
Fall 2024

General Physics: Electromagnetism, Correction 3

Exercise 1 :

Two infinite parallel planes carry equal but opposite uniform charge densities ±σ.

Figure 1: Two infinite parallel planes carrying opposite uniform charges.

Find the field in each of the three regions:

(i) To the left of both;

(ii) Between them;

(iii) To the right of both.

Solution 1 :

The left plate produces a field
σ

2ϵ0
which points away from it - to the left in region (i) and to

the right in regions (ii) and (iii). The right plate being negatively charged, produces a field
−σ

2ϵ0
pointing toward it - to the right in regions (i) and (ii) and to the left in region (iii). The two
fields cancel in regions (i) and (iii); they add up in region (ii).

Conclusion: The field between the plate is
σ

ϵ0
and it points to the right, elsewhere the field

is zero.
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Figure 2: Two infinite parallel planes carrying opposite uniform charges. The electric field points
away from a positively charged surface, whereas it points inside a negatively charged surface.

Exercise 2 :

We assume an electron beam is a stationary uniform charge distribution in cylindric form with
radius a and infinite length.

(a) Find the electric field at a distance r from the beam center for r > a and r < a. Assume a
line charge density of λ of the electron beam.

(b) What is the force on an electron in the beam at a distance r from the beam axis if you assume
a volume charge density of n electrons per unit volume V ?

Solution 2 :

(a) The infinite length cylinder has translational symmetry along the longitudinal direction. We
thus use the same geometry for the Gaussian surface as explained in the lecture; a cylinder
with length l and radius r. We only need to consider the electrons at positions ≤ r because
only these are enclosed by our Gaussian surface. The flux through this surface becomes:

Φ =

∮ −→
E (r) · d

−→
A =

Q(r)

ε0
(1)

The flux through the two disk-shaped sides is 0, since the E-field is orthogonal to the surface
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normal vector. What remains is the flux through the lateral surface.

⇒ 2πrlE(r) =
Q(r)

ε0
(2)

⇒ E(r) =
Q(r)

2πε0rl
(3)

In order to find the total charge enclosed by the Gaussian cylinder, we need to remember
that when r < a, we are not enclosing the full beam but only a fraction of it. Since we know
that the charge is uniformly distributed within the beam, we can find the enclosed charge by
multiplying the total charge Q = λl of a beam section of length l with the ratio between the
enclosed volume Vencl = πr2l and the total volume of the section Vtot = πa2l. Therefore the
enclosed charge is given by:

Q(r) =

{
λ r2

a2
l, r ≤ a

λl, r > a
, (4)

hence

E(r) =

{
λr

2πε0a2
, r ≤ a

λ
2πε0r

, r > a
(5)

The direction of the electric field points toward the center of the beam.

(b) Given that ne is the volume charge density ρ, the corresponding line charge density becomes
λ = ρπa2 = πa2ne. We can thus replace λ in equation (5) and write the electric field as

E(r) =

{
ner
2ε0

, r ≤ a
nea2

2ε0r
, r > a

(6)

The magnitude of the force F = |
−→
F | = |q

−→
E | on an electron with charge q = −e then becomes

F (r) =

{
ne2r
2ε0

, r ≤ a
ne2a2

2ε0r
, r > a

(7)

Due to the negative charge of the electron, the direction of the force points away from the
central axis of the beam, opposite of the direction of the electric field.
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Exercise 3 :

A sphere of radius r0 carries a volume charge density ρE (see Figure 3). A spherical cavity
of radius r0/2 is then scooped out and left empty, as shown.

(a) What is the magnitude and direction of the electric field at point A?

(b) What is the direction and magnitude of the electric field at point B?

Points A and C are at the centers of the respective spheres.
Hint: in order to take a symmetric Gaussian surface consider two spheres: a big one centered in
A, with radius r0 and with volume charge density ρE and a second smaller one centered in C, with
radius r0/2 and with volume charge density −ρE.

Figure 3: A charged sphere of radius r0 containing a cavity of radius r0/2.

Solution 3 :

Consider this sphere as a combination of two spheres. Sphere 1 is a solid sphere of r0 and
charge density +ρE centered at A and Sphere 2 is a second sphere of radius r0

2
and charge density

−ρE centered at C.

