
Fall 2024

General Physics: Electromagnetism, Correction 1

Refresher: Vector Algebra
This section is adapted from the first chapter of Introduction to Electrodynamics by
David J. Griffiths.

Vector operations
In order to describe quantities which have direction and magnitude, such as displace-
ments, velocity, acceleration, force, etc... one is in need of vectors obeying their own
arithmetic. In these exercises we will denote "vector A" as A and its magnitude as
|A| or also as A.
We can define four vectors operations:

1. Addition of two vectors.

Figure 1: Addition of two vectors

Place the tail of B at the head of A; the sum A+B is the vector from the tail
of A to the head of B (Fig. 1).

• Addition is commutative:

A+B = B +A. (1)

• Addition is associative:

(A+B) +C = A+ (B +C). (2)

2. Multiplication by a scalar.
Multiplication of a vector by a scalar a multiplies the magnitude but leaves the
direction unchanged. Scalar multiplication is distributive.

a(A+B) = aA+ aB. (3)
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3. Dot product of two vectors.
The dot product of two vectors is defined as,

A ·B ≡ AB cos (θ), (4)

where θ is the angle they form when placed tail-to-tail. Note that A ·B is itself
a scalar, which is why the dot product is also called scalar product. The dot
product is commutative,

A ·B = B ·A (5)

and distributive
A · (B +C) = A ·B +A ·C. (6)

Geometrically, A ·B is the product of |A| times the projection of B along A.
If the two vectors are parallel then, A · B = AB. If they are perpendicular,
A ·B = 0.

4. Cross product of two vectors.
The cross product of two vectors is defined by

A×B ≡ AB sin (θ)n̂ (7)

where n̂ is a unit vector pointing perpendicular to the plane A and B. The hat
denotes unit vectors. There are two directions perpendicular to any plane: "in"
and "out". The ambiguity is resolved by the right-hand rule: let your index
point in the direction of the first vector and your middle finger in the direction
of the second vector, then your thumb indicates the direction of n̂ (Fig. 2).

Figure 2: Right-hand rule
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A×B is a vector, which is why the cross product is also called vector product.
The cross product is distributive,

A× (B +C) = (A×B) + (A×C) (8)

but not commutative,
(A×B) = −(A×B). (9)

Geometrically, |A×B| is the area of the parallelogram generated by A and B.
If two vectors are parallel their cross product is zero.

Component form
In the previous section, the vector operations have been described using abstract
forms, without any references to a coordinate system. In practice, it is easier to set
up Cartesian coordinates x, y, z and work with vector components. Let x̂, ŷ and ẑ

be unit vectors parallel to the x, y and z axes, respectively. An arbitrary vector A

can be expanded in terms of these basis vectors.

A = Axx̂+ Ayŷ + Azẑ. (10)

The number Ax, Ay and Az, are the components of A; geometrically they are the
projections of A along the three coordinate axes. We can reformulate the four vector
operations as rules for manipulating components:

1. To add vectors, add the corresponding components,

A+B = (Ax +Bx)x̂+ (Ay +By)ŷ + (Az +Bz)ẑ. (11)

2. To multiply by a scalar, multiply each component individually,

aA = (aAx)x̂+ (aAy)ŷ + (aAz)ẑ. (12)

3. To calculate the dot product, multiply the corresponding components, and sum
them up.

A ·B = (Axx̂+ Ayŷ + Azẑ) · (Bxx̂+Byŷ +Bzẑ) (13)
= AxBx + AyBy + AzBz (14)

4. To calculate the cross product, A×B, form the determinant whose first row is
x̂, ŷ, ẑ, whose second row is A, and whose third row is B.

A×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (15)
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Figure 3: Depiction of position (left) and separation (right) vectors.

Position, Displacement and Separation vectors
The location of a point in three dimensions can be described by listing its Cartesian
coordinates (x, y, z). The vector to that point from the origin (O) is called the
position vector (Fig. 3(Left)).

r = x · x̂+ y · ŷ + z · ẑ. (16)

The infinitesimal displacement vector, from (x, y, z) to (x+ dx, y+ dy, z+ dz),
is

dr = dx · x̂+ dy · ŷ + dz · ẑ (17)

In electrodynamics, it is common to encounter problems involving two points, a
source point, r′, where an electric charge is located, and a field point, r, at which
you are calculating the electric or magnetic field (Fig. 3(Right)). We define the
separation vector from the source point to the field point, with the script letter .

≡ r − r′ (18)

Refresher: Electrostatic

The electrostatic force between two charges is given by

F =
1

4πϵ0

q1q2
2
ˆ (19)

where F is the force on a charge q1 due to the charge q2 at a distance r.
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Exercise 1 :

1. Derive the dot and cross products for the following couples of vectors:

(a) A = (6, 2, 1) and B = (8, 9, 2)

(b) A = (8, 1, 7) and B = (9, 6, 9)

(c) A = (5, 2, 5) and B = (−10,−4,−10)

(d) A = (−3, 8, 2) and B = (0,−8, 1)

2. Find the separation vector from the source point (9, 3, 3) to the field point
(6, 1, 7). Determine its magnitude, | |, and construct the unit vector ˆ .

