
Today’s agenda:

Capacitors and Capacitance.
You must be able to apply the equation C=Q/V.

Capacitors: parallel plate, cylindrical, spherical.
You must be able to calculate the capacitance of capacitors having these geometries, and 
you must be able to use the equation C=Q/V to calculate parameters of capacitors.

Circuits containing capacitors in series and parallel.
You must understand the differences between, and be able to calculate the “equivalent 
capacitance” of, capacitors connected in series and parallel.

Energy Storage in Capacitors.
You must be able to calculate the energy stored in a capacitor, and apply the energy 
storage equations to situations where capacitor configurations are altered.

Dielectrics.
You must understand why dielectrics are used, and be able include dielectric constants in 
capacitor calculations.



Capacitors: the basics

What is a capacitor?

• device for storing charge
• simplest example: two parallel 

conducting plates separated by air

V0 V1

E

d

A

assortment of 
capacitors 



• when capacitor is connected to battery, charges flow onto 
the plates

Capacitor plates build 
up charges +Q and -Q

battery voltage V is actually potential difference 
between the terminals

symbol for capacitor (think parallel plates) 

symbol for battery, or external potential

+ -

-

-V

-+

Capacitors in circuits

conducting wires

V

• when battery is disconnected, charge remains on plates 



unit of C: farad (F) 
1 F is a large unit, most capacitors have values of C 
ranging from picofarads to microfarads (pF to F).

micro 10-6,   nano 10-9,   pico 10-12    (Know for exam!)

Q
C

V
=

V is really |V|, the potential 
difference across the capacitor

Capacitance

How much charge can a capacitor store?

Better question: How much charge can a capacitor store per 
voltage?

Capacitance:

capacitance C is a device property, it is always positive 
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Capacitance of parallel plate capacitor
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electric field between two parallel charged 
plates: 
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capacitance:

Q is magnitude of charge on either plate.
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Parallel plate capacitance depends “only” 
on geometry. 

This expression is approximate, and must 
be modified if the plates are small, or 
separated by a medium other than a 
vacuum.

0AC
d


=

Greek letter Kappa. (=1 for the vacuum).

 is NOT the same as k=9x109! 



• capacitors do not have to consist of parallel plates, other 
geometries are possible

• capacitor made of two coaxial cylinders:

L

Capacitance of coaxial cylinder
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Example application:

L



coaxial cables, capacitance per length is a 
critical part of the specifications.



Isolated Sphere Capacitance

isolated sphere can be thought of as concentric spheres with 
the outer sphere at an infinite distance and zero potential.

We already know the potential outside a conducting sphere:
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The potential at the surface of a charged sphere of radius R is
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so the capacitance at the surface of an isolated sphere is
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Capacitance of Concentric Spheres

If you have to calculate the capacitance of a concentric 
spherical capacitor of charge Q…

In between the spheres (Gauss’ Law)
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You need to do this derivation if  you have a 
problem on spherical capacitors! 
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Example: calculate the capacitance of a capacitor whose plates 
are 20 cm x 3 cm and are separated by a 1.0 mm air gap.

d = 0.001m

area = 
0.2m x 0.03m

If you keep everything in SI (mks) units, the result is “automatically” in SI units.

0AC
d


=

( )( )128.85 10 0.2 0.03
C F

0.001

− 
=

12C 53 10  F−= 

C 53 pF=



Example: what is the charge on each plate if the capacitor is 
connected to a 12 volt* battery?

0 V

+12 V

V= 12V

Q CV=

( )( )12Q 53 10 12 C−= 

10Q 6.4 10  C−= 

*Remember, it’s the potential difference that matters.



Example: what is the electric field between the plates?

0 V

+12 V

V= 12V

d = 0.001
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Capacitors connected in parallel:
C1

C2

C3

+ -

V

all three capacitors must have the same potential difference 
(voltage drop) Vab = V

a b

Vab

Circuits Containing Capacitors in Parallel

General concept:  When circuit components are connected in parallel, then 
the voltage drops across these components are all the same. 

C2

C3

+ -



C1

C2

C3

+ -

V

a Q1 = C1 V

&  Q2 = C2 V

&  Q3 = C3 V

Imagine replacing the parallel combination of 
capacitors by a single equivalent capacitor

“equivalent” means “stores the same total 
charge if the voltage is the same.”