(a) The electric field at A will have zero contribution from Sphere 1 due to its symmetry
about point A. Sphere 2, on the other hand, contributes to the electric field. The electric
field is then calculated by creating a Gaussian surface centered at point C with radius r0

2∮ −→
E · d

−→
A =

qenc

ε0
→ E · 4π(

1

2
r0)

2 =
(−ρE)

4
3
π(1

2
r0)

3

ε0
→ E = −

ρEr0

6ε0
(8)

Since the electric field points into the Gaussian surface (hence the negative sign) the electric
field at point A points to the right (i.e. towards the center of Sphere 2)

(b) At point B the electric field will be the sum of the the electric fields from each sphere. The
electric field from Sphere 1 is calculated using the Gaussian surface of radius r0 centered at
A. ∮ −→

E1 · d
−→
A =

qenc

ε0
→ E1 · 4πr2

0 =
(+ρE)

4
3
πr3

0

ε0
→ E1 =

ρEr0

3ε0
(9)
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At point B the field from Sphere 1 points to the left.

The electric field from Sphere 2 is calculated using a Gaussian surface centered at C of
radius 3

2
r0 (i.e. the distance of B to C).∮ −→
E2 · d

−→
A =

qenc

ε0
→ E2 · 4π(

3

2
r0)

2 =
(−ρE)

4
3
π(1

2
r0)

3

ε0
→ E2 = −

ρEr0

54ε0
(10)

At point B, the electric field from Sphere 2 points toward the right.

The net electric field is the sum of these two fields.

E = E1 + E2 =
ρEr0

3ε0
+ (−

ρEr0

54ε0
) =

17ρEr0

54ε0
(11)

The net field points to the left.

Exercise 4 :

A solid insulating sphere of radius a carries a net positive charge Q uniformly distributed
throughout its volume. A conducting spherical shell of inner radius b and outer radius c is concen-
tric with the solid sphere and carries a net charge −2Q. Using Gauss’s law, find the electric field
in the regions labeled 1○, 2○, 3○, and 4○ in Figure 4 and the charge distribution on the shell when
the entire system is in electrostatic equilibrium.

Figure 4: An insulating sphere of radius a and carrying a charge Q surrounded by a conducting
spherical shell carrying a charge −2Q.
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Solution 4 :

The charge is distributed uniformly throughout the sphere and the charge on the conduct-
ing shell distributes itself uniformly on the surfaces. Hence, the system has spherical symmetry
and the Gauss’s law can be applied by using spherical Gauss surfaces to find the electric field in
the different regions.

1. The electric field inside a conducting shell is zero. Therefore for region 1○ the electric
field is due to the sphere.

E1 = ke
Q

a3
r (for r < a) (12)

2. The electric field in region 2○ is only due to the sphere and not the shell (because r<b).

E2 = ke
Q

r2
(for a < r < b) (13)

3. The electric field in region 3○ is zero because the spherical shell is a conductor in equilibrium.

E3 = 0 (for b < r < c) (14)

4. The electric field in region 4○ is due to the sphere and conducting shell. The total charge
that the Gaussian surface of the region 4○ surrounds is a total charge qin = qsphere + qshell =
Q+ (−2Q) = −Q. Therefore the electric field in region 4○ would be the same as if the field
was generated by a sphere of charge -Q.

E4 = −ke
Q

r2
(for r > c) (15)

Exercise 5 :

A long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of
the wire. The wire has a charge per unit length of λ, and the cylinder has a net charge per unit
length of 2λ. From this information, use Gauss’s law to find:

(a) The charge per unit length on the inner surface of the cylinder;

(b) The charge per unit length on the outer surface of the cylinder;

(c) The electric field outside the cylinder a distance r from the axis.
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Solution 5 :

(a) Inner surface: Consider a cylindrical Gaussian surface of arbitrary length l within the metal
cylinder. The electric field E inside the conducting shell is zero, therefore the total charge
inside the Gaussian surface must also be zero:∮ −→

E · d
−→
A =

qenc
ε0

→ 0 =
(λ+ λinner)l

ε0
→ λinner = −λ (16)

In this case for the electric field to be zero inside the metal cylinder. The charge in the inner
surface of the cylinder has to cancel out the charge of the wire.

(b) Outer surface: Consider a cylindrical Gaussian surface of arbitrary length l outside the metal.
The total charge within the Gaussian surface is:

qwire + qcylinder = qwire + (qoutersurface + qinnersurface) (17)

λl + 2λl = λl + (λouterl + (−λl)) → λouter = 3λ (18)

(c) Gauss’s law applied to a cylindrical surface:∮ −→
E · d

−→
A =

qenc
ε0

(19)

E · 2πrl = 3λl

ε0
→ E = 2

3λ

4πε0r
= 6ke

λ

r
(20)

The field points radially outward.
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