k(
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2 − l0)2 (19)

=
1

2

(
p2
φ1

m1R2
1

+
p2
φ2

m2R2
2

+
p2
z1

m1
+
p2
z2

m2

)
+

1

2
k(
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2 − l0)2 (20)

Les équations canoniques sont définies par

q̇i =
∂H

∂pi
(21)

ṗi = −∂H
∂qi

(22)

ce qui nous donne :

φ̇1 =
pφ1

m1R2
1

φ̇2 =
pφ2

m2R2
2

ṗφ1
= −k l − l0

l
R1R2 sin(φ1 − φ2) ṗφ2

= k
l − l0
l

R1R2 sin(φ1 − φ2)

ż1 =
pz1
m1

ż2 =
pz2
m2

ṗz1 = −k l − l0
l

(z1 − z2) ṗz2 = k
l − l0
l

(z1 − z2)

avec l =
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2.

e) Le changement de variable qi → Qi et pi → Pi est canonique si {Qi, Pj}
∣∣
qi,pi

= δij et {Qi, Qj}
∣∣
qi,pi

=

{Pi, Pj}
∣∣
qi,pi
∀i, j.

On calcule donc :

{Z,PZ} =
m1

m1 +m2
+

m2

m1 +m2
= 1 {z, pz} =

m2

m1 +m2
+

m1

m1 +m2
= 1

{Φ, PΦ} =
m1R2

1

m1R2
1 +m2R2

2

+
m2R2

2

m1R2
1 +m2R2

2

= 1 {φ, pφ} =
m2R2

2

m1R2
1 +m2R2

2

+
m1R2

1

m1R2
1 +m2R2

2

= 1
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{Z, z} = 0 {Z, pz} =
m1

m1 +m2

m2

m1 +m2
+

m2

m1 +m2

−m1

m1 +m2
= 0 {Z,Φ} = 0 {Z,PΦ} = 0

{Z, φ} = 0 {Z, pφ} = 0 {z, PZ} = 1− 1 = 0 {z,Φ} = 0 {z, PΦ} = 0 {z, φ} = 0 {z, pφ} = 0

{Φ, PZ} = 0 {Φ, pz} = 0 {Φ, φ} = 0 {Φ, pφ} = 0 {φ, PZ} = 0 {φ, pz} = 0 {φ, pΦ} = 1− 1 = 0

La transformation est donc bien canonique.
On veut maintenant exprimer l’Hamiltonien dans ce nouveau set de coordonnées. On exprime les anciennes
coordonnées en fonction des nouvelles :

z1 =
MZ +m2z

M
z2 =

MZ −m1z

M
(23)

pz1 =
m1PZ +Mpz

M
pz2 =

m2PZ −Mpz
M

(24)

φ1 =
IΦ +m2R

2
2φ

I
φ2 =

IΦ−m1R
2
1φ

I
(25)

pφ1
=
m1R

2
1PΦ + Ipφ
I

pφ2
=
m2R

2
2PΦ − Ipφ
I

(26)

(27)

avec M = m1 +m2 et I = m1R
2
1 +m2R

2
2. En utilisant les égalités précédentes, on calcule T et V :

T =
1

2

(
p2
φ1

m1R2
1

+
p2
φ2

m2R2
2

+
p2
z1

m1
+
p2
z2

m2

)
(28)

=
1

2

(
P 2
Z

M
+

p2
zM

m1m2
+
P 2

Φ

I
+

p2
φI

m1m2R2
1R

2
2

)
(29)

V =
1

2
k(
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) + (z1 − z2)2 − l0)2 (30)

=
1

2
k(
√
R2

1 +R2
2 − 2R1R2 cos(φ) + z2 − l0)2 (31)

On obtient donc pour finir :

H =
1

2

(
P 2
Z

M
+

p2
zM

m1m2
+
P 2

Φ

I
+

p2
φI

m1m2R2
1R

2
2

)
+

1

2
k(
√
R2

1 +R2
2 − 2R1R2 cos(φ) + z2 − l0)2 (32)

Exercice 2
a) Le potentiel V(q) est dessiné dans la figure 1.
b) Pour une énergie fixée E, on a

p = ±
√

2mE − 2mV (q) = ±
√

2mE ·
√

1− V (q)

E
(33)

Calculons les points de rebroussement, i.e. ±q̄ définis par V (±q̄) = E. Cela correspond à p = 0 dans le portrait
de phase.