Ceq

+ -

V

a

 Qtotal = Ceq V = Q1 + Q2 + Q3 

Q3

Q2

Q1

+ -

Q

Important!



Q1 = C1 V Q2 = C2 V Q3 = C3 V

Q1 + Q2 + Q3 = Ceq V 

Summarizing the equations on the last slide:

Using Q1 = C1V, etc., gives

C1V + C2V + C3V = Ceq V 

C1 + C2 + C3 = Ceq      (after dividing both sides by V)

Generalizing: Ceq = i Ci   (capacitances in parallel add up)
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C2

C3

+ -

V

a b



Capacitors connected in series:

C1 C2

+ -

V

C3

charge +Q flows from the battery to the left plate of C1  

+Q -Q

charge -Q flows from the battery to the right plate of C3  
(+Q and –Q: the same in magnitude but of opposite sign)

Circuits Containing Capacitors in Series



C1 C2

+ -

V

C3

+Q

A

-Q

B

Charges +Q and –Q attract equal and opposite charges to the 
other plates of their respective capacitors:

-Q +Q

These equal and opposite charges came from the originally 
neutral circuit regions A and B.

Because region A must be neutral, there must be a charge +Q 
on the left plate of C2.

Because region B must be neutral, there must be a charge -Q 
on the right plate of C2.

+Q -Q



C1 C2

+ -

V

C3

+Q

A

-Q

B

-Q +Q+Q -Q

Q = C1 V1 Q = C2 V2 Q = C3 V3

The charges on C1, C2, and C3 are the same, and are

a b

The voltage drops across C1, C2, and C3  add up
 Vab = V1 + V2 + V3.

V3V2V1

Vab

General concept:  When circuit components are connected in series, then the 
voltage drops across these components add up to the total voltage drop. 



Ceq

+ -

V

+Q -Q
V

replace the three capacitors by a single equivalent capacitor

“equivalent” means it has the same charge Q and the same 
voltage drop V as the three capacitors

Q = Ceq V



Collecting equations:

Q = C1 V1 Q = C2 V2 Q = C3 V3

Vab = V = V1 + V2 + V3.

Q = Ceq V

Substituting for V1, V2, and V3:
1 2 3

Q Q Q
V =  +  + 

C C C

Substituting for V:
eq 1 2 3

Q Q Q Q
 =  +  + 

C C C C

Dividing both sides by Q:
eq 1 2 3

1 1 1 1
 =  +  + 

C C C C

Important!



Generalizing:

OSE:     (capacitors in series)
ieq i

1 1
 =  

C C




Parallel Series

equivalent 

capacitance

charge Q’s add V’s add

voltage same V same Q

Summary

eq i

i

C C=
ieq i

1 1

C C
=

C1

C2

C3

C1 C2 C3



C3

C2

C1

Start by combining parallel combination of C2 and C3 

C23 = C2 + C3 = C + C = 2C

Example: determine the 
capacitance of a single capacitor 
that will have the same effect as 
the combination shown.  Use 
C1 = C2 = C3 = C.



C1= CC23 = 2C

Now I see a series combination.

eq 1 23

1 1 1
 =  +  

C C C

eq

1 1 1 2 1 3
 =  +  =  +  =  

C C 2C 2C 2C 2C

eq

2
C   =  C 

3



Example: for the capacitor circuit shown, C1 = 3F, C2 = 6F, C3 
= 2F, and C4 =4F. (a) Find the equivalent capacitance. (b) if 
V=12 V, find the potential difference across C4.

C3

C2C1

C4

V

Hint: each capacitor has associated with it a Q, C, 
and V. If you don’t know what to do next, near 
each capacitor, write down Q= , C= , and V= . 
Next to the = sign record the known value or a “?” 
if you don’t know the value. As soon as you know 
any two of Q, C, and V, you can determine the 
third. This technique often provides visual clues 
about what to do next. 



(a) Find Ceq. (b) if V=12 V, find V4.

C1=3F C2=6F

C4=4F

C3=2F

V=12 V

C1 and C3 are not in parallel. Make 
sure you understand why!

C2 and C4 are not in series. Make 
sure you understand why!

C1 and C2 are in series. Make sure you use the correct equation!

12 2

          
1

1 1 1 1 1 2 1 3 1
 =   +  =  +  =  + = =  

C C C 3 6 6 6 6 2

Don’t forget to invert: C12 = 2 F.



