Fall 2024

General Physics: Electromagnetism, Correction 1

Refresher: Vector Algebra
This section is adapted from the first chapter of Introduction to Electrodynamics by
David J. Griffiths.

Vector operations

In order to describe quantities which have direction and magnitude, such as displace-
ments, velocity, acceleration, force, etc... one is in need of vectors obeying their own
arithmetic. In these exercises we will denote "vector A" as A and its magnitude as
|A| or also as A.

We can define four vectors operations:

1. Addition of two vectors.

A (A+B)  (B+A) A

B
Figure 1: Addition of two vectors
Place the tail of B at the head of A; the sum A 4+ B is the vector from the tail
of A to the head of B (Fig. 1).
e Addition is commutative:
A+B=B+ A. (1)
e Addition is associative:
(A+B)+C=A+ (B+C). (2)

2. Multiplication by a scalar.
Multiplication of a vector by a scalar a multiplies the magnitude but leaves the
direction unchanged. Scalar multiplication is distributive.

a(A+ B) =aA + aB. (3)
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3. Dot product of two vectors.
The dot product of two vectors is defined as,

A-B = ABcos (), (4)

where 6 is the angle they form when placed tail-to-tail. Note that A - B is itself
a scalar, which is why the dot product is also called scalar product. The dot
product is commutative,

A-B=B-A (5)

and distributive
A (B+C)=A-B+A-C. (6)

Geometrically, A - B is the product of |A| times the projection of B along A.
If the two vectors are parallel then, A - B = AB. If they are perpendicular,
A-B=0.

4. Cross product of two vectors.
The cross product of two vectors is defined by

A X B = ABsin (6)n (7)

where m is a unit vector pointing perpendicular to the plane A and B. The hat
denotes unit vectors. There are two directions perpendicular to any plane: "in"
and "out". The ambiguity is resolved by the right-hand rule: let your index
point in the direction of the first vector and your middle finger in the direction
of the second vector, then your thumb indicates the direction of n (Fig. 2).
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Figure 2: Right-hand rule



A X B is a vector, which is why the cross product is also called vector product.
The cross product is distributive,

AX(B+C)=(AXB)+(AxCQC) (8)
but not commutative,
(AX B)=—(A X B). (9)

Geometrically, |A X B is the area of the parallelogram generated by A and B.
If two vectors are parallel their cross product is zero.

Component form

In the previous section, the vector operations have been described using abstract
forms, without any references to a coordinate system. In practice, it is easier to set
up Cartesian coordinates x,y, z and work with vector components. Let &,y and 2
be unit vectors parallel to the z,y and z axes, respectively. An arbitrary vector A
can be expanded in terms of these basis vectors.

A=A+ Ag+ Az (10)

The number A,, A, and A, are the components of A; geometrically they are the
projections of A along the three coordinate axes. We can reformulate the four vector
operations as rules for manipulating components:

1. To add vectors, add the corresponding components,
A+ B=(A,+B,)&+ (A, + B,y + (A. + B.)2. (11)

2. To multiply by a scalar, multiply each component individually,

aA = (aA,)x + (aA))y + (aA,)z. (12)

3. To calculate the dot product, multiply the corresponding components, and sum
them up.

A-B=(Azxz+Ay+Az2) - (B,xz+ Byy+ B.2) (13)

=A,B, +A,B,+A.B, (14)

4. To calculate the cross product, A X B, form the determinant whose first row is
x,y, 2z, whose second row is A, and whose third row is B.

AxB=|4, A, A. (15)
B, B, B.
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Source point

AN
Field point

Figure 3: Depiction of position (left) and separation (right) vectors.

Position, Displacement and Separation vectors

The location of a point in three dimensions can be described by listing its Cartesian
coordinates (z,y,z). The vector to that point from the origin (QO) is called the
position vector (Fig. 3(Left)).

r=r-r+y-Yy+z-z. (16)

The infinitesimal displacement vector, from (z,y, z) to (z 4+ dz,y + dy, z + dz),
1S
dr =dr-xz+dy-y+dz-z (17)

In electrodynamics, it is common to encounter problems involving two points, a
source point, r’, where an electric charge is located, and a field point, r, at which
you are calculating the electric or magnetic field (Fig. 3(Right)). We define the
separation vector from the source point to the field point, with the script letter 4.

