
Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium.



Electric Flux

We have used electric field lines to visualize electric fields and 
indicate their strength.

We are now going to count* the 
number of electric field lines passing 
through a surface and use this count 
to determine the electric field.

E



The electric flux passing through a surface is the number of 
electric field lines that pass through it.

Because electric field lines are drawn 
arbitrarily, we quantify electric flux 
like this:  E=EA,

…except that…

If the surface is tilted, fewer lines cut 
the surface.

E
A

Later we’ll learn about magnetic flux, which is 
why I will use the subscript E on electric flux.

E



The green lines miss!



E




A

The “amount of surface” perpendicular 
to the electric field is Acos.

AEffective = A cos  so   E = EAEffective = EA cos.

We define A to be a vector having a 
magnitude equal to the area of the 
surface, in a direction normal to the 
surface.

Therefore, the amount of surface area effectively “cut through” 
by the electric field is Acos.

Φ𝐸 = 𝐸 ⋅ Ԧ𝐴



If the electric field is not uniform, or the surface is not flat…

divide the surface into 
infinitesimal surface 
elements and add the 
flux through each…

dA
E Φ𝐸 = lim

Δ𝐴𝑖→0
෍

𝑖

𝐸𝑖 ⋅ Δ Ԧ𝐴𝑖

Φ𝐸 = න𝐸 ⋅ 𝑑 Ԧ𝐴

A

Remember, the direction of dA 
is normal to the surface.

a surface integral, 
therefore, a double integral ඵ



If the surface is closed (completely encloses a volume)…

E

…we count* lines going 
out as positive and lines 
going in as negative…

Φ𝐸 = ර𝐸 ⋅ 𝑑 Ԧ𝐴

dA
a surface integral, therefore, a 
double integral ඾

For a closed surface, dA is normal 
to the surface and always points 

away from the inside.The circle just reminds you 
to integrate over a closed 
surface.



Question: you gave me five different equations for electric flux. 
Which one do I need to use? 

Φ𝐸 = ර𝐸 ⋅ 𝑑 Ԧ𝐴

Φ𝐸 = න𝐸 ⋅ 𝑑 Ԧ𝐴

Φ𝐸 = 𝐸 ⋅ Ԧ𝐴

Φ𝐸 = 𝐸𝐴 cos 𝜃

Φ𝐸 = 𝐸𝐴

Answer: use the simplest (easiest!) one that works. 

Flat surface, E  A, E constant over surface. Easy!

Flat surface, E not  A, E constant over surface.

Flat surface, E not  A, E constant over surface.

Surface not flat, E not uniform. Avoid, if possible.

Closed surface. 

If the surface is closed, you may be able to “break it up” into 
simple segments and still use E=E·A for each segment.

This is the definition of electric flux, so it is on your equation sheet.

The circle on the integral just reminds you to integrate over a closed surface.



Electric Flux Example: Calculate the electric flux through a 
cylinder with its axis parallel to the electric field direction.

E



Electric Flux Example: Calculate the electric flux through a 
cylinder with its axis parallel to the electric field direction.

E

I see three parts to the cylinder:

The left end cap.
E

dA



Electric Flux Example: Calculate the electric flux through a 
cylinder with its axis parallel to the electric field direction.

E

I see three parts to the cylinder:

The tube.
E



Electric Flux Example: Calculate the electric flux through a 
cylinder with its axis parallel to the electric field direction.

E

I see three parts to the cylinder:

The right end cap.
E

dA



Let’s separately calculate the contribution of each part to the 
flux, then add to get the total flux.

Φ𝐸 = ර𝐸 ⋅ 𝑑 Ԧ𝐴 = න

𝑙𝑒𝑓𝑡

𝐸 ⋅ 𝑑 Ԧ𝐴𝑙𝑒𝑓𝑡 + න

𝑡𝑢𝑏𝑒

𝐸 ⋅ 𝑑 Ԧ𝐴𝑡𝑢𝑏𝑒 + න

𝑟𝑖𝑔ℎ𝑡

𝐸 ⋅ 𝑑 Ԧ𝐴𝑟𝑖𝑔ℎ𝑡

The right end cap.
E

dA

The tube.
E

E

dA

The left end cap.



