Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged
particles on, and electric fields in, conductors in electrostatic equilibrium.




We have used electric field lines to visualize electric fields and
indicate their strength.

We are now going to count* the
number of electric field lines passing
through a surface and use this count
to determine the electric field.

.h\

i
v




The electric flux passing through a surface is the number of

electric field lines that pass through it.

— >
Because electric field lines are drawn A >
arbitrarily, we quantify electric flux —— - .~ E
like this: ®g=EA, _
...except that... g
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If the surface is tilted, fewer lines cut .
the surface. — .~ E

gzl

The green lines miss!

Later we'll learn about magnetic flux, which is
why I will use the subscript E on electric flux.




We define A to be a vector having a
magnitude equal to the area of the
surface, in a direction normal to the
surface.

The "amount of surface” perpendicular
to the electric field is Acos®o.

Therefore, the amount of surface area effectively “cut through”
by the electric field is Acos®o.

Acerective = ACOS O SO Dp = EAgsive = EA COSO.

CDEZE/T



If the electric field is not uniform, or the surface is not flat...

divide the surface into
infinitesimal surface
elements and add the
flux through each...

E (DE = Al/}mO Ei . A/Tl
dA =0 L

a surface integral,
therefore, a double integral j f

Remember, the direction of dA
is normal to the surface.




If the surface is closed (completely encloses a volume)...

I . >

— G\AdA >

The circle just reminds you
to integrate over a closed
surface.

...we count* lines going
out as positive and lines
going in as negative...

a surface integral, therefore, a
double integral #‘

For a closed surface, dA is normal
to the surface and always points
away from the inside.




Question: you gave me five different equations for electric flux.
Which one do I need to use?

Answer: use the simplest (easiest!) one that works.

b, = EA Flat surface,§|| K: E constant over surface. Easy!

®, = EAcos@ Flat surface, E not | ,_Af, E constant over surface.

- r¢ —> — —>
b =F-A Flat surface, E not || A, E constant over surface.
_> - - = -
d. = |E-d Surface not flat, E not uniform. Avoid, if possible.
E — This is the definition of electric flux, so it is on your equation sheet.
Y 1 Closed surface.
CDE R fE dA The circle on the integral just reminds you to integrate over a closed surface.

If the surface is closed, you may be able to “break it up” into
simple segments and st|II use ®d= E*A for each segment.




Electric Flux Example: Calculate the electric flux through a

cylinder with its axis parallel to the electric field direction.
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Electric Flux Example: Calculate the electric flux through a

cylinder with its axis parallel to the electric field direction.

Y VYV VYV VY ¢V VY

I see three parts to the cylinder:

The left end cap.




Electric Flux Example: Calculate the electric flux through a

cylinder with its axis parallel to the electric field direction.

Y VYV VYV VY ¢V VY

I see three parts to the cylinder:

The tube. > / m >




Electric Flux Example: Calculate the electric flux through a

cylinder with its axis parallel to the electric field direction.

Y VYV VYV VY ¢V VY

I see three parts to the cylinder:

y
The right end cap. >



Let’s separately calculate the contribution of each part to the
flux, then add to get the total flux.

bp = §F-di= [ E-dupet | B-dAupe+ | B ddrigne

left tube right
The left end cap. > e ——>
-0 N\
dA

____________________

/
The tube. >
\

¥
The right end cap. .




E m
The left end cap. > ree——>

Every dA on the left end cap is antiparallel to E. The angle
between the two vectors is 180°

J E . dA)left = f E dAleft cos180° = f —FE dAleft
left left left

E is uniform, so j —E dAjepe = —E f dAiert = —EAest
left left




/
The tube. >
\

Let’s look down the axis of the tube.

E is pointing at you.

Every dA is radial (perpendicular
to the tube surface).

——————————————————————

The angle between E and dA is 90°. ——




——————————————————————

The angle between E and dA is 90°. ——

j E-dAp. = j E dA.ype cOS90° = f 0 dAsype = 0

tube tube tube

The tube contributes nothing to the flux!



¥
The right end cap. >

Every dA on the right end cap is parallel to E. The angle
between the two vectors is 0°

f E - dAright — j E dAright cos0° = f E dAright
right right right

—

E is uniform, so f E dAright =E f dAright = EAright
right right




The net (total) flux

CDE — f E - dAleft + f E - dAtube + f E - dAright

left tube right
— _ Assuming a right
Pp=—EAiese + 0+ EdArigne = circular cylinder.*

The flux is zero!
Every electric field line that goes in also goes out.

