
Corrigé: Examen Mécanique Analytique 2019

Paolo De Los Rios

Exercice 1
a) Le système ne possède qu’un degré de liberté en θ.

b) La position de la particule est donnée par:

x = (R+ r cos θ) cosϕ

y = (R+ r cos θ) sinϕ

z = r sin θ

En prenant la dérivée temporelle, on trouve les vitesses:

ẋ = −rθ̇ sin θ cosϕ− (R+ r cos θ)ϕ̇ sinϕ

ẏ = −rθ̇ sin θ sinϕ+ (R+ r cos θ)ϕ̇ cosϕ

z = rθ̇ cos θ

L’énergie cinétique s’écrit: T = 1
2m(ẋ2 + ẏ2 + ż2) et l’énergie potentielle, V = 0.

L =
1

2
m
[
r2θ̇2 + ω2

0(R+ r cos θ)2
]

où l’on a posé ϕ̇ = ω0.
Equation de Lagrange:

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 =⇒ mr2θ̈ +mω2

0r(R+ r cos θ) sin θ = 0

c) Positions d’équilibre, donc θ̇ = 0 et θ̈ = 0.
Pour satisfaire l’équation de Lagrange, on cherche θ∗ tel que:

sin θ∗ = 0 −→ θ∗ = 0 ou π;

(R+ r cos θ∗) = 0 −→ Impossible car R > r.

On a donc deux positions d’équilibre, en θ = 0 et θ = π. On identifie 1
2mω

2
0(R+ r cos θ)2 comme un potentiel

effectif Veff(θ). Autour de la position d’équilibre, Veff(θ) ' Veff(θ∗)︸ ︷︷ ︸
constant

+
dVeff
dθ

∣∣
θ∗︸ ︷︷ ︸

=0

θ + 1
2
d2Veff
dθ2

∣∣
θ∗
θ2. Au final on

calcule uniquement la dérivée seconde du potentiel.

• θ∗ = 0,
d2Veff
dθ2

= mω2
0r(R+ r) > 0, donc la position d’équilibre est stable.

• θ∗ = π,
d2Veff
dθ2

= −mω2
0r(R− r) < 0, donc la position d’équilibre est instable.
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Autour de θ∗ = 0, le Lagrangien décrivant de petites oscillations devient:

L =
1

2
mr2

[
θ̇2 − ω2

0

(R+ r)

r
θ2

]
θ̈ = −ω2

0

(R+ r)

r︸ ︷︷ ︸
ω2

θ ⇒ θ(t) ∝ e±iωt

On trouve donc une fréquence de petites oscillations ω = ω0

√
R+r
r

d) Le Lagrangien ne dépend pas du temps, la fonction hamiltonienne, h, est donc conservée.

h =
∂L

∂θ̇
θ̇ − L =

1

2
mr2θ̇ − 1

2
mω2

0(R+ r cos θ)2

e)

pθ =
∂L

∂θ̇
= mr2θ̇ ⇒ θ̇ =

pθ
mr2

H =
p2
θ

2mr2
− 1

2
mω2

0(R+ r cos θ)2

f)
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Figure 1: La ligne orange correspond au cas E = − 1
2mω

2
0(R − r)2. La ligne bleue − 1

2mω
2
0(R + r)2 ≤ E <

− 1
2mω

2
0(R− r)2 et la verte: E > − 1

2mω
2
0(R− r)2

g) On pose l’équation d’Hamilton-Jacobi:

H(
∂W

∂θ
, θ) =

1

2mr2

(
∂W

∂θ

)2

− 1

2
mω2

0(R+ r cos θ)2 = E =⇒ ∂W

∂θ
= ±
√

2mr2

√
E +

1

2
mω2

0(R+ r cos θ)2

Et par definition de la variable d’action, on trouve:

I =
1

2π

∮
∂W

∂θ
dθ =

1

π

θ̄∫
−θ̄

√
2mr2

√
E +

1

2
mω2

0(R+ r cos θ)2dθ
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Il ne nous reste plus qu’à définir θ̄ le point de rebroussement. Celui-ci est défini par une quantité de mouvement
nulle (pθ = 0), ainsi il suffit de résoudre:

E = −1

2
mω2

0(R+ r cos θ̄)2 =⇒ θ̄ = arccos

[
±

√
−2E

mω2
0r

2
− R

r

]

Le cas − est impossible car l’argument doit être compris entre -1 et 1.

f) On fait un développement limité en θ autour de zero.

