Fall 2024

General Physics: Electromagnetism, Correction 5

Exercise 1 :

Two particles, with charges 20.0 nC and —20.0 nC, are placed at the points with coordinates (0,
4.00 cm) and (0, -4.00 cm), as shown in Fig.1. A particle with charge 10.0 nC is located at the
origin.

1. Find the electric potential energy of the configuration of the three fixed charges.

2. A fourth particle, with a mass of 2.00 x 107! kg and a charge of 40.0 nC, is released from
the rest at the point (3.00 cm, 0). Find its speed after it has moved freely to a very large

distance.
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Figure 1: Schematic of the charges and their positions.
Solution 1 :

1. In an empty space, the first charge (¢; = +20.0 nC) is placed at its location with no energy
requirement. This charge now creates an electric potential:

Vi(r) = k2 (1)

To place the second charge (g2 = +10.0 nC) at its position, energy needs to be invested:

(8.99 - 109 Nm?/C?2)(20.0 - 10-9C)

=450-10°J (2
0.04m 2)

Uz = qo - Vi(ria) = (10-107°C) -




Finally, to place the third charge (g3 = —20 nC) at its position requires energy:

Ups + Uss = q3Vi(113) + q3Va(ras) = gske (ﬂ + 2) = (3)

13 23
20.0-107°C n 10.0-107°C
0.08 m 0.04m

= (=20.0-1077)(8.99 - 10° Nm?/C?) ( ) =-90-107°J (4)

The total energy of the system of three charges is equal to:

Uit = Uqa + U13 —+ U23 =|—4.5" 1075 J‘ (5)

2. The three fixed charges create a potential where the fourth charge is released:

V=V +V,+ Vs (6)
S (7)
14 T24 T34

T14 T'24 T34

| 0.042 + 0.032 m 0.03m 0.042 + 0.032m
=30-10°V (10)

Conservation of energy is used to find the velocity of the fourth charge to find the speed at
the great distance from the other three charges:

1 1
§mvi2 +qV; = §mv]2c + q4Vy (11)
With v; =0 and Vy =0 :
Loy

24V, [2-20-10-°C"-3.0- 103V y
or - \/ 210 T kg 3.46 - 10" m/s (13)

Exercise 2 :

A nonconducting sphere of radius ry carries a total charge () distributed uniformly through-

out its volume. Determine the electric potential as a function of the distance r from the center of
the sphere for: (a) r > rg and (b) r < rg . Take V' =0 at r = oo; (c) Plot V versus r and F versus
r.



e Hint: calculate the electric field first, and then the potential from it.

Solution 2 :

(a) The electric field outside a charged, spherically symmetric volume is the same as for a point
charge of the same charge magnitude. Integrating the electric field from infinity to the radius
of interest will give the potential at that radius.

E(r > rg) ¢ —>V(T2r0)——/r ¢ dr ¢ = ¢ (14)

- Adreqr? 4drreqr? dmegr |, | 4meor

o0

(b) Inside the sphere the electric field is obtained from Gauss’s law using the charge enclosed by
a sphere of radius 7.

4_.3
AP E = 921 — | E(r <ry) = @r (15)
€0 377G 4reqry

Integrating the electric field from the surface (i.e at ) to r < ro gives the electric potential

inside the sphere.
r 2
(35| o
o 871'807"0 U

V(r <re) =Vi(rg) — L_r dr = ¢ Qr

3« = - 3
ro dmeEQry dmegrg  8meory

Alternative solution:

The potential can be obtained as an indefinite integral with the integration constant chosen
such to make the potential continuous at the surface of the sphere:

Qr Qr?
v SR R L A + 1
(r <o) dregrd " 8meord ¢ (17)
Q Q 3Q Q r?
Vir=ry) = — + O = (O = 1% — _ 1
(r=70) 8meQTo ¢ 4dmegro ¢ 8meoro’ (r <o) 8meQTo s 2 (18)

(c) To plot, we first calculate Vo = V(r = ry) = 47rfom and Ey = E(r =19) = #. Then we
0
plot V/Vy and E/E as functions of /7.

