
Fall 2024

General Physics: Electromagnetism, Correction 5

Exercise 1 :

Two particles, with charges 20.0 nC and −20.0 nC, are placed at the points with coordinates (0,
4.00 cm) and (0, -4.00 cm), as shown in Fig.1. A particle with charge 10.0 nC is located at the
origin.

1. Find the electric potential energy of the configuration of the three fixed charges.

2. A fourth particle, with a mass of 2.00 × 10−13 kg and a charge of 40.0 nC, is released from
the rest at the point (3.00 cm, 0). Find its speed after it has moved freely to a very large
distance.

Figure 1: Schematic of the charges and their positions.

Solution 1 :

1. In an empty space, the first charge (q1 = +20.0 nC) is placed at its location with no energy
requirement. This charge now creates an electric potential:

V1(r) = ke
q1
r

(1)

To place the second charge (q2 = +10.0 nC) at its position, energy needs to be invested:

U12 = q2 · V1(r12) = (10 · 10−9C) · (8.99 · 10
9 Nm2/C2)(20.0 · 10−9C)

0.04m
= 4.50 · 10−5 J (2)
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Finally, to place the third charge (q3 = −20 nC) at its position requires energy:

U13 + U23 = q3V1(r13) + q3V2(r23) = q3ke

(
q1
r13

+
q2
r23

)
= (3)

= (−20.0 · 10−9)(8.99 · 109 Nm2/C2)

(
20.0 · 10−9C

0.08m
+

10.0 · 10−9C

0.04m

)
= −9.0 · 10−5 J (4)

The total energy of the system of three charges is equal to:

Utot = U12 + U13 + U23 = −4.5 · 10−5 J (5)

2. The three fixed charges create a potential where the fourth charge is released:

V = V1 + V2 + V3 (6)

= ke
q1
r14

+ ke
q2
r24

+ ke
q3
r34

(7)

= ke

(
q1
r14

+
q2
r24

+
q3
r34

)
(8)

= (8.99 · 109 Nm2/C2)

(
20.0 · 10−9C√
0.042 + 0.032 m

+
10.0 · 10−9C

0.03m
− 20.0 · 10−9C√

0.042 + 0.032 m

)
(9)

= 3.0 · 103 V (10)

Conservation of energy is used to find the velocity of the fourth charge to find the speed at
the great distance from the other three charges:

1

2
mv2i + q4Vi =

1

2
mv2f + q4Vf (11)

With vi = 0 and Vf = 0 :

q4Vi =
1

2
mv2f (12)

vf =

√
2q4Vi

m
=

√
2 · 20 · 10−9C · 3.0 · 103 V

2 · 10−13 kg
= 3.46 · 104 m/s (13)

Exercise 2 :

A nonconducting sphere of radius r0 carries a total charge Q distributed uniformly through-
out its volume. Determine the electric potential as a function of the distance r from the center of
the sphere for: (a) r > r0 and (b) r < r0 . Take V = 0 at r = ∞; (c) Plot V versus r and E versus
r.
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• Hint: calculate the electric field first, and then the potential from it.

Solution 2 :

(a) The electric field outside a charged, spherically symmetric volume is the same as for a point
charge of the same charge magnitude. Integrating the electric field from infinity to the radius
of interest will give the potential at that radius.

E(r ≥ r0) =
Q

4πε0r2
→ V (r ≥ r0) = −

∫ r

∞

Q

4πε0r2
dr =

Q

4πε0r

∣∣∣∣r
∞

=
Q

4πε0r
(14)

(b) Inside the sphere the electric field is obtained from Gauss’s law using the charge enclosed by
a sphere of radius r.

4πr2E =
Q

ε0

4
3
πr3

4
3
πr30

−→ E(r < r0) =
Qr

4πε0r30
(15)

Integrating the electric field from the surface (i.e at r0) to r < r0 gives the electric potential
inside the sphere.

V (r < r0) = V (r0)−
∫ r

r0

Qr

4πε0r30
dr =

Q

4πε0r0
− Qr2

8πε0r30

∣∣∣∣r
r0

=
Q

8πε0r0

(
3− r2

r20

)
(16)

Alternative solution:

The potential can be obtained as an indefinite integral with the integration constant chosen
such to make the potential continuous at the surface of the sphere:

V (r < r0) = −
∫

Qr

4πε0r30
dr = − Qr2

8πε0r30
+ C (17)

V (r = r0) = − Q

8πε0r0
+ C =

Q

4πε0r0
−→ C =

3Q

8πε0r0
, V (r < r0) =

Q

8πε0r0

(
3− r2

r20

)
(18)

(c) To plot, we first calculate V0 = V (r = r0) =
Q

4πε0r0
and E0 = E(r = r0) =

Q
4πε0r20

. Then we
plot V/V0 and E/E0 as functions of r/r0.