Comme (R+ r cos θ)2 ∼
(
R+ r(1− θ2

2 )
)2

∼
[
(R+ r)2 − r(R+ r)θ2

]
, on peut facilement réécrire l’intégrale

pour la variable d’action:√
E +

1

2
mω2

0(R+ r cos θ)2 ∼
√
E +

1

2
mω2

0 [(R+ r)2 − r(R+ r)θ2]

=

√
E +

1

2
mω2

0(R+ r)2

√
1− mω2

0r(R+ r)

2E +mω2
0(R+ r)2

θ2

On calcule également le point de rebroussement θ̄ qui est définit par l’équation:

E = −1

2
mω2

0(R+ r cos θ̄)2 ∼ −1

2
mω2

0

[
(R+ r)2 − r(R+ r)θ̄2

]
On obtient θ̄2 =

2E +mω2
0(R+ r)2

mω2
0r(R+ r)

. Ainsi,

I =
1

π

θ̄∫
−θ̄

√
2mr2

√
E +

1

2
mω2

0(R+ r)2

√
1− θ2

θ̄2
dθ =

1

π

√
2mr2

√
E +

1

2
mω2

0(R+ r)2θ̄

1∫
−1

√
1− x2dx

︸ ︷︷ ︸
π
2

=
1

ω0

√
r

R+ r

[
E +

1

2
mω2

0(R+ r)2

]
ou l’on fait le changement de variable θ

θ̄
= x.

Finalement la fréquence d’oscillation est donnée par ω = dE
dI = ω0

√
R+r
r .

Exercice 2
a) Le changement de variable est donné par:

p = qP + ηP 2 + λt

Q =
1

2
q2 + qP

On en extrait:

P = − q

2η
±

√
q2

4η2
− 1

η
(λt− p)

Q =
q2

2
− q2

2η
± q

√
q2

4η2
− 1

η
(λt− p)
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Une transformation est canonique si {Q,P} = ∂Q
∂q

∂P
∂p −

∂Q
∂p

∂P
∂q = 1.

{Q,P} =

q(1− 1

η
)±

√
q2

4η2
− 1

η
(λt− p)± q2

4η

1√
q2

4η2 −
1
η (λt− p)

×
± 1

2η

1√
q2

4η2 −
1
η (λt− p)


−

± q

2η

1√
q2

4η2 −
1
η (λt− p)

×
− 1

2η
± q

4η

1√
q2

4η2 −
1
η (λt− p)


= ± 1

2ηa
(q − q

η
) +

1

2η
+

q2

8η2a2
−
(
∓ q

4η2a
+

q2

8η2a2

)
=

1

2η
± q

2ηa
(1− 1

2η
) = 1 si η =

1

2

où on a posé a =
√

q2

4η2 −
1
η (λt− p) pour alléger la notation.

b) Le changement de variables devient

p = qP +
P 2

2
+ λt =⇒F2(q, P, t) =

q2P

2
+
qP 2

2
+ qλt+ f(P, t)

Q =
1

2
q2 + qP =⇒F2(q, P, t) =

q2P

2
+
qP 2

2
+ g(q, t)

On obtient donc F2(q, P, t) =
q2P

2
+
qP 2

2
+ qλt.

c) Par Hamilton-Jacobi, K(P,Q, t) = H(p, q, t) +
∂F2

∂t
= 0 =⇒ H(p, q, t) = −∂F2

∂t
= −λq.

d)

q̇ =
∂H

∂p
= 0 −→ q(t) = q(0)

ṗ = −∂H
∂q

= λ −→ p(t) = λt+ p(0)

Exercice 3
a)

E =

T∫
0

γv · v dt =

T∫
0

γv2dt

b)

W =

T∫
0

f(t)vdt

c) On veut minimiser E =
T∫
0

γv2dt sous contrainte. On définit l’action S:

S =

T∫
0

γv2 + λf(t)v︸ ︷︷ ︸
L(v′,v,t)

dt

S est minimisé lorsque la fonction L satisfait aux équations de Lagrange.

d

dt

∂L

∂v′
− ∂L

∂v
= 0 −→ v = −λf(t)

2γ
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On utilise la contrainte: W =
T∫
0

f(t)vdt =
T∫
0

−λf(t)2

2γ dt −→ λ = −2γW
T∫
0

f(t)2dt

, et au final on obtient:

v(t) =
W

T∫
0

f(t)2dt

f(t)

d) Si f(t) = f0, on peut reprendre directement le résultat précédent: v = W
T∫
0

f2
0 dt

f0 = W
f0T

.

On peut aussi revenir à la définition de l’action S, qui devient

S

T∫
0

γv2 + λf0 v︸ ︷︷ ︸
L(v′,v,t)

dt

Ainsi L ne dépend plus explicitement de t et la fonction hamiltonienne, h, est donc conservée.

h = v′
∂L

∂v′
− L = −C =⇒ L = γv2 + λf0v = C =⇒ v = −λf0

2γ
±

√
λ2f2

0

4γ2
+
C

γ

On reprend la contrainte W =
T∫
0

f0 v dt = f0T

−λf0

2γ
±

√
λ2f2

0

4γ2
+
C

γ


︸ ︷︷ ︸

v

et donc on obtient comme avant

v =
W

f0T

Il existe donc deux méthodes pour calculer la vitesse; la conservation de la fonction hamiltonienne, et le fait
que v′ soit une variable cyclique.
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