*We will see in a bit that we don’t have to make this assumption.



Y Y Y Y Y Y
m

The net electric flux through a closed cylindrical surface is zero.
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If there were a + charge inside the cylinder, there would be
more lines going out than in.

If there were a - charge inside the cylinder, there would be
more lines going in than out...

...which leads us to...



Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged
particles on, and electric fields in, conductors in electrostatic equilibrium.




Mathematically*, we express the idea of the last two slides as

by = f 5 - g = e Gauss’ Law

E 0 Always true, not always useful.

We will find that Gauss’ law gives a simple way to calculate

electric fields for charge distributions that exhibit a high degree
of symmetry...

...and we will save more complex charge distributions for
advanced classes.



Example: use Gauss’ Law to calculate the electric field from an

isolated point charge q.

To be worked at the blackboard in lecture...



Example: use Gauss’ Law to calculate the electric field from an

isolated point charge q.

Let's assume the point charge ¢ E
IS +.

The electric field everywhere
points away from the charge.

If you go any distance r away
from +q, the electric field is
always directed “out” and has
the same magnitude as the \
electric field at any other .

What is the symmetry of the electric field?
Spherical !



Example: use Gauss’ Law to calculate the electric field from an

isolated point charge q.

%Ez . d/f _ Uenclosed A E

€o

To apply Gauss’' Law, we

really want to pick a surface
for which we can easily < >
evaluate E - dA.

That means we want E to
everywhere be either parallel or
perpendicular to the surface. v

Let’s see, for what kind of surface would this spherically-
symmetric electric field always be parallel or perpendicular?

“a sphere”



Example: use Gauss’ Law to calculate the electric field from an
isolated point charge q.

So let’s draw a Gaussian
sphere of radius r, enclosing
and centered on +q.
“Centered on” makes it easy
to evaluate E - dA.

Everywhere on the sphere, E and dA are parallel and E is
constant so

fﬁ dA = fE dA =E fdA = E Aspnere = E 4mr?



Example: use Gauss’ Law to calculate the electric field from an

isolated point charge q.

fﬁ _ dfi) :E Qenclosed 15

The charge enclosed by my
Gaussian sphere is g, so

jﬂE-dﬁ=E4nr2=1
80

E 4mr? = 4
80

F—_1 The direction of E is shown in the diagram.
Are,r? Or you can say E is “radially out.”




Example: use Gauss’ Law to calculate the electric field from an

isolated point charge q.

E away from +q

Aire,r?’

“But wait,” you say, “the
parameter r does not appear in
the problem statement, so it
can’t appear in the answer.*”

Wrong! The problem statement
implies you should calculate E
as a function of r.

*r does not appear to be a “system parameter.”



Example: use Gauss’ Law to calculate the electric field from an

isolated point charge g.

E away from +q

Are,r?’

“But wait,” you say, “we
already know the equation for
the electric field of a point
charge. We haven't learned
anything new. It was a lot of
work for nothing.”

Wrong! You have learned how to apply Gauss’ Law. You might
find this technique useful on a future test.

You could use a cube instead of a sphere for your Gaussian surface. The flux would be the same, so the electric
field would be the same. But I don't recommend that because the flux would be more difficult to calculate.




Strategy for Solving Gauss’ Law Problems

e Select a Gaussian surface with symmetry that “matches” the
charge distribution.

Use symmetry to determine the direction of £ on the Gaussian surface.

You want E to be constant in magnitude and everywhere perpendicular
to the surface, so that E - d4 = E dA...

... Or else everywhere parallel to the surface so that E-dA=.0
e Evaluate the surface integral (electric flux).
e Determine the charge inside the Gaussian surface.

e Solve for E.

Don't forget that to completely specify a vector, your answer must contain
information about its direction.



Example: calculate the electric field for 0<r<oo for an insulating

spherical shell of inner radius a, outer radius b, and with a
uniform volume charge density p spread throughout shell.

Note: if @ conductor is in electrostatic equilibrium, any excess
charge must lie on its surface (we will study this in more detail
next time), so for the charge to be uniformly distributed
throughout the volume, the object must be an insulator.



Example: calculate the electric field for 0<r<oo for an insulating

spherical shell of inner radius a, outer radius b, and with a
uniform volume charge density p spread throughout shell.

Before I can choose a
Gaussian surface, I need to
have a clear picture of the
charge distribution.