=r—7 (18)

Refresher: Electrostatic

The electrostatic force between two charges is given by

1 qiqe -
— Ly 19
4me n2 ( )

where F' is the force on a charge ¢; due to the charge ¢s at a distance r.




Exercise 1 :

1. Derive the dot and cross products for the following couples of vectors:

= (6,2,1) and B = (8,9, 2)

— (8,1,7) and B = (9,6,9)

= (5,2,5) and B = (—10,—4,—10)
— (—3,8,2) and B = (0, -8, 1)

(a) A
(b) A
(c) A
(d) A

2. Find the separation vector 4 from the source point (9,3, 3) to the field point
(6,1,7). Determine its magnitude, |2/, and construct the unit vector 4.

3. Find the angle between the body diagonals of a cube.

4. Use the cross product to find the components of the unit vector n perpendicular
to the shaded plane in Figure 4.
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Figure 4: Plane perpendicular to n.



Solution 1 :

1. According to the definition of dot product among two vectors written in com-
ponents (13) we have:
(a) A-B=(6x+2y+2)- 8x+9y+22)=6-8+2-9+1-2 =068
(b)) A-B=8x+1y+72)- (92 +6y+92)=8-94+1-6+7-9 = 141
(c) A-B = (bx+2y+52) - (—10&—4y—102) =5-(—10)+2-(—4)+5-(—10)
= -108
(d A-B=(-3zx+8y+22)- (0 —-8y+12)=3-0+8-(—8)+2-1=-62

One can derive the cross product from the definition in Eq. 15:

(b) AXB=2(1-9-6-7)—9(8-9-9-7)+ £(8-6—9-1) = —332 — 95 + 399
(c) AXB = 2(2:—10+4-5)— (5 —10+10-5)+2(5- —4+10-5) = 0&+0g+0g
(d) AXB = #(8-148-2)—4(—3-14+0-2)+ 2(—3-—8—0-—3) = 24@ +3y+24g

2. From the definition of the separation vector (18), we have:
a=r—r'=06-92+(1-3)y+(7T—3)2=—-3x — 2y + 42 (20)
The magnitude of a generic vector A = (A,, A,, A,) is given by |A| = VA - A.

Therefore, in the case of 2 we have:

2] = /(—3)2 + (—2)2 + 42 = V29 (21)
The unit vector associated to %, indicated by 4, is given by:
. A -3 —2 4
A= — =+ ——G + ——2 22
2] V29 297 " V29 (22)

3. Considering a cube of size £, two vectors representing two possible body diago-
nals (in total there are 4 possible of them) are given by:
dy = (-1, 0, —0)

dy = (£,0,—0) (23)
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Figure 5: Body diagonals in a cube.

To find the angle # among the vectors we can employ (4):
dl'dg :—£2+€2+£2:€2: |d1”d2‘(’,089, (24)

from where we have:

0=a ccos( d, - dy ) a CCOS( e ) a ccos(l) 70.53°  (25)
— ar — 2 ) =ar ——— | =ar — | = 70.
|dy||dy] V30 /3¢ 3

. To find the components of the unit vector nn perpendicular to the shaded region
we compute the cross product among the vectors of two sides of the triangle.
From Figure 4 we can see that two possible vectors are:

v, =—x+ 2y

. . (26)
Vo = —2Y + 32

Therefore, a vector perpendicular to the shaded region (which is a part of the
plane spanned by v; and vs) is:

r Yy z
v Xvo=|—1 2 0|=6x+3y+ 2z (27)
0 -2 3
The unit vector 7 is given by:
~ V1 X V9 6 . 3 . 2 .
n=———"—=-+-yY+ -2 28
o x| 70 707 (28)
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Exercise 2 :

Two identical water droplets are charged by one extra electron each, such that

the electrical force of repulsion compensates for their mutual gravitational force.
What is the radius of the droplets ?

Indications: k. =9 x 10°Nm?2C 2, e=16x109C, G =6.7x 107" m?kg 1572,
Pwater = 1 X 103 kgm™3.