න

𝑙𝑒𝑓𝑡

𝐸 ⋅ 𝑑 Ԧ𝐴𝑙𝑒𝑓𝑡 = න

𝑙𝑒𝑓𝑡

𝐸 𝑑𝐴𝑙𝑒𝑓𝑡 cos 1 80° = න

𝑙𝑒𝑓𝑡

−𝐸 𝑑𝐴𝑙𝑒𝑓𝑡

E

dA

The left end cap.

Every dA on the left end cap is antiparallel to E. The angle 
between the two vectors is 180

න

𝑙𝑒𝑓𝑡

−𝐸 𝑑𝐴𝑙𝑒𝑓𝑡 = −𝐸 න

𝑙𝑒𝑓𝑡

𝑑𝐴𝑙𝑒𝑓𝑡 = −𝐸𝐴𝑙𝑒𝑓𝑡E is uniform, so



The tube.
E

Let’s look down the axis of the tube.

E is pointing at you.



Every dA is radial (perpendicular 
to the tube surface).

dA

The angle between E and dA is 90. 

dA

E

E



The angle between E and dA is 90. 

dA

E

න

𝑡𝑢𝑏𝑒

𝐸 ⋅ 𝑑 Ԧ𝐴𝑡𝑢𝑏𝑒 = න

𝑡𝑢𝑏𝑒

𝐸 𝑑𝐴𝑡𝑢𝑏𝑒 cos 9 0° = න

𝑡𝑢𝑏𝑒

0 𝑑𝐴𝑡𝑢𝑏𝑒 = 0

The tube contributes nothing to the flux!



න

𝑟𝑖𝑔ℎ𝑡

𝐸 ⋅ 𝑑 Ԧ𝐴𝑟𝑖𝑔ℎ𝑡 = න

𝑟𝑖𝑔ℎ𝑡

𝐸 𝑑𝐴𝑟𝑖𝑔ℎ𝑡 cos 0 ° = න

𝑟𝑖𝑔ℎ𝑡

𝐸 𝑑𝐴𝑟𝑖𝑔ℎ𝑡

Every dA on the right end cap is parallel to E. The angle 
between the two vectors is 0

E is uniform, so න

𝑟𝑖𝑔ℎ𝑡

𝐸 𝑑𝐴𝑟𝑖𝑔ℎ𝑡 = 𝐸 න

𝑟𝑖𝑔ℎ𝑡

𝑑𝐴𝑟𝑖𝑔ℎ𝑡 = 𝐸𝐴𝑟𝑖𝑔ℎ𝑡

The right end cap.
E

dA



The net (total) flux

Φ𝐸 = න

𝑙𝑒𝑓𝑡

𝐸 ⋅ 𝑑 Ԧ𝐴𝑙𝑒𝑓𝑡 + න

𝑡𝑢𝑏𝑒

𝐸 ⋅ 𝑑 Ԧ𝐴𝑡𝑢𝑏𝑒 + න

𝑟𝑖𝑔ℎ𝑡

𝐸 ⋅ 𝑑 Ԧ𝐴𝑟𝑖𝑔ℎ𝑡

Φ𝐸 = −𝐸𝐴𝑙𝑒𝑓𝑡 + 0 + 𝐸𝐴𝑟𝑖𝑔ℎ𝑡 = 0

The flux is zero! 
Every electric field line that goes in also goes out.

Assuming a right 
circular cylinder.*

*We will see in a bit that we don’t have to make this assumption.



E

The net electric flux through a closed cylindrical surface is zero.



If there were a + charge inside the cylinder, there would be 
more lines going out than in.

If there were a - charge inside the cylinder, there would be 
more lines going in than out…

…which leads us to…

E+-



Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium.



Gauss’ Law

Mathematically*, we express the idea of the last two slides as

Φ𝐸 = ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜
Gauss’ Law

Always true, not always useful.