For r < r0:

V

V0

=

Q
8πε0r0

(
3− r2

r20

)
Q

4πε0r0

=
1

2

(
3− r2

r20

)
(19)
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E

E0

=

Qr
4πε0r30

Q
4πε0r20

=
r

r0
(20)

For r > r0:
V

V0

=

Q
4πε0r
Q

4πε0r0

=
r0
r

=

(
r

r0

)−1

(21)

E

E0

=

Q
4πε0r2

Q
4πε0r20

=
r20
r2

=

(
r

r0

)−2

(22)

Figure 2: Electric potential and electric field dependence on the distance r.

Exercise 3 :

An electric transmission line in a house consists in two cables of a length l and radius R = 1

mm, spaced by a distance d = 10 cm. Suppose that l ≫ d ≫ R. Compute the capacitance per unit
length of the transmission line. The capacity proves to have a negative effect in the transmission
of the signal. What can you do to reduce this effect?

• Hint: remember that the capacitance is given by C = Q
∆V

Solution 3 :

The definition of capacity seen in the course is:

C =
Q

V
(23)

To find the capacity C of this arrangement of two cables we need to find the potential difference
between the two cables that carry charge +Q and −Q respectively.

We start by calculating the electric field generated by this distribution of charges using the
Gauss law, then we use this result to obtain the potential difference V .
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∮
S

−→
E · d−→σ =

Q

ε0
(24)

By symmetry we expect the field
−→
E to be radial. Taking S as a cylinder of radius r and length

l concentric with the cable we find :

E(r)2πrl =
q

ε0
(25)

with q as the charge enclosed by S. Only the lateral surface of the cylinder contributes to the
integral, because

−→
E and d−→σ are perpendicular on the cylinder faces.

The electric field generated by the positively charged cable can be expressed as:

E(r) =
λ

2πε0r
(26)

where λ = q
l

is the charge density per unit length
The same method is applied to find the electric field for the second cable and we obtain the total
electric field (see Fig.3):

Etot(x) =
λ

2πε0x
+

λ

2πε0(d− x)
. (27)

(To find the electric field of the first cable, we fixed the origin of the x coordinate at the center of
the cable. In calculating the electric field of the second cable, this convention must be maintained).

With this expression we calculate the potential difference :

∆V =

∫ d−R

R

−→
E dl =

λ

2πε0

∫ d−R

R

[
1

x
+

1

d− x

]
dx (28)

=
λ

2πε0
[ln(x)− ln(d− x)]

∣∣∣∣d−R

R

(29)

=
λ

πε0
[ln(d−R)− ln(R)] (30)

≈ λ

πε0
[ln(d)− ln(R)] (31)

∆V ≈ Q

πε0l
ln

(
d

R

)
(32)

Finally we find the capacity per unit length:

C

l
=

Q

∆V l
≈ πε0

ln
(
d
R

) ≈ 6.04 pF/m (33)

To reduce the capacity per unit length one could increase the distance between the cables
d or reduce the radius of the cables R.
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Figure 3: Electric field between the two cables.

Exercise 4 :

Refer to Fig.2 and consider the three following cases.

(a) An insulating spherical shell, centered at the origin O of the Cartesian axes, is uniformly
charged (with internal radius a, external radius b and total charge +Q). Calculate at any
point in space the electric potential V (−→r ) and the electric field

−→
E (−→r ). Graphically represent

the functions V (−→r ) and the radial component of
−→
E (−→r ).

(b) A conductive spherical shell, centered at the origin O of the Cartesian axes, is electrically
neutral and floating (internal radius a and external radius b). A +Q charge is placed in the
center of the shell (in O). Calculate at any point in space the electric potential V (−→r ) and
the electric field

−→
E (−→r ). Graphically represent functions V (−→r ) and the radial component of

−→
E (−→r ).

Figure 4: a) Insulating spherical shell uniformly charged with a total charge +Q. b) Neutral
conductive spherical shell with a +Q charge in the centre. The shell is floating, i.e. electrically
disconnected from the environment.

• Hint 1: use Gauss’s law to compute the electric field first and then the potential by integrating
the electric field.
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Solution 4 :

The symmetry of the problem suggests that the electric field is directed radially which means
that it only depends on the distance of the point with respect to the origin O (center of the shells).
Hence we can write

−→
E (−→r ) = E(r)−→er .

(a) To calculate the electric field Gauss law is applied:

For r<a:

4πr2E(r) =
Qenc

ε0
−→ E(r) = 0 (34)

because there is no charge inside the shell.

