Corrigé: Examen Mécanique Analytique 2020

Paolo De Los Rios

Exercice 1

a) Le systéme posséde 2 degrés de liberté, 6; et 6s.
b) Il n’y a aucune quantité conservée. Le lagrangien dépend du temps par le biais de p(t).

¢) On définit les vecteurs positions des masses mq et ma:

71 = (Rsin 6y cos p(t), Rsin b, sin ¢(t), R cos by)
7o = (Rsin 63 cos p(t), Rsin s sin ¢(t), R cos 02)

7 — 7|? = R% cos? p(t)(sin 0; — sin2)* + R? sin® (t)(sin O — sin f)? + R*(cos ) — cos f3)?
=92R? [1 — cos 6y cos s — sin 0y sin O]
=2R*[1 — cos(f; — 02)]
La norme de la vitesse de chaque particule vaut: |r;|> = R2602 + R2$? sin? ;.
Le lagrangien s’écrit finalement:
. 1 . . 1 . )
L(64,02,0,,02,t) = imle (0% + 2 sin? 01> + §m2R2 (9% + 2 sin? 02) — kR? (1 — cos(6; — 6))
Les équations de Lagrange deviennent:
my R%6, = m1R2¢2 sin 0 cos ) — kR?sin(0; — 0s)
moR%0, = m2R2¢2 sin 0 cos Oy + kR? sin(f; — 6s)
d) Les impulsions sont p; = mq R20; et py = myR26,, ainsi I'Hamiltonien s’écrit:
p? 3

1
H = leRQ + 2m2R2 — §R2¢2(m1 Sin2 91 + mo Sin2 92> + kRQ (1 _ COS(Q]_ _ 62))

e) Dans expression précédente, on reconnait le potentiel efficace:

1
Vert(0) = —§R2gb2(m1 sin? @) + mysin® 6) + kR* (1 — cos(6; — 63))

. . 17
f) Le nouveau Lagrangien s’écrit: L(6,0,t) = %mR2 (02 + wgsin? ) — — 29'
sin
2 1 Vv .
De méme I’'Hamiltonien est donné par: H = LA —mR%w3 sin® 0 + — g . A nouveau, on identifie le
2mR2 2 sin“ 0
potentiel efficace:
Vest(6) = flmszz sin 0 + Vo
¢ 2 0 sin? 6
) e o OVesr
g) Les points d’équilibre 6* sont définis par 50 lo- =0.
, 2 92 . s N cos 0*
off|ge = —MR w(sing” cos " — QVOsin3 o =0 (1)




La seule solution est cos 8 = 0, donc §* = 7 ou 37”

Pour trouver les positions d’équilibre, on peut également partir des équations du mouvement et poser 9,9:0.

On étudie maintenant la stabilité des positions d’équilibre.

2 2 2 2 2 .2 1 cos” 6
v = —mRwg cos® 0 + mR*wy sin® 0 4 2V | —5— +3—;
sin“ 0 sin® 6

Pour 6 = 7 et 37”, on trouve Vi = mR?*w? + 2V, > 0. Donc les deux positions d’équilibre sont stables.

h) Pour de petites oscillations autour de la position d’équilibre, on développe le potentiel effectif

1 1
Var(6) = Vi(67) + Vg (6%)0 + V4(6%)6° = (mR2w3 ; Vo) 0
—_—— 2 2

cte =0

ol pour la derniére égalité, on néglige les termes constants.
L’hamiltonien devient donc,

p2 1 2 2 2
H = 2mR2 + (2mR wo +V0> (9

.. 2V
Les équations d’Hamilton donne I’équation du mouvement suivante: § = — (w% + ]§2> 0, la fréquence des
m
. . . , 2 2 2‘/O
petites oscillations est finalement donnée par w® = wg + R
m
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Figure 1
j) On écrit I’équation d’Hamilton-Jacobi.
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La variable d’action est donnée par

)
1
Iif 87Wd9_ /\/2mR {EJF mRQw sin? 6§ — .VO
2

us sin® 6

1/2
de

et les points de rebroussement sont les solutions de I’équation £ — mR2w0 sin? 0 + =0.

sm2 0

A partir de expression pour I(E), on peut calculer la fréquence des oscillations comme suit: w = %—If.

Exercice 2
Les nouvelles coordonnées sont données par:

D1
2Aq1p2 + 1

Py =po Q2

P = Q1 = Agips + ¢

D1
=@+ A ———
BN A gips + 1

a) Pour vérifier si la transformation est canonique, on vérifie que
{Qi, Pi} =0;; {QiQ;} =0 {P,P;} =0

Pour I'exemple, on calcule {Q1, Py }.

0Q1 0P, 0Q1 0P, 0Q1 0Py 0Q1 0P 1
Py = e T L T — (24 +1)———— =
{Qu 71} 0q1 Op1 Op1 Oqu  Oqa Opa  Opz Oqo = 2Aap2 1) 2Aq1p2 +1
S~~~ S~~~ ~—~
=0 =0 =0

Si on effectue tous les calculs, on trouve en plus que

{Q2, P} =1 {Q1,Q2}=0 {P,P}=0z {Q1,P}=0 {QP}=0

La transformation est donc bien canonique.
b)
p1 =P (2Aq1 P> + 1) =F5(q1,92, P1, P»
p2 =P =F5(q1,q2, P1, P>
Q1= Agip2 + ¢ =I5 (q1,q2, P1, P»
Q2= q2+ Agi Py =I5 (q1,q2, P1, P»

Iy 1P+ AG PPy + fi(q1, g2, Pa)
2Py + folqu, Pr, Pa)
AG PPy + 1 Py + f3(q1, g2, P2)

P+ AG PPy + f4(q1,q2, P1)

(Il
QX Q

)
)
)
)

ou fi, f2, f3 et f4 sont des fonctions arbitraires. En combinant les résultats, on trouve

Fy(q1,q2, P1, P2) = 1 P1 + @2 P + AGG P P

¢) De par la fonction Fy, on sait que [q1][P1] = [A][q1]?[P1][P2], donc [A] =

(@] [P2]

Exercice 3

La corde étant attachée a ’extérieur d’un cylindre de rayon R, on définit comme élément de longueur de
corde dl = \/R?dp? + dz2. On suppose z = z(¢), on peut donc réécrire dl = v/ R? + 2?dp.
On veut minimiser ’énergie potentielle de la corde définie par

E:gu/z R? + 272dp
0



s
sous la contrainte [V R? + z"2dp = L.
0

F(p,2,2") = (z+ \)VR2 + 22

doit donc satisfaire aux équations de Lagrange. On utilise le fait que la fonction hamiltonienne est conservée.

oL z4+ A
z’@ — L= Z/27R2 —7 (z+ ANV R+ 22 = cte

24N _C L de o [PGAAR
/R? + 22 T OR2 _d<P_ 2

La fonction

z(¢) z(p) R(z(0)+X)/C
- / d 1 / dz e L
T "R R2(:40)? _ R? 2 —
0 0 o} RA/C
C R

B

arccosh(%) - arccosh(lg\)}

En inversant la relation, on trouve

C R? R)
z2(p) = = cosh <C<p(z) - arccosh(c)> - A

Les constantes C, A\ peuvent étre déterminées en posant:

(0)
(m) =

/\/R2 +22%dp =1L
0

z 0
z 0

mais ici on ne s’intéresse qu’a la forme de la solution.