We will find that Gauss’ law gives a simple way to calculate 
electric fields for charge distributions that exhibit a high degree 
of symmetry…

…and we will save more complex charge distributions for 
advanced classes.



To be worked at the blackboard in lecture…

Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.



Let’s assume the point charge 
is +.

Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.

The electric field everywhere 
points away from the charge.

+q

E

If you go any distance r away 
from +q, the electric field is 
always directed “out” and has 
the same magnitude as the 
electric field at any other r.

What is the symmetry of the electric field?

Spherical !



Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.

To apply Gauss’ Law, we 
really want to pick a surface 
for which we can easily 
evaluate

+q

E

Let’s see, for what kind of surface would this spherically-
symmetric electric field always be parallel or perpendicular?

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

𝐸 ⋅ 𝑑 Ԧ𝐴.

That means we want     to 
everywhere be either parallel or 
perpendicular to the surface.

𝐸

“a sphere” 



Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.

So let’s draw a Gaussian 
sphere of radius r, enclosing 
and centered on +q. 
“Centered on” makes it easy 
to evaluate

+q

E
ර𝐸 ⋅ 𝑑 Ԧ𝐴 =

𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑
𝜀𝑜

𝐸 ⋅ 𝑑 Ԧ𝐴.

r

Everywhere on the sphere,                 are parallel and E is 
constant so 

𝐸 and 𝑑 Ԧ𝐴

ර𝐸 ⋅ 𝑑 Ԧ𝐴 = ර𝐸 𝑑𝐴 = 𝐸 ර𝑑𝐴 = 𝐸 𝐴𝑠𝑝ℎ𝑒𝑟𝑒 = 𝐸 4𝜋𝑟2

dA



Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.

The charge enclosed by my 
Gaussian sphere is q, so

+q

Eර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

r

ර𝐸 ⋅ 𝑑 Ԧ𝐴 = 𝐸 4𝜋𝑟2 =
𝑞

𝜀𝑜

𝐸 4𝜋𝑟2 =
𝑞

𝜀𝑜

𝐸 =
𝑞

4𝜋𝜀𝑜𝑟
2

The direction of      is shown in the diagram.
Or you can say    is “radially out.”

𝐸

dA

𝐸



Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.

“But wait,” you say, “the 
parameter r does not appear in 
the problem statement, so it 
can’t appear in the answer.*”

+q

E

r

𝐸 =
𝑞

4𝜋𝜀𝑜𝑟
2
, away from +q

Wrong! The problem statement 
implies you should calculate      
as a function of r.

𝐸

*r does not appear to be a “system parameter.”



Example: use Gauss’ Law to calculate the electric field from an 
isolated point charge q.

“But wait,” you say, “we 
already know the equation for 
the electric field of a point 
charge. We haven’t learned 
anything new. It was a lot of 
work for nothing.”

+q

E

r

𝐸 =
𝑞

4𝜋𝜀𝑜𝑟
2
, away from +q

Wrong! You have learned how to apply Gauss’ Law. You might 
find this technique useful on a future test.

You could use a cube instead of a sphere for your Gaussian surface. The flux would be the same, so the electric
field would be the same.  But I don’t recommend that because the flux would be more difficult to calculate.



Strategy for Solving Gauss’ Law Problems

• Evaluate the surface integral (electric flux).

• Determine the charge inside the Gaussian surface.

• Solve for E.

• Select a Gaussian surface with symmetry that “matches” the 
charge distribution.

Use symmetry to determine the direction of     on the Gaussian surface.

You want     to be constant in magnitude and everywhere perpendicular 
to the surface, so that                     …

… or else everywhere parallel to the surface so that               .

𝐸

𝐸 ⋅ 𝑑 Ԧ𝐴 = 𝐸 𝑑𝐴

𝐸 ⋅ 𝑑 Ԧ𝐴 = 0

𝐸

Don’t forget that to completely specify a vector, your answer must contain 
information about its direction.



Example: calculate the electric field for 0<r< for an insulating 
spherical shell of inner radius a, outer radius b, and with a 
uniform volume charge density  spread throughout shell.

