
Today’s agenda:

Displacement Current and Maxwell’s Equations.
Displacement currents explain how current can flow “through” a capacitor, and 
how a time-varying electric field can induce a magnetic field.

Electromagnetic Waves.

Energy Carried by Electromagnetic Waves.

Momentum and Radiation Pressure of an Electromagnetic 
Wave.



Displacement Current

+ -
-q+q

ICIC

ds
Apply Ampere’s Law to a 
charging capacitor.

රB ⋅ dԦs = μ0IC



Ampere’s law:

රB ⋅ dԦs = I𝑒𝑛𝑐𝑙 = 0

Ampere’s law is universal:
Shape of surface shouldn’t matter, as long as “path” is the same

“Soup bowl” surface, with 
the + plate resting near the 
bottom of the bowl.

+ -
-q+q

ICIC

ds

රB ⋅ dԦs = μ0IC රB ⋅ dԦs = 0

Contradiction! (The equation on the right is actually incorrect, and the equation on the left is incomplete.)

two different surfaces give:



+ -
-q+q

ICIC

ds

• Ampere’s law (as used so far) must be incomplete
• charging capacitor produces changing electric flux between 

plates

E

q = CΔV = κε0

A

d
Ed = κε0EA = κε0ΦE

Changing electric flux acts like 
current

dq

dt
=

d

dt
κε0ΦE = κε0

d

dt
ΦE

This term has units of current.

 Is the dielectric constant of the medium in between the capacitor plates. In the diagram, with an air-filled capacitor,  = 1.

How to fix this?



+ -
-q+q

ICIC

ds

Define a virtual current:
displacement current 

E

ID = κε0

d

dt
ΦE .

changing electric flux through 
“bowl” surface is equivalent to 
current IC through flat surface

• include displacement current in Ampere’s law
• complete form of Ampere’s law:

රB ⋅ dԦs = μ0 IC + ID encl = μ0Iencl + μ0ε
dΦE

dt
.

Magnetic fields are produced by both conduction currents and time varying 
electric fields.

ε = κε0

 is NOT emf!



The Big Picture

රB ⋅ dԦs=μ0Iencl+μ0ε0

dΦE

dt
.

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜
ර𝐵 ⋅ 𝑑 Ԧ𝐴 = 0

ර𝐸 ⋅ 𝑑 Ԧ𝑠 = −
𝑑Φ𝐵

𝑑𝑡

Gauss’s Law for both electricity and magnetism, 

• these four equations are famous Maxwell equations of 
electromagnetism 

• govern all of electromagnetism

Faraday’s Law of Induction, and Ampere’s Law:

These four equations provide a complete description of 
electromagnetism.



The Big Picture

Maxwell equations can also be written in differential form:

0

E


 =


02

1 dE
B= +μ J

c dt


B 0 =

dB
×E=

dt
 −
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රB ⋅ dԦs=μ0Iencl+μ0ε0

dΦE

dt

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜
ර𝐵 ⋅ 𝑑 Ԧ𝐴 = 0

ර𝐸 ⋅ 𝑑 Ԧ𝑠 = −
𝑑Φ𝐵

𝑑𝑡

Maxwell’s Equations

• oscillating electric and magnetic fields can “sustain each 
other” away from source charges and fields

    Faraday’s law   Ampere’s law

• result: electromagnetic waves that propagates through 
space     

d
B E

dt
→

d
E B

dt
→



• electromagnetic waves always involve both E and B fields

direction of
propagation

• propagation direction, E field and B field form right-
handed triple of vectors 

Example: 
  wave propagating in x-direction
  E field in y-direction
  B field in z-direction
  values of E and B depend only upon x and t

y

z

x



• for wave traveling in x-direction with E in y-direction and 
B in z direction:

𝜕2Ey

𝜕x2
= μ0ε0

𝜕2Ey(x, t)

𝜕t2

𝜕2Bz

𝜕x2
= μ0ε0

𝜕2Bz(x, t)

𝜕t2

Wave equation

• combine Faraday’s law and Ampere’s law

Wave equation:

𝜕Ey

𝜕x
= −

𝜕Bz

𝜕t• E and B are not independent: 



Ey = Emaxsin kx − ωt

Bz = Bmaxsin kx − ωt

Wave number k, wave length  k =
2π

λ

Emax and Bmax are the 
electric and magnetic field 

amplitudes

Solutions of the wave equation

ω = 2πf

fλ =
ω

k
= c

Angular frequency , frequency f

Wave speed c =
1

μ0ε0



Ratio of electric field magnitude to  magnetic field magnitude 
in an electromagnetic wave equals the speed of light.

𝜕Ey

𝜕x
= −

𝜕Bz

𝜕t

Emax k cos kx − ωt = Bmax ω cos kx − ωt

Emax

Bmax
=

E

B
=

ω

k
= c =

1

μ0ε0
.

𝜕 Emaxsin kx − ωt

𝜕x
= −

𝜕 Bmaxsin kx − ωt

𝜕t



This static image doesn’t show how the wave propagates.

direction of
propagation

y

z

x



Types of electromagnetic waves

• enormous range of wave lengths and frequencies
• spans more than 15 orders of magnitude



Applications of electromagnetic waves
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• S represents energy current density, i.e., energy per time 
per area or power per area (units J/(s·m2) =W/m2)

Energy Carried by Electromagnetic Waves

• Poynting vector* S

S =
1

μ0
E × B

• direction of S is along the direction of wave propagation  

*J. H. Poynting, 1884.