(a) Find Ceq. (b) if V=12 V, find V4.

C12=2F

C4=4F

C3=2F

V=12 V

C12 and C4 are not in series. Make 
sure you understand why!

C12 and C3 are in parallel. Make sure you use the correct 
equation!

123 3     12C  =  C  + C  = 2 + 2 =  4μF



(a) Find Ceq. (b) if V=12 V, find V4.

C4=4FC123=4F

V=12 V

C123 and C4 are in series. Make 
sure you understand why! 
Combined, they make give Ceq.

eq 24

         
123

1 1 1 1 1 2 1
 =   +  =  +  = =  

C C C 4 4 4 2

Don’t forget to invert: Ceq = 2 F.

Make sure you use the correct equation!



(a) Find Ceq. (b) if V=12 V, find V4.

Ceq=2F

V=12 V

Ceq = 2 F.

If you see a capacitor circuit on the test, read the problem first. 
Don’t go rushing off to calculate Ceq. Sometimes you are asked 
to do other things.



(a) Find Ceq. (b) if V=12 V, find V4.

Q1=?

C1=3F

V1=?

Q3=?

C3=2F

V3=?

V=12 V

Hint: each capacitor has associated with it a Q, C, 
and V. If you don’t know what to do next, near 
each capacitor, write down Q= , C= , and V= . 
Next to the = sign record the known value or a “?” 
if you don’t know the value. As soon as you know 
any two of Q, C, and V, you can determine the 
third. This technique often provides visual clues 
about what to do next. 

Q2=?

C2=6F

V2=?
Q4=?

C4=4F

V4=?

We know C4 and want to find V4. If we know Q4 we can 
calculate V4. Maybe that is a good way to proceed.



(a) Find Ceq. (b) if V=12 V, find V4.

C4 is in series with C123 and 
together they form Ceq.

Q123=?

C123=4F

V123=?

V=12 V

Q4=?

C4=4F

V4=?

Therefore Q4 = Q123 = Qeq.

( ) ( )eq eq 4    Q =  C V =  2  12 =  24μC=  Q

          4
4

4

QQ Q 24
C =     V =   V  =  =  =  6V

V C C 4
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Energy Storage in Capacitors

work to charge a capacitor:

• move extra charge element dq from one plate to the other
• external work required: dW = dq V. V

+ -

+q -q

+
dq

from q=CV
q

dW V dq dq
C

=  =

• start with zero charge, end up with Q:

Q
2 2

Q Q

0 0
0

q q Q
W dW dq  .

C 2C 2C
= = = = 

• capacitor already has charge q, voltage (difference) V



• work required to charge the capacitor = change in potential 
energy 

potential energy stored in capacitor:
2Q

U  .
2C

=

Using Q=CV, three equivalent expressions: 

2 2Q CV QV
U  .

2C 2 2
= = =

f i extU U W− =

iU 0=• when starting from empty capacitor: 

All three equations are valid; use the 
one most convenient for the problem 
at hand.

• four quantities for a capacitor: C, Q, V, and U 
• if you know any two of them, you can find the other two



Example: a camera flash unit stores energy in a 150 F 
capacitor at 200 V.  How much electric energy can be stored?

2CV
U

2
=

( )( )6 2150 10 200
U J

2

−
=

U 3 J=

If you keep everything in SI (mks) units, the result is “automatically” in SI units.



12 V, 100 Ah car battery 
• charge: 3.6x105 C, energy: 4.3x106 J 

If batteries store so much more energy, why use capacitors?

100 F capacitor at 12 V 
• charge: Q=CV= 1.2x10-3 C, energy: U=CV2/2=7.2x10-3 J

Energy stored in capacitor vs. energy stored in battery

• capacitor stores charge physically, battery stores charge 
chemically

• capacitor can release stored charge and energy much 
faster   



Where does the stored energy reside?