Note: if a conductor is in electrostatic equilibrium, any excess 
charge must lie on its surface (we will study this in more detail 
next time), so for the charge to be uniformly distributed 
throughout the volume, the object must be an insulator.



Example: calculate the electric field for 0<r< for an insulating 
spherical shell of inner radius a, outer radius b, and with a 
uniform volume charge density  spread throughout shell.

Before I can choose a 
Gaussian surface, I need to 
have a clear picture of the 
charge distribution.

Draw a spherical shell. Drawn is a 
2D slice through the center of the 
3D sphere.

A uniform volume charge density  is distributed throughout 
the shell. Let’s indicate this in the diagram.



The inner radius is ‘a’ and the outer radius is ‘b’.

b

a



Example: calculate the electric field for 0<r< for an insulating 
spherical shell of inner radius a, outer radius b, and with a 
uniform volume charge density  spread throughout shell.

I see three different 
regions: 0<r<a, a<r<b, and 
r>b. We should do each 
region separately.

What is the symmetry of the charge 
distribution?



b

a



Example (First Part): calculate the electric field for 0<r<a.

For 0<r<a, draw a Gaussian 
sphere of radius r<a, 
centered on the center of 
the shell. 

How much charge is enclosed by the sphere?



r

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

ර𝐸 ⋅ 𝑑 Ԧ𝐴 = 0

Unless     is some kind of pathological function, the only way 
for the integral to be zero is if 

𝐸

𝐸 = 0.

How much charge is enclosed by the sphere?  qenclosed=0.



Example (First Part): calculate the electric field for 0<r<a.

So for 0<r<a, 

r

Answer: Pick any charge on the shell. Assume a positive charge 
so you can draw an electric field line. Draw an electric field line 
from the charge out to infinity. The line never goes into the 
sphere (and if it did, it would go out anyway, because there is no 
- charge to “land on”). It contributes nothing to the flux.

𝐸 = 0.

“But wait,” you say, “there is a 
whole bunch of charge nearby. 
How can the electric field 
possibly be zero anywhere?”



Example (Second Part): calculate the electric field for a<r<b.

For a<r<b, draw a Gaussian 
sphere of radius a<r<b, 
centered at the center of 
the shell. 

Let’s assume  is positive, so that I 
have a direction to draw the electric 
field. A negative  just reverses the 
direction of the electric field.

The charge distribution is spherically symmetric (you see the 
“same” thing at any given r). Therefore you must see the 
same electric field at any given r, so the electric field is also 
spherically symmetric.



A spherically symmetric electric field is everywhere radial and 
has the same magnitude at any given r. For >0,     is “out.”𝐸

>0

r

a

b

E



Example (Second Part): calculate the electric field for a<r<b.

>0

r

a

b

E

dA

Everywhere on the sphere,                 
are parallel and E is constant so 

𝐸 and 𝑑 Ԧ𝐴

ර𝐸 ⋅ 𝑑 Ԧ𝐴 = 𝐸 𝐴𝑠𝑝ℎ𝑒𝑟𝑒 = 𝐸 4𝜋𝑟2

ර𝐸 ⋅ 𝑑 Ԧ𝐴 = ර𝐸 𝑑𝐴 = 𝐸 ර𝑑𝐴

That was easy so far, wasn’t it.

The hard part is finding qenclosed. We have to determine the 
charge inside the dashed-line Gaussian sphere.

The volume charge density is . The amount of charge in a 
volume V is simply V.



Example (Second Part): calculate the electric field for a<r<b.

>0

r

a

b

The charge enclosed by the dashed-
line Gaussian sphere is the total 
charge on a spherical shell of inner 
radius ‘a’ and outer radius ‘r’. 

𝑞enclosed = 𝑞shell of inner radius a and outer radius r

𝑞enclosed = 𝜌𝑉shell of inner radius a and outer radius r

𝑞enclosed = 𝜌 𝑉sphere of radius r − 𝑉sphere of radius a

𝑞enclosed = 𝜌
4

3
𝜋𝑟3 −

4

3
𝜋𝑎3 =

4

3
𝜋𝜌 𝑟3 − 𝑎3

Notice it doesn’t matter how 
large b is. It’s only the 
charge inside r that counts. 