Solution 2 :

The electrical force among the two droplets is given by:

o2
R2
where e is the elementary charge and R is the distance among the droplets. The
gravitational force, instead, is given by:

Fu=k (29)

m2

Iy = Gﬁa (30)
where G is the universal constant of gravitation. The mass of each droplets (they are
identical) is:

47 pr®
m= 2 (31)
3
Imposing that the two forces are in equilibrium, we obtain the radius of the two

droplets:

FE G e 9 ke

R? R T 16m2Gp? (32)



Exercise 3 :

Three small balls with positive charges +g4 and +gg = +qc on the balls A,

B and C, respectively, can freely move on a ring. What is the ratio of the charges
g4 to qp, if at the equilibrium the angle from the center of the ring to the charges ¢p
and q¢ is w/37

Solution 3 :

Because gg = ¢. the position of the balls B and C are symmetrical relative

to the BAC angle bisector line, such that only one of the two charges, B or C, can
be considered. The situation is schematized in the following picture.

()
30°

\

A
Figure 6: Diagram for the position of the three charges.
Two repulsive forces act on B: one from C' (Fpe, red arrow in Figure 6) and one

from A (Fap, blue arrow in Figure 6) charges. In equilibrium their projections on
the tangent to the circle line have to be opposite and equal value.



From the Figure 5 we obtain the following equations:

Fpccosyr = Fpacosys (33)
P
q dBgA
kBg’Q cos vy = kBAQ COS Yo (34)
qa BA?cosy, (35)

g BCZ?cosm,

Because OB = OC and the angle BOC' = 60°, BC' = BO and the angle OBC' = 60°.
Simple geometrical consideration results in the following:

5 =90° — OBC = 30° (36)
— 180° — 30°
S5 =90° — ABO = 90° — <<< 5 )>—60°> = 75° (37)
BC
BA =
2 sin 15° (38)

Plugging (38) into (35) we get the ration among g4 and ¢p:

qa BC? - cos 30° N 0.866
qg  4sin?15°- BC2cosT75° ~ 4-0.067 - 0.259

~ 125 (39)

Exercise 4 :

Two charges, —(Q)y and —4(@)y, are at a distance [ apart. These two charges

are free to move but do not because there is a third charge nearby. What must be
the magnitude of the third charge and its placement in order for the first two to be
in equilibrium?

Solution 4 :

The negative charges will repel each other and so the third charge must put

an opposite force on each of the original charges. Consideration of the various possi-
ble configurations leads to the conclusion that the third charge must be positive and
must be between the other two charges. See the following diagram for the definition
of variables.
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Figure 7: Diagram for the position of the three charges.

For each negative charge, equate the magnitudes of the two forces on the charge.
Also note that 0 < x < [.
For the left charge we have:

QuQ 40%
k poa k P (40)
while for the right one:
4QoQ 4Q5
k =k : 41
(1 —x)? [2 (41)
Combining the previous two relations we obtain:
4 1
pQ 100 L (42)
x? (1 —x)? 3
To find the magnitude of the unknown charge we employ (40):
x? 4 4
=400 — = Qp—— = — 43
Q@ = 4Q 2 o BE 9Q0 (43)

Exercise 5 :

A metal spring, put vertically, has the free length of Ly (see Figure 8). The

length becomes L, when a ball of mass m is put on top of it. Next, the ball is re-
moved, but two massless point charges +¢) and —() are fixed to the opposite ends of
the same spring, which is now in horizontal position. Estimate the value of charge @,
if the spring length becomes L. now? The spring obeys the Hook’s law: F = nAL,
where AL is compression of the spring and 7 is an unknown constant.
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Figure 8: Schematic of the problem in Exercise 5.

Solution 5 :

In vertical position (see Figure 7 on top) the spring experiences two forces, the

spring Hook’s force and the gravitational force, whose equilibrium is equal to 0O:
Fy+Fg=-n-(Ly—Ly) +mg=0, (44)

where ¢ is the Earth gravitational force. From the previous relation we obtain the
spring constant to be:

=1 e (45)

Ly—L,)
When the two charges are attached (see Figure 7 on bottom), the Hook’s force
equilibrates Coulomb attraction of the two charges:

Fyu+F,=—-n-(Lo— L)+ kL—Q =0, (46)
el
from where we have:
Q2 mg - (LO - Lel) mg - (LO - Lel)
L2 Lo— L, ¢ "\ k- (Lo—L,) (47)