E < βq0 ⇒ ±q̄ = ±E
β

(34)

E > βq0 ⇒ ±q̄ = ± 1

α
[E + (α− β)q0] (35)

Portrait de phase :

p = ±
√

2mE ·
√

1− V (q)

E
(36)

Deux cas de figure sont à distinguer : E < βq0 et E > βq0.
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q=q
0q=-q

0

q

V(q)

q=-q
0

(α-β)q-(α-β)q

βq-βq

Figure 1 – Potentiel V (q) auquel est soumis le système. Dans cet exemple, les paramètres sont α = 4, β = 1,m =
1, q0 = 2.

— E ≤ βq0

Dans ce cas, q̄ < q0 est la trajectoire est entièrement contenue dans le domaine q < q0

V (q) = β|q| ⇒ p = ±
√

2mE ·
√

1− β

E
|q| (37)

— E > βq0

La trajectoire est définie par morceau, en fonction de la valeur du potentiel
V (q) = αq − (α− β)q0 ⇒ p = ±

√
2mE ·

√
1− αq−(α−β)q0

E pour q > q0

V (q) = β|q| ⇒ p = ±
√

2mE ·
√

1− β
E |q| pour |q| < q0

V (q) = −αq − (α− β)q0 ⇒ p = ±
√

2mE ·
√

1− −αq−(α−β)q0
E pour q < −q0

(38)

L’ensemble des cas possible est illustré graphiquement dans la figure 2

E<βq0

E=βq0

E>βq0

-q0 +q0

q

p

-q -q -q qqq

Figure 2 – Portrait de phase du système. Les paramètres sont les mêmes que ceux de la figure 1. Les deux familles
de trajectoires sont dessinées, i.e. E < βq0 (en bleu) et E > βq0 (en vert), ainsi que le cas limite E = βq0 (en
orange)

c) Calcul des périodes :
Pour le calcul des périodes, nous utilisons la symétrie du problème pour ne faire le calcul explicite que dans
le cadran p, q > 0. De nouveau, distinguons les deux familles de trajectoires définies par E < βq0 et E > βq0.
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— E ≤ βq0

I =
1

2π

∮
pdq (39)

=
2

π

∫ E/β

0

√
2mE

√
1− β

E
qdq (40)

=
2

π

√
2mE

E

β

∫ 1

0

√
1− xdx (41)

=
2

π

√
2mE

E

β

[
−2

3
(1− x)3/2

]1

0

(42)

=
2

π

√
2m

β
E3/2 2

3
(43)

=
4

3π

√
2m

β
E3/2 (44)

(45)

L’inversion de l’expression 44 afin d’exprimer E(I) puis calculer la période donne :

E =

(
3π

4

β√
2m

)2/3

I2/3 (46)

T =2π

(
dE

dI

)−1

(47)

= 2π

(
4

3π

√
2m

β

)2/3
3

2
I1/3 (48)

= 3π

(
4

3π

√
2m

β

)2/3(
4

3π

√
2m

β

)1/3

E1/2 (49)

T = 4

√
2m

β
E1/2 (50)

Comme attendu, la période augmente avec l’énergie. De plus, lorsque β augmente, la période diminue

— E > βq0

I =
1

2π

∮
pdq (51)

=
2

π

√
2mE

{∫ q0

0

√
1− β

E
q dq +

∫ q̄

q0

√
1− αq − (α− β)q0

E
dq

}
(52)

