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Paolo De Los Rios

Exercice 1
a) Le système possède 2 degrés de liberté, θ1 et θ2.

b) Il n’y a aucune quantité conservée. Le lagrangien dépend du temps par le biais de ϕ(t).

c) On définit les vecteurs positions des masses m1 et m2:

~r1 = (R sin θ1 cosϕ(t), R sin θ1 sinϕ(t), R cos θ1)

~r2 = (R sin θ2 cosϕ(t), R sin θ2 sinϕ(t), R cos θ2)

|~r1 − ~r2|2 = R2 cos2 ϕ(t)(sin θ1 − sin θ2)2 +R2 sin2 ϕ(t)(sin θ1 − sin θ2)2 +R2(cos θ1 − cos θ2)2

= 2R2 [1− cos θ1 cos θ2 − sin θ1 sin θ2]

= 2R2 [1− cos(θ1 − θ2)]

La norme de la vitesse de chaque particule vaut: |~̇ri|2 = R2θ̇2
i +R2ϕ̇2 sin2 θi.

Le lagrangien s’écrit finalement:

L(θ̇1, θ̇2, θ1, θ2, t) =
1

2
m1R

2
(
θ̇2

1 + ϕ̇2 sin2 θ1

)
+

1

2
m2R

2
(
θ̇2

2 + ϕ̇2 sin2 θ2

)
− kR2 (1− cos(θ1 − θ2))

Les équations de Lagrange deviennent:

m1R
2θ̈1 = m1R

2ϕ̇2 sin θ1 cos θ1 − kR2 sin(θ1 − θ2)

m2R
2θ̈2 = m2R

2ϕ̇2 sin θ2 cos θ2 + kR2 sin(θ1 − θ2)

d) Les impulsions sont p1 = m1R
2θ̇1 et p2 = m2R

2θ̇2, ainsi l’Hamiltonien s’écrit:

H =
p2

1

2m1R2
+

p2
2

2m2R2
− 1

2
R2ϕ̇2(m1 sin2 θ1 +m2 sin2 θ2) + kR2 (1− cos(θ1 − θ2))

e) Dans l’expression précédente, on reconnait le potentiel efficace:

Veff(θ) = −1

2
R2ϕ̇2(m1 sin2 θ1 +m2 sin2 θ2) + kR2 (1− cos(θ1 − θ2))

f) Le nouveau Lagrangien s’écrit: L(θ̇, θ, t) = 1
2mR

2(θ̇2 + ω2
0 sin2 θ)− V0

sin2 θ
.

De même l’Hamiltonien est donné par: H =
p2

2mR2
− 1

2
mR2ω2

0 sin2 θ +
V0

sin2 θ
. À nouveau, on identifie le

potentiel efficace:

Veff(θ) = −1

2
mR2ω2

0 sin2 θ +
V0

sin2 θ

g) Les points d’équilibre θ∗ sont définis par
∂Veff
∂θ

∣∣
θ∗

= 0.

V ′eff
∣∣
θ∗

= −mR2ω2
0 sin θ∗ cos θ∗ − 2V0

cos θ∗

sin3 θ∗
= 0 (1)
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La seule solution est cos θ∗ = 0, donc θ∗ = π
2 ou 3π

2 .
Pour trouver les positions d’équilibre, on peut également partir des équations du mouvement et poser θ̇,θ̈=0.

On étudie maintenant la stabilité des positions d’équilibre.

V ′′eff = −mR2ω2
0 cos2 θ +mR2ω2

0 sin2 θ + 2V0

(
1

sin2 θ
+ 3

cos2 θ

sin4 θ

)
Pour θ = π

2 et 3π
2 , on trouve V ′′eff = mR2ω2

0 + 2V0 > 0. Donc les deux positions d’équilibre sont stables.

h) Pour de petites oscillations autour de la position d’équilibre, on développe le potentiel effectif

Veff(θ) ' Veff(θ∗)︸ ︷︷ ︸
cte

+ V ′eff︸︷︷︸
=0

(θ∗)θ +
1

2
V ′′eff(θ∗)θ2 =

(
1

2
mR2ω2

0 + V0

)
θ2

où pour la dernière égalité, on néglige les termes constants.
L’hamiltonien devient donc,

H =
p2

2mR2
+

(
1

2
mR2ω2

0 + V0

)
θ2

Les équations d’Hamilton donne l’équation du mouvement suivante: θ̈ = −
(
ω2

0 +
2V0

mR2

)
θ, la fréquence des

petites oscillations est finalement donnée par ω2 = ω2
0 +

2V0

mR2
.
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Figure 1

j) On écrit l’équation d’Hamilton-Jacobi.

