Corrigé: Examen Mécanique Analytique 2019

Paolo De Los Rios

Exercice 1

a) Le systéme ne posséde qu'un degré de liberté en 6.

b) La position de la particule est donnée par:

x = (R+rcosb)cose
y=(R+rcosf)siny

z=rsinf
En prenant la dérivée temporelle, on trouve les vitesses:

i = —rfsinfcos p — (R + 7 cos )@ sin @
§ = —rfsinfsin g + (R + 7 cos )¢ cos

2 =rfcosf

L’énergie cinétique s'écrit: T' = im(i* + ¢ + 2) et I'énergie potentielle, V = 0.
1 22 2 .0)2
L:§m r°0° + wi (R + rcosb)

ou l'on a posé ¢ = wy.
Equation de Lagrange:

d (0L oL . 9 o
- (89) -5 = 0 = mr<6 + mwir(R + rcosf)sinfd =0

¢) Positions d’équilibre, donc f=0etfh=0.
Pour satisfaire I’équation de Lagrange, on cherche 6* tel que:
sinf* =0 — 6" =0oum;
(R+rcosf*) =0 — Impossible car R > r.

On a donc deux positions d’équilibre, en § = 0 et 6 = 7. On identifie mwg(R+ 7 cos #)* comme un potentiel

dvs
c‘l/OH p-07. Au final on

=0

1d*Veg
O+ 3 do2

effectif Veg(0). Autour de la position d’équilibre, Veg(6) ~ Vg (0) + 0
N——

constant

calcule uniquement la dérivée seconde du potentiel.

d?V,
o 0" =0, degff = mwir(R+r) > 0, donc la position d’équilibre est stable.
* dzx/:aff 2 ey ss o a1s .
e 0* =m, 0z - —muwgr(R —r) < 0, donc la position d’équilibre est instable.



Autour de 0* = 0, le Lagrangien décrivant de petites oscillations devient:

L= %mr2 {92 — wg(R:T)HQ}

R+r
T

d) Le Lagrangien ne dépend pas du temps, la fonction hamiltonienne, h, est donc conservée.

L . 1 -1
h= %9 — L= 5m1~20 - 5nuug(IwH—rcos@)2

On trouve donc une fréquence de petites oscillations w = wy
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Figure 1: La ligne orange correspond au cas F = —%mwS(R —1)2. La ligne bleue —%mwg(R +r)2<E<
—smwi(R —1)? et la verte: E > —imwd(R —r)?
g) On pose l'équation d’Hamilton-Jacobi:

2
1 1 1
H(aa—l/;/, )= ) (%‘Z) — imwg(R—i—rcos@)z =F= 86—2)/ = :I:\/W\/E—i— gmwg(R—i—rcose)Q

Et par definition de la variable d’action, on trouve:

0
I= % aa—v;/dG: i/W\/EqL;mwg(RJrrcosG)ZdO
“9



Il ne nous reste plus qu’a définir € le point de rebroussement. Celui-ci est défini par une quantité de mouvement
nulle (pg = 0), ainsi il suffit de résoudre:

1 ~ = —2F R
E = ——muw2(R+rcosf)? = 0 = arccos |+ —a - —
2 MWyT r

Le cas — est impossible car I'argument doit étre compris entre -1 et 1.

f) On fait un développement limité en 6 autour de zero.

2
Comme (R + rcos)? ~ (R +r(l— 9—22)) ~ [(R+7)? —r(R+r)0?%], on peut facilement réécrire I'intégrale
pour la variable d’action:

1 1
J E + 5mud(R +1c0s0)? ~ JE + gmed [(R+7)2 = r(R+1r)6?]

2
1 mwir(R + 1)
=/E+ -mwd(R+7r)%[1— o, 02
\/ +2mw0( +r)\/ 2E + mw3 (R +r)?

On calcule également le point de rebroussement 6 qui est définit par I’équation:
1 . 1 _
E= —§mw§(R +rcos0)? ~ —imwg [(R+7)? —r(R+71)6?]

2F + mw3(R+1)?

On obtient 6% =
frobtien mwir(R+r)

. Ainsi,
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ou l'on fait le changement de variable % =x.

Finalement la fréquence d’oscillation est donnée par w = % = wp+/ @.

Exercice 2

a) Le changement de variable est donné par:

p=qP+nP?+ X\t

12
—— P
2q +4q
On en extrait:
q ¢ 1
P=—+1 + /21— (M-
o o 77( p)
2 2 2
q q q 1
=1 — = 4qy— — (Mt —
Q=75 o U 17 n( )

w



Une transformation est canonique si {Q, P} = %—3%—1; — %—%%—5 =1.

{Q. P} = q(l—%)i f;—;(xt—p)ii - 11 % 2i : 11
iz — 3 (At —p) T\ d = 5 (At =p)
—i%lﬁll x—%i%gi
17 — (At —p) 1z — 5 (At—=p)
2 2
- iznia(q* ) % e (ﬂi% 8nq?a2>
1 1
= 2%(1—%)—1sin:f
otll on a posé a = % — %()\t — p) pour alléger la notation.
b) Le changement de variables devient
p:qP—&-%g—i—)\t :>F2(q,P,t):qQTP—I-g—i—q)\t—i—f(P,t)
Q:%q2+qP =>F2(q7P7t):q27P+§+g(q,t)
On obtient donc Fy(q, P,t) = QQTP + g + gAt.
¢) Par Hamilton-Jacobi, K(P,Q,t) = H(p,q,t) + % =0= H(p,q,t) = f% = —\q.
d)
0= 57 =0 —a(t) =400
p:—%—lj =X — p(t) = X+ p(0)

Exercice 3

a)

T T
E:/’yv-vdt:/’yUth
0 0

T
W= [ f(t)vdt
/

T
¢) On veut minimiser E = [ yv2dt sous contrainte. On définit 'action S:
0

T
S = /7@2 + Af(t)vdt
—_————
0 L(v',v,t)
S est minimisé lorsque la fonction L satisfait aux équations de Lagrange.
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T T
On utilise la contrainte: W = t)vdt = —Mdt —s A= —2W_ ¢t au final on obtient:
0 0 > i

J F()2dt
0
w
olt) = 2 p(t)
J f(t)2dt
0
d) Si f(t) = fo, on peut reprendre directement le résultat précédent: v = —WV— f = f%
J féat
0

On peut aussi revenir a la définition de I’action .S, qui devient

T

/ v+ Afovdt

0 L(v’,v,t)

Ainsi L ne dépend plus explicitement de ¢ et la fonction hamiltonienne, h, est donc conservée.

oL A fo A2 f2
h=v—=-L=-C=L=y’+AMoo=C=0v=—""4,220 42
v 50’ yv© + Afov v 2 12 + 5
. T Ao A2 f8 .
On reprend la contrainte W = f fovdt = foT ~ o + 12 + — | et donc on obtient comme avant
0 Y 2 0

v

w
foT

Il existe donc deux méthodes pour calculer la vitesse; la conservation de la fonction hamiltonienne, et le fait
que v soit une variable cyclique.

v =