V
+ -

+Q -Q

E

( )
21

U C V
2

= 

d

area A

( )
20A1

U Ed
2 d

 
=  

 

( ) 2

0

1
U Ad E

2
= 

Energy is stored in the 
capacitor: 

The “volume of the capacitor” is Volume=Ad 

0AC   and  V Ed
d


=  =



energy density u (energy per unit volume):

V
+ -

+Q -Q

E

d

area A

( ) 2

0
2

0

1
Ad E

U 12u E
Ad Ad 2


= = = 

energy resides in the electric field 
between the plates

2

0

1
u E

2
=  Energy Density
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• if insulating material (“dielectric”) is 
placed between capacitor plates 
capacitance increases by factor 

•  (greek letter kappa) is the 
dielectric constant 

dielectric

Dielectrics

 A
C =  .

d

•  depends on the material
 vacuum =   1
 air  =   1.0006
 PVC  =   3.18
 SrTiO₃  =310



• dielectric material contains 
dipoles

• dipoles align in electric field

• induced charges partially 
compensate charges on plates

• electric field and voltage in 
capacitor reduced 

•              capacitance increases  

How does a dielectric work?

( V Ed) =

Q
C

V
=




• if you charge a capacitor and then disconnect the battery,
    Q stays the same (charge cannot leave the plates!)
    C, V, and U may change

• if you charge a capacitor and keep the battery connected,
    V stays the same (voltage is fixed by the battery)
    C, Q, and U may change

Homework hints:



A capacitor connected to a voltage 
source as shown acquires a charge Q.

V
While the capacitor is still connected 
to the battery, a dielectric material is 
inserted.

Will Q increase, decrease, or stay the same?

Why?

V

V=0

Conceptual Example



Example: a parallel plate capacitor has an area of 10 cm2 and 
plate separation 5 mm. A 300 V battery is connected to its 
plates. If neoprene is inserted between its plates, how much 
charge does the capacitor hold.

V=300 V
d=5 mm

A=10 cm2

=6.7

( )( )( )-12 -4

-3

6.7 8.85×10 10×10
C =  F

5×10

Q=CV 

 -11C=1.19 10 F

( )( ) ( ) = -11 -9Q= 1.19 10 300 C 3.56 10  C  =3.56 nC

 A
C = 

d

300 V



Example: how much charge would the capacitor on the 
previous slide hold if the dielectric were air?

The calculation is the 
same, except replace 6.7 
by 1.

Or just divide the charge on the 
previous page by 6.7 to get…

Q=0.53 nC V=300 V
d=5 mm

A=10 cm2

=1

300 V



Example: find the energy stored in the capacitor.

V=300 V
d=5 mm

A=10 cm2

=6.7

 -11C=1.19 10 F

( )
1

2


2
U= C V

( )( )
1

2


2-11U= 1.19 10 300 J

 -7U=5.36 10 J
300 V



Example: the battery is now disconnected. What are the 
charge, capacitance, and energy stored in the capacitor?

V=300 V
d=5 mm

A=10 cm2

=6.7

The charge and capacitance are 
unchanged, so the voltage drop 
and energy stored are unchanged.

Q =3.56 nC

 -11C=1.19 10 F

 -7U=5.36 10 J
300 V



Example: the dielectric is removed without changing the plate 
separation. What are the capacitance, charge, potential 
difference, and energy stored in the capacitor?

V=300 V
d=5 mm

A=10 cm2

=6.7( )( )-12 -4

-3

8.85×10 10×10
C =  F

5×10

 -12C=1.78 10 F

 A
C = 

d

V=?
d=5 mm



V=?
d=5 mm

A=10 cm2

Q =3.56 nC

Example: the dielectric is removed without changing the plate 
separation. What are the capacitance, charge, potential 
difference, and energy stored in the capacitor?

The charge remains unchanged, 
because there is nowhere for it 
to go.



V=?
d=5 mm

A=10 cm2

( )
( )






-9

-12

3.56 10Q
V = = 

C 1.78 10
V

V = 2020 V

Example: the dielectric is removed without changing the plate 
separation. What are the capacitance, charge, potential 
difference, and energy stored in the capacitor?

Knowing C and Q we can 
calculate the new potential 
difference.



V=2020 V
d=5 mm

A=10 cm2

( )
1

2


2
U= C V

( )( )
1

2


2-12U= 1.78 10 2020 J

 -6U=3.63 10 J

Example: the dielectric is removed without changing the plate 
separation. What are the capacitance, charge, potential 
difference, and energy stored in the capacitor?



 -7
beforeU =5.36 10 J

 -6
afterU =3.63 10 J

after

before

U
=6.7

U

Huh?? The energy stored increases by a factor of ??

Sure. It took work to remove the dielectric. The stored energy 
increased by the amount of work done.

 externalU=W
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