For r < ry:

v w2 (-5) L (o-2) (19)




Qr

E _ Areorg T (20)
Ey, 92, o
dmeory
For r > r:
Q -1
K _ dneqr _To _ [T (21)
=5 = =
Vb dmegro T "o
Q 2 -2
E _ 4meqr? _ 70_0 _ L (22)
E Q r2
0 47r5078 "o
1.50 1.0
_\\
1.25 08
1.00 o / \
= 0.75 o~ / \
= ~ s 04 / ™
.25 [ —
0.00 0.0
0.0 0.5 1o, L5 2.0 2.5 3.0 0.0 0.5 10 . 15 2.0 25
/o o

Figure 2: Electric potential and electric field dependence on the distance 7.

Exercise 3 :

An electric transmission line in a house consists in two cables of a length [ and radius R = 1

mm, spaced by a distance d = 10 cm. Suppose that [ > d > R. Compute the capacitance per unit
length of the transmission line. The capacity proves to have a negative effect in the transmission
of the signal. What can you do to reduce this effect?

e Hint: remember that the capacitance is given by C' = %

Solution 3 :

The definition of capacity seen in the course is:

C=3 (23)

To find the capacity C of this arrangement of two cables we need to find the potential difference
between the two cables that carry charge +(¢) and —@ respectively.

We start by calculating the electric field generated by this distribution of charges using the
Gauss law, then we use this result to obtain the potential difference V.
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ﬁﬁd7:§ (24)

By symmetry we expect the field ﬁ to be radial. Taking S as a cylinder of radius r and length
[ concentric with the cable we find :

E(r)2nrl = 4 (25)
€0
with ¢ as the charge enclosed by S. Only the lateral surface of the cylinder contributes to the

integral, because E and dd are perpendicular on the cylinder faces.

The electric field generated by the positively charged cable can be expressed as:

A
N 2mwegr

E(r) (26)
where A\ = 1 is the charge density per unit length
The same method is applied to find the electric field for the second cable and we obtain the total
electric field (see Fig.3):
A A

Ey, = .
() 2megT N 27meg(d — @)

(27)

(To find the electric field of the first cable, we fixed the origin of the x coordinate at the center of
the cable. In calculating the electric field of the second cable, this convention must be maintained).

With this expression we calculate the potential difference :

d-R A\ d—R [q 1
AV = Edl = / [— + } dz (28)
R 2meo Jr r d—=x
= — — 29
s [in(x) — In(d — z)] . (29)
A
= —/[in(d — R) — In(R)] (30)
TEo
A
~ —IIn(d) — In(R)] (31)
TEo
Q d
AV ~ —— — 32
Vel R (32)
Finally we find the capacity per unit length:
C_ 9 L T 604 pF/m (33)

1AV In ()

To reduce the capacity per unit length one could increase the distance between the cables
d or reduce the radius of the cables R.



Figure 3: Electric field between the two cables.

Exercise 4 :

Refer to Fig.2 and consider the three following cases.

(a)

An insulating spherical shell, centered at the origin O of the Cartesian axes, is uniformly
charged (with internal radius a, external radius b and total charge +Q) Calculate at any

point in space the electric potential V(?) and the electric field E ). Graphically represent
the functions V(7) and the radial component of ﬁ(?)

A conductive spherical shell, centered at the origin O of the Cartesian axes, is electrically
neutral and floating (internal radius a and external radius b). A +@ charge is placed in the
center of the shell (in O). Calculate at any point in space the electric potential V(?) and

the electric field ﬁ(?) Graphically represent functions V(7) and the radial component of

e

J

(a) (b)

Figure 4: a) Insulating spherical shell uniformly charged with a total charge +@Q. b) Neutral
conductive spherical shell with a +Q charge in the centre. The shell is floating, i.e. electrically
disconnected from the environment.

e Hint 1: use Gauss’s law to compute the electric field first and then the potential by integrating

the electric field.



Solution 4 :

The symmetry of the problem suggests that the electric field is directed radially which means
that it only depends on the distance of the point with respect to the origin O (center of the shells).
Hence we can write E (7°) = E(r)e;.