Draw a spherical shell. Drawn is a
2D slice through the center of the
3D sphere.

A uniform volume charge density p is distributed throughout
the shell. Let’s indicate this in the diagram.

The inner radius is ‘a’ and the outer radius is ‘b’.



Example: calculate the electric field for 0<r<oo for an insulating

spherical shell of inner radius a, outer radius b, and with a
uniform volume charge density p spread throughout shell.

I see three different
regions: 0<r<a, a<r<b, and
r>b. We should do each
region separately.

What is the symmetry of the charge
distribution?



Example (First Part): calculate the electric field for O<r<a.

For O<r<a, draw a Gaussian
sphere of radius r<a,
centered on the center of
the shell.

fﬁ . d/T _ Aenclosed
€o

How much charge is enclosed by the sphere? g.nqoseq=0-
§E-dd =0

Unless E is some kind of pathological function, the only way
for the integral to be zero is if E = 0.



Example (First Part): calculate the electric field for O<r<a.

So for O<r<a, E = 0. P

“But wait,” you say, “there is a
whole bunch of charge nearby.
How can the electric field
possibly be zero anywhere?”

Answer: Pick any charge on the shell. Assume a positive charge
so you can draw an electric field line. Draw an electric field line
from the charge out to infinity. The line never goes into the
sphere (and if it did, it would go out anyway, because there is no
- charge to “land on”). It contributes nothing to the flux.



Example (Second Part): calculate the electric field for a<r<b.

For a<r<b, draw a Gaussian E
sphere of radius a<r<b,
centered at the center of

the shell.
Let's assume p is positive, so that I @

have a direction to draw the electric
field. A negative p just reverses the
direction of the electric field.

The charge distribution is spherically symmetric (you see the
“same” thing at any given r). Therefore you must see the
same electric field at any given r, so the electric field is also
spherically symmetric.

A spherically symmetric electric field is everywhere radial and
has the same magnitude at any given r. For p>0, E' is “out.”



Example (Second Part): calculate the electric field for a<r<b.

Everywhere on the sphere, E and d4
are parallel and E is constant so

jﬂﬁ-d,i:ﬁﬂEdA:EfdA

fﬁ - dA = E Agphere = E 4mr?

That was easy so far, wasn't it.
The hard part is finding g oceq- We have to determine the
charge inside the dashed-line Gaussian sphere.

The volume charge density is p. The amount of charge in a
volume V is simply pV.



Example (Second Part): calculate the electric field for a<r<b.

The charge enclosed by the dashed- p>0
line Gaussian sphere is the total
charge on a spherical shell of inner
radius ‘a’ and outer radius 'r’.

Qenclosed = 49shell of inner radius a and outer radius r

denclosed = PYshell of inner radius a and outer radius r

denclosed = P (Vsphere of radius r ~ Vsphere of radius a)

_ 4 3 4 3\ _ 4 3 3 Notice it doesn’t matter how
Qenclosed = P\3 " —3ma" | = gnp(r —-a’) large b is. It's only the

charge inside r that counts.



Example (Second Part): calculate the electric field for a<r<b.

Finishing... p>0

&5

§7Tp(r3 —a3)
€0

E 4mtr? =

p (3 —a’)
3

E =
EoT?

Above is the magnitude E, the direction is radially out.

We still need to calculate the electric field for r>b.



Example (Third Part): calculate the electric field for r>b.

%E ‘ d/T _ Qenclosed ‘ E

€o

— -
- ~

E 4mr?

4_1 ,_,
_ PVshell of inner radlus a and outer radius b

p%n(b3 —a®)

E =
2 This is just Q/4ne,r?,
amr €o like a point chargg.
3 3
- pb®—a’)
E = , radially out



Summary: electric field for 0<r< for an insulating spherical
shell of inner radius a, outer radius b, and with a uniform

volume charge density p spread throughout shell.

L p(ri-a’®)
L p*—-a®)
b>r E = 36,2 , radially out

Something to note: E is continuous at both r=a and r=b.
This is true because in this problem we are dealing with
continuous volumetric charge distributions. This would not be
the case in presence of a surface charge distribution.




Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Conductors in electrostatic equilibrium.
You must be able to use Gauss’ law to draw conclusions about the behavior of charged
particles on, and electric fields in, conductors in electrostatic equilibrium.