For a<r<b:

4πr2E(r) =
4π

3ε0
(r3 − a3)ρ (35)

where ρ is the charge density:

ρ =
Q

V
=

3Q

4π(b3 − a3)
, (36)

where V is the volume, and hence we find:

E(r) =
ρ

3ε0

(
r − a3

r2

)
(37)

For r>b:

4πr2E(r) =
Qenc

ε0
−→ E(r) =

1

4πε0

Q

r2
(38)

The electric potential is found by integrating the electric field with respect to r:

For r<a: V (r) = D

For r>b: V (r) = 1
4πε0

Q
r

(by taking V (r = ∞) = 0)

For a<r<b: V (r) = − ρ
3ε0

(
r2

2
+ a3

r

)
+ C

For the potential to be a continuous function in r = b and r = a we need to determine C and
D:

For r = b:
V (b) =

1

4πε0

Q

b
= − ρ

3ε0

(
b2

2
+

a3

b

)
+ C (39)

we find that:
C =

ρ

2ε0
b2 (40)

7



For r=a:
− ρ

3ε0

(
a2

2
+

a3

a

)
+ C = D (41)

after plugging in the expression for C, we find that:

D =
ρ

2ε0
(b2 − a2) (42)

Finally:

V (r) = ρ
2ε0

(b2 − a2) for r < a

V (r) = − ρ
3ε0

(
r2

2
+ a3

r

)
+ ρ

2ε0
b2 for a < r < b

V (r) = 1
4πε0

Q
r

for r > b

Notice that the electric field is continuous. This is because the volume charge density is
finite everywhere.

Figure 5: Electric field and electric potential as a function of the distance r in the case of an
insulating spherical shell.

(b) Assuming static conditions, the electric field
−→
E is 0 inside the conductor. By using the Gauss

Law, we get:

E(r) = Q
4πε0

1
r2

for r < a

E(r) = 0 for a < r < b

E(r) = Q
4πε0

1
r2

for r > b
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Figure 6: Charge distribution of a conductive neutral sphere with a +Q charge in the middle.

To find the electric potential we integrate the expressions found for the electric field and
obtain:

V (r) = Q
4πε0

1
r
+D for r < a

V (r) = C for a < r < b

V (r) = Q
4πε0

1
r

for r>b and assuming V (∞) = 0

And we find that C and D are equal to:

C =
Q

4πε0

1

b
(43)

D =
Q

4πε0

(
1

b
− 1

a

)
(44)

Notice the discontinuities of the electric field at r = a and r = b with E(a−) ̸= E(a+),
E(b−) ̸= E(b+), ∆E(r = a) = E(a−)−E(a+) = σ−

ε0
, ∆E(r = b) = E(b−)−E(b+) = σ+

ε0
. This

is due to the surface charge densities σ+ and σ− which corresponds to infinite volume charge
densities.

∆E(r = a)

∆E(r = b)
=

σ−

σ+

=
Q

a2
b2

Q
=

b2

a2
(45)
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Figure 7: Electric field and electric potential as a function of the distance r in the case of a
conductive spherical shell.

Exercise 5 :

Diagnostic imaging techniques, such as for example ultrasounds, use coaxial cables to trans-
mit instruments data. A coaxial cable with a length h is made up of a conductive cylinder with
radius R1 inside a second empty cylinder of radius R2, separated by a dielectric, as shown in Fig.2.
We consider here a coaxial cable with air as a dielectric. An advantage of this kind of cables is
that the external electric noise is reduced, because the outer cylinder acts as a Faraday cage which
shields the inner conductor. On the other hand, this type of cable acts as a cylindrical capacitor.
A huge capacitance can result in a delay in the transmission, which can cause interference of the
signal. It is also important that the capacitances are low for diagnostic imaging techniques because
the images are high resolution.

• Hint: remember that the capacitance is given by C = Q
∆V

1. Find an expression for the capacitance per unit length of such a coaxial cable (consider
h ≫ R2).

2. A coaxial cable factory propose you two cables for your diagnostic ultrasounds. The first
cable has dimensions R1 = 0.25 mm and R2 = 0.76 mm. The second R1 = 0.08 mm and
R2 = 1.20 mm. Which one do you choose?

Figure 8: Schematic of a coaxial cable. Side and top view.
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Solution 5 :

1. For a capacitor with charge q and potential difference ∆V , the capacity is defined as:

C =
q

∆V
(46)

We need to find the expression for the potential difference between the two cylinders. We
start by applying the Gauss law: ∮

S

−→
E · d−→σ =

Qenc

ε0
(47)

We consider a cylindrical Gaussian surface between the two cylinders. Qenc = q and
dS = 2πrdy (between y = 0 and y = h). By symmetry

−→
E =

−→
E (r) and hence, we can write:

E(r) =
q

2πε0rh
(48)

And the potential difference is:

∆V = V1 − V2 = −
∫ R1

R2

q

2πε0h

dr

r
=

q

2πε0h
ln

(
R2

R1

)
(49)

Finally, the capacity per unit length is:

C

h
=

q

h∆V
=

2πε0

ln
(

R2

R1

) (50)

2. By using the equation 50 found in question 1., the capacity by unit length for the first coaxial
cable is 5.00 · 10−11F and for the second it is 2.05 · 10−11F. In conclusion, the second coaxial
cable is more favorable for a system of diagnostic imaging.
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