(a) To calculate the electric field Gauss law is applied:

For r<a:

4 B(r) = Qene — E(r)=0 (34)

€0
because there is no charge inside the shell.
For a<r<b:
2 Am g g
AnreE(r) = —(r° —a’)p (35)
360
where p is the charge density:
Q 3Q

(36)

E(r)=-" (7‘ - “—) (37)

For r>b:

1
— E(r) = Q
€0 47'('80 r2

(38)

The electric potential is found by integrating the electric field with respect to r:
For r<a: V(r)=D

For r>b: V(r) = 2% (by taking V(r = c0) = 0)

T 4meg 1

" 3eo

For a<r<b: V(r) = —2£ <§ + “—:) +C

For the potential to be a continuous function in » = b and r = a we need to determine C' and

D:
For r = b: L0 2 .
p a
V(b) = = =4+ — C 39
( ) 471'80 b 350 (2 b) * ( )
we find that: p
C = 2 40
2 (40)



For r=a:

2 3
p [a® a
_ P (YL TN a2 p 41
360 (2 + CL> * ( )
after plugging in the expression for C, we find that:
P 12 2
D=—("— 42
oG (12)
Finally:
V(r) =& (b* —a®) forr <a
7‘2 CL3
Vi(r)=—g <7+7)+§%62f0ra<r<b
_ Q
V(r)= 473507 for r >0

Notice that the electric field is continuous.
finite everywhere.

1E(r)

This is because the volume charge density is

vir)

Figure 5: Electric field and electric potential as a function of the distance r in the case of an

insulating spherical shell.

(b) Assuming static conditions, the electric field E is 0 inside the conductor. By using the Gauss

Law, we get:

E(r)= Q 1

= Teai? forr <a

E(ry=0fora<r<b

E(r)= Q 1

T 4meg 12

forr > b
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Figure 6: Charge distribution of a conductive neutral sphere with a +() charge in the middle.

To find the electric potential we integrate the expressions found for the electric field and
obtain:

Vir)=L 14t Dforr<a

dmeg r

V(r)=Cfora<r<b

V(r) = 241 for r>b and assuming V(co) = 0

dmeg T

And we find that C' and D are equal to:

(43)

Q (1 1
D=t (3‘5) (44)

Notice the discontinuities of the electric field at » = a and r = b with E(a™) # E(a™),
E(b7) # E(bY), AE(r=a) = E(a”) — E(a*) = T, AE(r =b) = E(b”) — E(b") = Z-. This
is due to the surface charge densities o, and o_ which corresponds to infinite volume charge
densities.

AE(r=a) o Qb0 V°

AE(r=b) o, aQ a (45)
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Figure 7: Electric field and electric potential as a function of the distance r in the case of a
conductive spherical shell.

Exercise 5 :

Diagnostic imaging techniques, such as for example ultrasounds, use coaxial cables to trans-

mit instruments data. A coaxial cable with a length h is made up of a conductive cylinder with
radius R; inside a second empty cylinder of radius R,, separated by a dielectric, as shown in Fig.2.
We consider here a coaxial cable with air as a dielectric. An advantage of this kind of cables is
that the external electric noise is reduced, because the outer cylinder acts as a Faraday cage which
shields the inner conductor. On the other hand, this type of cable acts as a cylindrical capacitor.
A huge capacitance can result in a delay in the transmission, which can cause interference of the
signal. It is also important that the capacitances are low for diagnostic imaging techniques because
the images are high resolution.

Q

e Hint: remember that the capacitance is given by C' = 35>

1. Find an expression for the capacitance per unit length of such a coaxial cable (consider
h > Rz).

2. A coaxial cable factory propose you two cables for your diagnostic ultrasounds. The first
cable has dimensions R; = 0.25 mm and Ry = 0.76 mm. The second R; = 0.08 mm and
Ry = 1.20 mm. Which one do you choose?

Vue de coté
RZ

+q

Vue de dessus

Ry
Figure 8: Schematic of a coaxial cable. Side and top view.
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Solution 5 :

1. For a capacitor with charge ¢ and potential difference AV, the capacity is defined as:

_ 7
0= 37 (46)

We need to find the expression for the potential difference between the two cylinders. We
start by applying the Gauss law:

7{? i = Yen (47)
S

€o

We consider a cylindrical Gaussian surface between the two cylinders. Q... = ¢ and
dS = 2nrdy (between y = 0 and y = h). By symmetry = ﬁ(r) and hence, we can write:

B a

= 48
2mweorh (48)

And the potential difference is:

R1 d
szvl—xg:—/ ¢ T__9 (RQ) (49)

Rs 27T€0h7 B 27T€0h " E

Finally, the capacity per unit length is:

C q | 2me
R TRAY iy (2) (50)

2. By using the equation 50 found in question 1., the capacity by unit length for the first coaxial
cable is 5.00 - 107" F and for the second it is 2.05 - 10~ F. In conclusion, the second coaxial
cable is more favorable for a system of diagnostic imaging.
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