Example (Second Part): calculate the electric field for a<r<b.

>0

r

a

b

Finishing…

𝐸 4𝜋𝑟2 =

4
3
𝜋𝜌 𝑟3 − 𝑎3

𝜀0

𝐸 =
𝜌

3

𝑟3 − 𝑎3

𝜀0𝑟
2

Above is the magnitude E, the direction is radially out.

We still need to calculate the electric field for r>b.



Example (Third Part): calculate the electric field for r>b.

>0

r

a

b

E

dA

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

𝐸 4𝜋𝑟2

=
𝜌𝑉shell of inner radius a and outer radius b

𝜀𝑜

𝐸 =
𝜌
4
3
𝜋 𝑏3 − 𝑎3

4𝜋𝑟2 𝜀𝑜

𝐸 =
𝜌 𝑏3 − 𝑎3

3𝜀𝑜𝑟
2 , radially out

This is just Q/40r
2, 

like a point charge. 



Summary: electric field for 0<r< for an insulating spherical 
shell of inner radius a, outer radius b, and with a uniform 
volume charge density  spread throughout shell.

𝐸 = 00<r<a

a<r<b 𝐸 =
𝜌 𝑟3 − 𝑎3

3𝜀0𝑟
2 , radially out

b>r 𝐸 =
𝜌 𝑏3 − 𝑎3

3𝜀𝑜𝑟
2 , radially out

Something to note: is continuous at both r=a and r=b.
This is true because in this problem we are dealing with
continuous volumetric charge distributions. This would not be
the case in presence of a surface charge distribution.

𝐸



Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium.



Gauss’ Law

Last time we learned that

Gauss’ Law
Always true, not always 

easy to apply.

and used Gauss’ Law to calculate the electric field for 
spherically-symmetric charge distributions

Let’s calculate electric fields for charge distributions that are 
non-spherical but exhibit a high degree of symmetry, and then 
consider what Gauss’ Law has to say about conductors in 
electrostatic equilibrium.

ΦE = රE ⋅ dA =
qenclosed

ε0



Example: calculate the electric field outside a long cylinder of 
finite radius R with a uniform volume charge density  spread 
throughout the volume of the cylinder.

To be worked at the blackboard in lecture.

𝐸 =
𝜌 𝑅2

2𝜀0𝑟

“Long” cylinder with “finite” radius means neglect end effects; 
i.e., treat cylinder as if it were infinitely long.



Example: calculate the electric field outside a long cylinder of 
finite radius R with a uniform volume charge density  spread 
throughout the volume of the cylinder.

I don’t even want to think of trying to use dE=kdq/r2 for this.

Cylinder is looooooong. I’m just showing a bit of it here.



Example: calculate the electric field outside a long cylinder of 
finite radius R with a uniform volume charge density  spread 
throughout the volume of the cylinder.

>0

E

R



Looking down the axis of the cylinder.

E

dA

r



>0

E

dA

Rr

L



Inside the charged cylinder, by symmetry     must be radial.E



dA

E

E dA 0  because E  dA = ⊥

dA

E

E dA 0  because E  dA = ⊥



E
dA

r

L

𝐸 ⋅ 𝑑 Ԧ𝐴 = 𝐸 dA because E ∥ dA

Also must be constant at any given r.E E=



Φ𝐸 = ර𝐸 ⋅ 𝑑 Ԧ𝐴 = න

𝑡𝑢𝑏𝑒

𝐸 ⋅ 𝑑 Ԧ𝐴 = න

𝑡𝑢𝑏𝑒

𝐸 𝑑𝐴 = 𝐸 න

𝑡𝑢𝑏𝑒

𝑑𝐴

( )( )E circumference of Gaussian cylinder length of GC=

E
dA

r

L

( )( )E 2 r L= 



>0
E

dA

Rr

L

ර𝐸 ⋅ 𝑑 Ԧ𝐴 = 𝐸 2𝜋𝑟 𝐿 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

𝐸 2𝜋𝑟 𝐿 =
𝜌𝑉𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜
=
𝜌 𝐴𝑏𝑎𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝜀𝑜
=
𝜌 𝜋𝑅2 𝐿