Last time we learned that

o, = fﬁ . 4& = denclosed Gauss’ Law

o) Always true, not always
0 easy to apply.

and used Gauss’ Law to calculate the electric field for
spherically-symmetric charge distributions

Let’s calculate electric fields for charge distributions that are
non-spherical but exhibit a high degree of symmetry, and then
consider what Gauss’ Law has to say about conductors in
electrostatic equilibrium.



Example: calculate the electric field outside a long cylinder of

finite radius R with a uniform volume charge density p spread
throughout the volume of the cylinder.

To be worked at the blackboard in lecture.

“Long” cylinder with “finite” radius means neglect end effects;
l.e., treat cylinder as if it were infinitely long.




Example: calculate the electric field outside a long cylinder of

finite radius R with a uniform volume charge density p spread
throughout the volume of the cylinder.

Cylinder is looooooong. I'm just showing a bit of it here.

I don’t even want to think of trying to use dE=k|dq|/r? for this.



Example: calculate the electric field outside a long cylinder of
finite radius R with a uniform volume charge density p spread
throughout the volume of the cylinder.




dA

Looking down the axis of the cylinder.






Inside the charged cylinder, by symmetry E must be radial.



E-dA=0 because E L dA

.- . . dA
E.-dA =0 because E 1 dA




E-dA = E dA becauseE || dA
Also ‘E‘ = E must be constant at any given r.



¢E=f1§.d,cf= jE.d/T= jEdA=E jdA

=E(
E(

tube tube tube
circumference of Gaussian cylinder)(length of GC)

2nr)(L)



%E . d/T — E2mr L = Qenclosed

€0

PVenciosed _ p(Abase)(length) _ p(TL‘RZ)(L)
€o €o €o

E 2nr L =




_ pmR*  pR?

E

2TLE, T 2E,T



For positive p:  E =

— Why does this vary as
2807” 1/r instead of 1/r2?

In general: E =



For a solid cylinder...

har r volume | =
Charge per volumeis p ——

Charge per lengthis 1 = %

So — Q — 1 Q_L
P = TR2L " 7wRZL  nR2
A2
LS RE A

2E,T 2E,T 2TE,T



Example: use Gauss’ Law to calculate the electric field due to a

long line of charge, with linear charge density A.

This is easy using Gauss’ Law (remember what a pain it was in
the previous chapter).

Al
2TEYY




Example: use Gauss’ Law to calculate the electric field due to a

long line of charge, with linear charge density A.

Line is looooooong.

E >0




dA

Looking down the line.



A
E
A A A
~-2>0
-
Ll r
A/ A 4 \ 4




f

E.dA = E(2nr) (L) = ~enclose

E

A
 2TE,r

~-A>0

\4

d_}‘L

€0

€0




> [T]

4 4 4 4 4 4 4 4
~A>0
v v v v v v v v v
For positive .: E = , radially out
2TET
I | E = Ml Same as outside a
n general. 21'[501' solid cylinder!



Example: use Gauss’ Law to calculate the electric field due to

an infinite sheet of charge, with surface charge density .

This is easy using Gauss’ Law (remember what a pain it was in
the previous chapter).

Esheet = e
0



Example: use Gauss’ Law to calculate the electric field due to

an infinite sheet of charge, with surface charge density .

/G>0

Two views of sheet of charge; side view looking edge on, and
top view looking down. Sheet extends infinitely far in two
dimensions.



Example: use Gauss’ Law to calculate the electric field due to

an infinite sheet of charge, with surface charge density .

>0

For this electric field symmetry, we usually
use a “pillbox” (cylinder shape) for our
Gaussian surface. In the views above, it will
look like a rectangle and a circle. You could
also use a rectangular box.




Example: use Gauss’ Law to calculate the electric field due to

an infinite sheet of charge, with surface charge density .

>0

fﬁ .dA =2[E(rr?)] = qenilosed denclosed = o(mr?)
0



Example: use Gauss’ Law to calculate the electric field due to
an infinite sheet of charge, with surface charge density .




Example: use Gauss’ Law to calculate the electric field due to
an infinite sheet of charge, with surface charge density .

For positive o: E= e , away from the sheet
€0
|O‘ | That sure was easier than the
In general: E=— derivation starting from the expression
28O of the electric field produced by an

infinitesimal charge dq



Gauss’ Law works well for three kinds of symmetry:

Charge Symmetry

spherical
cylindrical
planar

Gaussian Surface

concentric sphere
coaxial cylinder
pillbox

Choose Gaussian
surface

jaussian

Coaxial cylinder

[
E
( S )
Gaussian pillbox g
\ S | (/.-\_“
4 T+ S S TR N
t + + “" + :\
} + + +

Gaussian pillbox

\
- \
// ’. \\ "\
! A\ |
\ ) " Gaussian
\ / '
>34 & /
a /

sphere

Concentric sphere




Today’s agenda:

Electric flux.
You must be able to calculate the electric flux through a surface.