=
2

π

√
2mE

{[
−E
β

2

3

(
1− β

E
q

)3/2
]q0

0

+

√
1 +

α− β
E

q0

∫ q̄

q0

√
1− αq

E + (α− β)q0
dq

}
(53)

=
2

π

√
2mE

{
2

3

E

β

(
1−

(
1− βq0

E

)3/2
)

+

√
1 +

α− β
E

q0 ·
2

3
· E + (α− β)q0

α
·
(

1− αq0

E + (α− β)q0

)3/2
}

(54)

(55)

Où nous avons utilisé pour la dernière équation la définition de q̄ trouvée en 35. Ainsi l’évaluation du dernier
terme entre crochet en q̄ s’annule.

5



I =
2

π

√
2mE

{
2

3

E

β

(
1−

(
1− βq0

E

)3/2
)

+
2

3
· [E + (α− β)q0]3/2

α
√
E

·
(

1− αq0

E + (α− β)q0

)3/2
}

(56)

=
2

π

√
2mE

{
2

3

E

β

(
1−

(
1− βq0

E

)3/2
)

+
2

3
· 1

α
√
E
· (E − βq0)

3/2

}
(57)

=
2

π

√
2mE

2

3
E

{
1

β

(
1−

(
1− βq0

E

)3/2
)

+
1

α
·
(

1− βq0

E

)3/2
}

(58)

=
4

3π

√
2mE3/2

{
1

β
+

(
− 1

β
+

1

α

)(
1− βq0

E

)3/2
}

(59)

I =
4

3π

√
2mE3/2

β

{
1 +

β − α
α

(
1− βq0

E

)3/2
}

(60)

(61)

De nouveau, la période est définie par

T = 2π

(
dE

dI

)−1

= 2π
dI

dE
(62)

Donc finalement

T = 4

√
2m

β
E

1
2

[
1 +

β − α
α

(
1− βq0

E

) 3
2

]
+ 4

√
2m

β
E

3
2
β − α
α

(
1− βq0

E

) 1
2 βq0

E2
= (63)

= 4

√
2m

β
E

1
2

[
1 +

β − α
α

(
1− βq0

E

) 3
2

+
β − α
α

βq0

E

(
1− βq0

E

) 1
2

]
= (64)

= 4

√
2m

β
E

1
2

(
1− βq0

E

) 1
2

[(
1− βq0

E

)− 1
2

+
β − α
α

]
= (65)

= 4

√
2m

β
E

1
2

[
1 +

β − α
α

(
1− βq0

E

) 1
2

]
(66)

Exercice 3
a) Pour une fonction z(φ) donnée, la longueur de la corde pour faire deux tours est définie par

L = R

∫ 4π

0

√
1 +

z′2

R2
dϕ = (67)

= R

∫ 4π

0

√
1 +

a2

R2
dϕ = (68)

= 4πR

√
1 +

a2

R2
(69)

Ainsi, nous pouvons calculer le paramètre a qui correspond à une longueur L fixée :

⇒ L2

16π2R2
= 1 +

a2

R2
(70)

⇒ a2 =
L2

16π2
−R2 (71)

⇒ a =

√
L2

16π2
−R2 (72)

6



b) Calculons le potentiel gravitationnel Vg qui s’exerce sur l’ensemble de la corde

Vg = µgR

∫ 4π

0

z

√
1 +

z′2

R2
dϕ (73)

= −µgRa
√

1 +
a2

R2

∫ 4π

0

ϕdϕ (74)

= −µgRa
√

1 +
a2

R2

1

2
16π2 (75)

(72)→ = −8π2µgR

√
L2

16π2
−R2

L

4πR
(76)

= −2πµgL

√
L2

16π2
−R2 (77)

Le potentiel total que nous cherchons à minimiser est donc

Vtot = −2πµgL

√
L2

16π2
−R2 +

1

2
kR2 (78)

dVtot
dR

= 0 (79)

⇒ 2πµgLR√
L2

16π2 −R2
+ kR = 0 (80)

⇒ R = 0 (81)
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