𝜀𝑜



>0
E

dA

Rr

L

𝐸 2𝜋𝑟 𝐿 =
𝜌 𝜋𝑅2 𝐿

𝜀𝑜

𝐸 =
𝜌𝜋𝑅2

2𝜋𝜀𝑜𝑟
=

𝜌𝑅2

2𝜀𝑜𝑟



>0
E

dA

Rr

L

𝐸 =
𝜌𝑅2

2𝜀𝑜𝑟
, radially out

𝐸 =
𝜌 𝑅2

2𝜀𝑜𝑟

For positive :

In general: Why does this vary as 
1/r instead of 1/r2?



𝐸 =
𝜌 𝑅2

2𝜀𝑜𝑟
=

𝜆
𝜋𝑅2 𝑅2

2𝜀𝑜𝑟
=

𝜆

2𝜋𝜀𝑜𝑟

For a solid cylinder…

𝜌 =
𝑄

𝜋𝑅2𝐿
Charge per volume is

Charge per length is 𝜆 =
𝑄

𝐿

So 𝜌 =
𝑄

𝜋𝑅2𝐿
=

1

𝜋𝑅2

𝑄

𝐿
=

𝜆

𝜋𝑅2

And



Example: use Gauss’ Law to calculate the electric field due to a 
long line of charge, with linear charge density .

This is easy using Gauss’ Law (remember what a pain it was in 
the previous chapter). 

E =
λ

2πε0r



Example: use Gauss’ Law to calculate the electric field due to a 
long line of charge, with linear charge density .

Line is looooooong.

>0E



Looking down the line.

E

dA

r



dA

r

L

E

>0



dA

r

L

E

රE ⋅ dA = E 2π r L =
qenclosed

ε0
=
λL

ε0

E =
λ

2πε0r

>0



For positive :

In general:

E =
λ

2πε0r
, radially out

E =
λ

2πε0r
Same as outside a 

solid cylinder!

E

>0



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density .

𝐸𝑠ℎ𝑒𝑒𝑡 =
𝜎

2𝜀0
.

This is easy using Gauss’ Law (remember what a pain it was in 
the previous chapter). 



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density .

>0

Two views of sheet of charge; side view looking edge on, and 
top view looking down. Sheet extends infinitely far in two 
dimensions.



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density .

>0
E

E 

For this electric field symmetry, we usually 
use a “pillbox” (cylinder shape) for our 
Gaussian surface. In the views above, it will 
look like a rectangle and a circle. You could 
also use a rectangular box.



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density .

>0
E

E 

r

H

r

රE ⋅ dA = 2 E π r2 =
qenclosed

ε0
qenclosed = σ π r2



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density .

>0
E

E 

r

H

r

2 E π r2 =
σ π r2

ε0

E =
σ

2ε0



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density .

>0
E

E 

r

H

r

E =
σ

2ε0

For positive :

In general:
That sure was easier than the 

derivation starting from the expression 
of the electric field produced by an 

infinitesimal charge dq

E =
σ

2ε0
, away from the sheet



Gauss’ Law works well for three kinds of symmetry:

Charge Symmetry Gaussian Surface
spherical concentric sphere
cylindrical coaxial cylinder
planar pillbox



Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium.



Conductors in Electrostatic Equilibrium

Electrostatic equilibrium means there is no net motion of tne 
charges inside the conductor.

The electric field inside the conductor must be zero.

Any excess charge must reside on the outside surface of the 
conductor.

If this were not the case, charges would accelerate.

Apply Gauss’ law to a Gaussian surface just inside the 
conductor surface. The electric field is zero, so the net charge 
inside the Gaussian surface is zero. Any excess charge must go 
outside the Gaussian surface, and on the conductor surface.