Gauss’ Law.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Gauss’ Law, other examples.
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry
charge distribution.

Conductors in electrostatic equilibrium.

You must be able to use Gauss’ law to draw conclusions about the behavior of charged
particles on, and electric fields in, conductors in electrostatic equilibrium.




Conductors in Electrostatic Equilibrium

Electrostatic equilibrium means there is no net motion of tne
charges inside the conductor.

The electric field inside the conductor must be zero.

If this were not the case, charges would accelerate.

Any excess charge must reside on the outside surface of the
conductor.

Apply Gauss’ law to a Gaussian surface just inside the
conductor surface. The electric field is zero, so the net charge
inside the Gaussian surface is zero. Any excess charge must go
outside the Gaussian surface, and on the conductor surface.




The electric field just outside a charged conductor must be
perpendicular to the conductor’s surface.

Otherwise, the component of the
electric field parallel to the surface
would cause charges to accelerate.

The magnitude of the electric field just outside a charged
conductor is equal to |o|/gy, Where || is the magnitude of the
local surface charge density.

A simple application Gauss’ Law. Different from infinite sheet of
charge because E is zero inside the conductor.



If there is an empty nonconducting cavity inside a conductor,
Gauss’ Law tells us there is no net charge on the interior

surface of the conductor.

fﬁ-dK=7§0-dA=o

= denclosed = 9

Construct a Gaussian surface that includes the inner surface of the conductor. The
electric field at the Gaussian surface is zero, so no electric flux passes through the
Gaussian surface. Gauss’ Law says the charge inside must be zero. Any excess
charge must lie on the outer surface! The conductor does not have to be
symmetric, as shown.



If there is @ nonconducting cavity inside a conductor, with a
charge inside the cavity, Gauss’ Law tells us there is an equal
and opposite induced charge on the interior surface of the

conductor. /-

jﬂﬁ-dzzjgo-dAzo

= Jdenclosed = Y

denclosed = 0 = +Q + Q
= Qr=-Q

Construct a Gaussian surface that includes the inner surface of the conductor. The
electric field at the Gaussian surface is zero, so no electric flux passes through the
Gaussian surface. Gauss’ Law says the charge inside must be zero. There must be a
—Q on the inner surface. If the net charge on the conductor is not —Q, any
additional charge must lie on the outer surface! The conductor does not have to
be symmetric.



Example: a conducting spherical shell of inner radius a and
outer radius b with a net charge -Q is centered on point charge

+2Q. Use Gauss’s law to show that there is a charge of
-2Q on the inner surface of the shell, and a charge of +Q on
the outer surface of the shell.

fﬁ . dA = Jenclosed
€0

E=0 inside the conductor!

Let r be infinitesimally
greater than a.

0 — 9enclosed _ Qr +2Q - Q,; = —2Q
€0 €0



Example: a conducting spherical shell of inner radius a and
outer radius b with a net charge -Q is centered on point charge

+2Q. Use Gauss’s law to show that there is a charge of
-2Q on the inner surface of the shell, and a charge of +Q on
the outer surface of the shell.

Qr = —2Q

From Gauss’ Law we know
that excess™ charge on a
conductor lies on surfaces.

Qi Electric charge is conserved:
Qshell = —Q=Q1+ Qo= -2Q + Qg

—Q=-2Q0+Qo=>Qo=+Q

Qo

*excess=beyond that required for electrical neutrality



Example: an insulating sphere of radius a has a uniform charge

density p and a total positive charge Q. Calculate the electric
field at a point inside the sphere.

= re Qenclosed P Venclosed
§5 - ai = deniosea _
€o €o

%nr3)

€o

E(4nr?) = " (

Q

This object in this example is not a conductor.



Example: an insulating spherical shell of inner radius a and

outer radius b has a uniform charge density p. Calculate the
electric field at a point inside the sphere.

fﬁ . d/i) _ Qenclosed
€o

4 3 4 3
Genclosed = PVenclosed = P §7T — §7Ta

Calculate the electric field at a point outside the sphere.

3

4 4 3
Genciosed = PVenclosed = P §7Tb — §T[Cl
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