3. Find the angle between the body diagonals of a cube.

4. Use the cross product to find the components of the unit vector n̂ perpendicular
to the shaded plane in Figure 4.

Figure 4: Plane perpendicular to n̂.
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Solution 1 :

1. According to the definition of dot product among two vectors written in com-
ponents (13) we have:

(a) A ·B = (6x̂+ 2ŷ + ẑ) · (8x̂+ 9ŷ + 2ẑ) = 6 · 8 + 2 · 9 + 1 · 2 = 68
(b) A ·B = (8x̂+ 1ŷ + 7ẑ) · (9x̂+ 6ŷ + 9ẑ) = 8 · 9 + 1 · 6 + 7 · 9 = 141
(c) A ·B = (5x̂+2ŷ+5ẑ) ·(−10x̂−4ŷ−10ẑ) = 5 ·(−10)+2 ·(−4)+5 ·(−10)

= -108
(d) A ·B = (−3x̂+ 8ŷ + 2ẑ) · (0x̂− 8ŷ + 1ẑ) = 3 · 0 + 8 · (−8) + 2 · 1 = -62

One can derive the cross product from the definition in Eq. 15:

(a) A×B =

∣∣∣∣∣∣
x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ = x̂(AyBz−ByAz)− ŷ(AxBz−BxAz)+ ẑ(AxBy−

BxAy) = x̂(2 · 2− 9 · 1)− ŷ(6 · 2− 8 · 1)+ ẑ(6 · 9− 8 · 2) = −5x̂− 4ŷ+38ŷ

(b) A×B = x̂(1 ·9−6 ·7)− ŷ(8 ·9−9 ·7)+ ẑ(8 ·6−9 ·1) = −33x̂−9ŷ+39ŷ

(c) A×B = x̂(2·−10+4·5)−ŷ(5·−10+10·5)+ẑ(5·−4+10·5) = 0x̂+0ŷ+0ŷ

(d) A×B = x̂(8·1+8·2)−ŷ(−3·1+0·2)+ẑ(−3·−8−0·−3) = 24x̂+3ŷ+24ŷ

2. From the definition of the separation vector (18), we have:

≡ r − r′ = (6− 9)x̂+ (1− 3)ŷ + (7− 3)ẑ = −3x̂− 2ŷ + 4ẑ (20)

The magnitude of a generic vector A = (Ax, Ay, Az) is given by |A| =
√
A ·A.

Therefore, in the case of we have:

| | =
√
(−3)2 + (−2)2 + 42 =

√
29 (21)

The unit vector associated to , indicated by ˆ , is given by:

ˆ =
| |

=
−3√
29

x̂+
−2√
29

ŷ +
4√
29

ẑ (22)

3. Considering a cube of size ℓ, two vectors representing two possible body diago-
nals (in total there are 4 possible of them) are given by:

d1 = (−ℓ, ℓ,−ℓ)

d2 = (ℓ, ℓ,−ℓ)
(23)

6



Figure 5: Body diagonals in a cube.

To find the angle θ among the vectors we can employ (4):

d1 · d2 = −ℓ2 + ℓ2 + ℓ2 = ℓ2 = |d1||d2| cos θ, (24)

from where we have:

θ = arccos

(
d1 · d2

|d1||d2|

)
= arccos

(
ℓ2√

3ℓ ·
√
3ℓ

)
= arccos

(
1

3

)
≈ 70.53◦ (25)

4. To find the components of the unit vector n̂ perpendicular to the shaded region
we compute the cross product among the vectors of two sides of the triangle.
From Figure 4 we can see that two possible vectors are:

v1 = −x̂+ 2ŷ

v2 = −2ŷ + 3ẑ
(26)

Therefore, a vector perpendicular to the shaded region (which is a part of the
plane spanned by v1 and v2) is:

v1 × v2 =

∣∣∣∣∣∣
x̂ ŷ ẑ
−1 2 0
0 −2 3

∣∣∣∣∣∣ = 6x̂+ 3ŷ + 2ẑ (27)

The unit vector n̂ is given by:

n̂ =
v1 × v2

|v1 × v2|
=

6

7
x̂+

3

7
ŷ +

2

7
ẑ (28)
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Exercise 2 :

Two identical water droplets are charged by one extra electron each, such that
the electrical force of repulsion compensates for their mutual gravitational force.
What is the radius of the droplets ?
Indications: ke = 9× 109Nm2C−2, e = 1.6× 10−19C, G = 6.7× 10−11m3 kg−1 s−2,
ρwater = 1× 103 kgm−3.