The electric field just outside a charged conductor must be 
perpendicular to the conductor’s surface.

Otherwise, the component of the 
electric field parallel to the surface 
would cause charges to accelerate.

The magnitude of the electric field just outside a charged 
conductor is equal to /0, where  is the magnitude of the 
local surface charge density.

A simple application Gauss’ Law. Different from infinite sheet of 
charge because E is zero inside the conductor.



If there is an empty nonconducting cavity inside a conductor, 
Gauss’ Law tells us there is no net charge on the interior 
surface of the conductor.

Construct a Gaussian surface that includes the inner surface of the conductor. 

conductor

රE ⋅ dA = ර0 ⋅ dA = 0

⇒ qenclosed = 0

Construct a Gaussian surface that includes the inner surface of the conductor. The 
electric field at the Gaussian surface is zero, so no electric flux passes through the 
Gaussian surface. Gauss’ Law says the charge inside must be zero. Any excess 
charge must lie on the outer surface! The conductor does not have to be 
symmetric, as shown.



If there is a nonconducting cavity inside a conductor, with a 
charge inside the cavity, Gauss’ Law tells us there is an equal 
and opposite induced charge on the interior surface of the 
conductor.

Construct a Gaussian surface that includes the inner surface of the conductor. Construct a Gaussian surface that includes the inner surface of the conductor. The 
electric field at the Gaussian surface is zero, so no electric flux passes through the 
Gaussian surface. Gauss’ Law says the charge inside must be zero. There must be a 
–Q on the inner surface. If the net charge on the conductor is not –Q, any 
additional charge must lie on the outer surface! The conductor does not have to 
be symmetric.

conductor

රE ⋅ dA = ර0 ⋅ dA = 0

⇒ qenclosed = 0

QI=-Q

+Q

Construct a Gaussian surface that includes the inner surface of the conductor. The 
electric field at the Gaussian surface is zero, so no electric flux passes through the 
Gaussian surface. Gauss’ Law says the charge inside must be zero.

qenclosed = 0 = +Q + QI

⇒ QI = −Q



Example: a conducting spherical shell of inner radius a and 
outer radius b with a net charge -Q is centered on point charge 
+2Q.  Use Gauss’s law to show that there is a charge of 
-2Q on the inner surface of the shell, and a charge of +Q on 
the outer surface of the shell.

a

b

-Q

+2Q

රE ⋅ dA =
qenclosed

ε0

E=0 inside the conductor!

0 =
qenclosed

ε0
=
QI + 2Q

ε0
⇒ QI = −2Q

QI

r

Let r be infinitesimally 
greater than a.



Example: a conducting spherical shell of inner radius a and 
outer radius b with a net charge -Q is centered on point charge 
+2Q.  Use Gauss’s law to show that there is a charge of 
-2Q on the inner surface of the shell, and a charge of +Q on 
the outer surface of the shell.

a

b

-Q

+2Q

From Gauss’ Law we know 
that excess* charge on a 
conductor lies on surfaces.

QI = −2Q

QI

r

Electric charge is conserved:

Qshell = −Q = QI + QO

QO

= −2Q + QO

−Q = −2Q + QO ⇒ QO = +Q

*excess=beyond that required for electrical neutrality



Example: an insulating sphere of radius a has a uniform charge 
density ρ and a total positive charge Q.  Calculate the electric 
field at a point inside the sphere.

a

Q

r

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜
=
𝜌𝑉𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

This object in this example is not a conductor. 

𝐸 4𝜋𝑟2 =
𝜌

4
3𝜋𝑟

3

𝜀𝑜



Example: an insulating spherical shell of inner radius a and 
outer radius b has a uniform charge density ρ.  Calculate the 
electric field at a point inside the sphere.

b

Q

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜
r

a

𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜌𝑉𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜌
4

3
𝜋𝑟3 −

4

3
𝜋𝑎3

Calculate the electric field at a point outside the sphere.

𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜌𝑉𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜌
4

3
𝜋𝑏3 −

4

3
𝜋𝑎3
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