H

(
∂W

∂θ
, θ

)
= E =⇒ ∂W

∂θ
=
√

2mR2

[
E +

1

2
mR2ω2

0 sin2 θ − V0

sin2 θ

]1/2
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La variable d’action est donnée par

I =
1

2π

∮
∂W

∂θ
dθ =

1

π

θ̄∫
−θ̄

√
2mR2

[
E +

1

2
mR2ω2

0 sin2 θ − V0

sin2 θ

]1/2

dθ

et les points de rebroussement sont les solutions de l’équation E − 1
2mR

2ω2
0 sin2 θ̄ + V0

sin2 θ̄
= 0.

A partir de l’expression pour I(E), on peut calculer la fréquence des oscillations comme suit: ω = ∂E
∂I .

Exercice 2
Les nouvelles coordonnées sont données par:

P1 =
p1

2Aq1p2 + 1
Q1 = Aq2

1p2 + q1

P2 = p2 Q2 = q2 +Aq2
1

p1

2Aq1p2 + 1

a) Pour vérifier si la transformation est canonique, on vérifie que

{Qi, Pj} = δij {Qi, Qj} = 0 {Pi, Pj} = 0

Pour l’exemple, on calcule {Q1, P1}.

{Q1, P1} =
∂Q1

∂q1

∂P1

∂p1
− ∂Q1

∂p1︸︷︷︸
=0

∂P1

∂q1
+
∂Q1

∂q2︸︷︷︸
=0

∂P1

∂p2
− ∂Q1

∂p2

∂P1

∂q2︸︷︷︸
=0

= (2Aq1p2 + 1)
1

2Aq1p2 + 1
= 1

Si on effectue tous les calculs, on trouve en plus que

{Q2, P2} = 1 {Q1, Q2} = 0 {P1, P2} = 0x {Q1, P2} = 0 {Q2, P1} = 0

La transformation est donc bien canonique.
b)

p1 = P1 (2Aq1P2 + 1) =⇒F2(q1, q2, P1, P2) = q1P1 +Aq2
1P1P2 + f1(q1, q2, P2)

p2 = P2 =⇒F2(q1, q2, P1, P2) = q2P2 + f2(q1, P1, P2)

Q1 = Aq2
1p2 + q1 =⇒F2(q1, q2, P1, P2) = Aq2

1P1P2 + q1P1 + f3(q1, q2, P2)

Q2 = q2 +Aq2
1P1 =⇒F2(q1, q2, P1, P2) = q2P2 +Aq2

1P1P2 + f4(q1, q2, P1)

où f1, f2, f3 et f4 sont des fonctions arbitraires. En combinant les résultats, on trouve

F2(q1, q2, P1, P2) = q1P1 + q2P2 +Aq2
1P1P2

c) De par la fonction F2, on sait que [q1][P1] = [A][q1]2[P1][P2], donc [A] =
1

[q1][P2]

Exercice 3
La corde étant attachée à l’extérieur d’un cylindre de rayon R, on définit comme élément de longueur de
corde dl =

√
R2dϕ2 + dz2. On suppose z = z(ϕ), on peut donc réécrire dl =

√
R2 + z′2dϕ.

On veut minimiser l’énergie potentielle de la corde définie par

E = gµ

π∫
0

z
√
R2 + z′2dϕ
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sous la contrainte
π∫
0

√
R2 + z′2dϕ = L.

La fonction
F (ϕ, z, z′) = (z + λ)

√
R2 + z′2

doit donc satisfaire aux équations de Lagrange. On utilise le fait que la fonction hamiltonienne est conservée.

z′
∂L

∂z′
− L = z′2

z + λ√
R2 + z′2

− (z + λ)
√
R2 + z′2 = cte

z + λ√
R2 + z′2

=
C

R2
⇒ z′ =

dz

dϕ
= R

√
R2(z + λ)2

C2
− 1

ϕ =

z(ϕ)∫
0

dz

z′
=

1

R

z(ϕ)∫
0

dz√
R2(z+λ)2

C2 − 1
=

C

R2

R(z(ϕ)+λ)/C∫
Rλ/C

1√
x2 − 1

dx

=
C

R2

[
arccosh(

R(z(ϕ) + λ)

C
)− arccosh(

Rλ

C
)

]
En inversant la relation, on trouve

z(ϕ) =
C

R
cosh

(
R2

C
ϕ(z)− arccosh(

Rλ

C
)

)
− λ

Les constantes C, λ peuvent être déterminées en posant:

z(0) = 0

z(π) = 0
π∫

0

√
R2 + z′2dϕ = L

mais ici on ne s’intéresse qu’à la forme de la solution.
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