Solution 2 :

The electrical force among the two droplets is given by:

Fel = k
e2

R2
(29)

where e is the elementary charge and R is the distance among the droplets. The
gravitational force, instead, is given by:

Fg = G
m2

R2
, (30)

where G is the universal constant of gravitation. The mass of each droplets (they are
identical) is:

m =
4πρr3

3
. (31)

Imposing that the two forces are in equilibrium, we obtain the radius of the two
droplets:

k
e2

R2
= G

m2

R2
→ r6 =

9

16π2

ke2

Gρ2
(32)
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Exercise 3 :

Three small balls with positive charges +qA and +qB = +qC on the balls A,
B and C, respectively, can freely move on a ring. What is the ratio of the charges
qA to qB, if at the equilibrium the angle from the center of the ring to the charges qB
and qC is π/3?

Solution 3 :

Because qB = qc the position of the balls B and C are symmetrical relative
to the BAC angle bisector line, such that only one of the two charges, B or C, can
be considered. The situation is schematized in the following picture.

Figure 6: Diagram for the position of the three charges.

Two repulsive forces act on B: one from C (FBC , red arrow in Figure 6) and one
from A (FAB, blue arrow in Figure 6) charges. In equilibrium their projections on
the tangent to the circle line have to be opposite and equal value.
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From the Figure 5 we obtain the following equations:

FBC cos γ1 = FBA cos γ2 (33)

k
q2B
BC2

cos γ1 = k
qBqA
BA2

cos γ2 (34)

qA
qB

=
BA2 cos γ1
BC2 cos γ2

(35)

Because OB = OC and the angle BOC = 60◦, BC = BO and the angle OBC = 60◦.
Simple geometrical consideration results in the following:

γ̂1 = 90◦ − ÔBC = 30◦ (36)

γ̂2 = 90◦ − ÂBO = 90◦ −
((

(180◦ − 30◦)

2

)
− 60◦

)
= 75◦ (37)

BA =
BC

2 sin 15◦
(38)

Plugging (38) into (35) we get the ration among qA and qB:

qA
qB

=
BC2 · cos 30◦

4 sin2 15◦ ·BC2 cos 75◦
≃ 0.866

4 · 0.067 · 0.259
≃ 12.5 (39)

Exercise 4 :

Two charges, −Q0 and −4Q0, are at a distance l apart. These two charges
are free to move but do not because there is a third charge nearby. What must be
the magnitude of the third charge and its placement in order for the first two to be
in equilibrium?

Solution 4 :

The negative charges will repel each other and so the third charge must put
an opposite force on each of the original charges. Consideration of the various possi-
ble configurations leads to the conclusion that the third charge must be positive and
must be between the other two charges. See the following diagram for the definition
of variables.
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Figure 7: Diagram for the position of the three charges.

For each negative charge, equate the magnitudes of the two forces on the charge.
Also note that 0 < x < l.

For the left charge we have:

k
Q0Q

x2
= k

4Q2
0

l2
, (40)

while for the right one:

k
4Q0Q

(1− x)2
= k

4Q2
0

l2
. (41)

Combining the previous two relations we obtain:

k
Q0Q

x2
= k

4Q0Q

(1− x)2
→ x =

1

3
l (42)

To find the magnitude of the unknown charge we employ (40):

Q = 4Q0
x2

l2
= Q0

4

(3)2
=

4

9
Q0 (43)

Exercise 5 :

A metal spring, put vertically, has the free length of L0 (see Figure 8). The
length becomes Lg when a ball of mass m is put on top of it. Next, the ball is re-
moved, but two massless point charges +Q and −Q are fixed to the opposite ends of
the same spring, which is now in horizontal position. Estimate the value of charge Q,
if the spring length becomes Lel now? The spring obeys the Hook’s law: FH = η∆L,
where ∆L is compression of the spring and η is an unknown constant.
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Figure 8: Schematic of the problem in Exercise 5.

Solution 5 :

In vertical position (see Figure 7 on top) the spring experiences two forces, the
spring Hook’s force and the gravitational force, whose equilibrium is equal to 0:

FH + FG = −η · (L0 − Lg) +mg = 0, (44)

where g is the Earth gravitational force. From the previous relation we obtain the
spring constant to be:

η =
mg

(L0 − Lg)
(45)

When the two charges are attached (see Figure 7 on bottom), the Hook’s force
equilibrates Coulomb attraction of the two charges:

FH + Fel = −η · (L0 − Lel) + k
Q2

L2
el

= 0, (46)

from where we have:

k
Q2

L2
el

=
mg · (L0 − Lel)

L0 − Lg
⇒ Q = Lel

√
mg · (L0 − Lel)

k · (L0 − Lg)
. (47)

12