This is derived from 
Maxwell’s equations.

rate of energy flow:



z

x

y

c

S
E

B
because B = E/c

These equations for S apply at any instant of time and 
represent the instantaneous rate at which energy is passing 
through a unit area.

S =
1

μ0
E × B

for EM wave:

so

E × B = EB

S =
EB

μ0
.

S =
E2

μ0c
=

cB2

μ0
.



The time average of sin2(kx - t) is ½, so

S =
EB

μ0
=

E2

μ0c
=

cB2

μ0

EM waves are sinusoidal.

The average of S over one or more cycles is called the 
wave intensity I.

I = Saverage = S =
EmaxBmax

2μ0
=

Emax
2

2μ0c
=

cBmax
2

2μ0

Ey = Emaxsin kx − ωt

Bz = Bmaxsin kx − ωt

Notice the 2’s in 
this equation.

EM wave propagating 
along x-direction



• so far: energy transported by EM wave
• now: energy stored in the field in some volume of space

Using B = E/c and c = 1/(00)
½:

Energy Density

uE =
1

2
ε0E2 uB =

1

2

B2

μ0

uB =
1

2

B2

μ0
=

1

2

E
c

2

μ0
=

1

2

μ0ε0E2

μ0
=

1

2
ε0E2

uB = uE =
1

2
ε0E2 =

1

2

B2

μ0

remember: E and B are 
sinusoidal functions of time

energy densities (energy per volume)



• average over one or more cycles of electromagnetic wave 
gives factor ½ from average of sin2(kx - t).

Recall: intensity of an EM wave 

u = uB + uE = ε0E2 =
B2

μ0

u =
1

2
ε0Emax

2 =
1

2

Bmax
2

μ0

Saverage = S =
1

2

Emax
2

μ0c
=

1

2

cBmax
2

μ0
= c u

uE =
1

4
ε0Emax

2  , uB =
1

4

Bmax
2

μ0
, and

instantaneous energy densities
(E and B vary with time)

total energy density:



Help!

E or B individually:

uB(t) = uE(t) =
1

2
ε0E2(t) =

1

2

B2(t)

μ0
At time t:

uE =
1

4
ε0Emax

2  uB =
1

4

Bmax
2

μ0
,Average:

u(t) = ε0E2(t) =
B2(t)

μ0
At time t:

u =
1

2
ε0Emax

2 =
1

2

Bmax
2

μ0
Average:

Total:



Example: a radio station on the surface of the earth radiates a 
sinusoidal wave with an average total power of 50 kW.*  
Assuming the wave is radiated equally in all directions above 
the ground, find the amplitude of the electric and magnetic 
fields detected by a satellite 100 km from the antenna.

Station

Satellite

*In problems like this you need to ask whether the power is radiated into all space or into just part of space.

Strategy: we want Emax, Bmax. We 
are given average power. From 
average power we can calculate 
intensity, and from intensity we can 
calculate Emax and Bmax.
From the average power we can 
calculate intensity, and from 
intensity we can calculate Emax 
and Bmax.



Example: a radio station on the surface of the earth radiates a 
sinusoidal wave with an average total power of 50 kW.*  
Assuming the wave is radiated equally in all directions above 
the ground, find the amplitude of the electric and magnetic 
fields detected by a satellite 100 km from the antenna.

R

Station

SatelliteAll the radiated power passes 
through the hemispherical 
surface* so the average power 
per unit area (the intensity) is

 
 

 
2

average

power P
I= =

area 2 R

All the radiated power passes 
through the hemispherical 
surface* so the average power 
per unit area (the intensity) is

Area=4R2/2

( )

( )

 
 

   

4

-7 2

22 5
average

5.00 10  Wpower P
I= = = =7.96 10  W m

area 2 R 2 1.00 10  m

*In problems like this you need to ask whether the power is radiated into all space or into just part of space.



R

Station

SatelliteI = S =
1

2

Emax
2

μ0c

Emax = 2μ0cI

= 2 4π × 10−7 3 × 108 7.96 × 10−7
V

m

= 2.45 × 10−2
V

m

Bmax =
Emax

c
=

2.45 × 10−2 V
m

3 × 108 m
s

= 8.17 × 10−11T

You could get Bmax from I = c Bmax
2/20, but that’s a lot more work



Example: for the radio station in the previous example, 
calculate the average energy densities associated with the 
electric and magnetic field at the location of the satelite.

uE =
1

4
ε0Emax

2

uE =
1

4
8.85 × 10−12 2.45 × 10−2 2

J

m3

uE = 1.33 × 10−15
J

m3

uB =
1

4

Bmax
2

μ0

uB =
1

4

8.17 × 10−11 2

4π × 10−7

J

m3

uB = 1.33 × 10−15
J

m3

If you are smart, you will write <uB> = <uE> = 1.33x10-15 J/m3 and be done with it.
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• airtight glass bulb, containing a 
partial vacuum

• vanes mounted on a spindle 
(one side black, one silver)

• vanes rotate when exposed to 
light

Light Mill (Crookes radiometer)

This is NOT caused by radiation 
pressure!!

(if vacuum is too good, mill does not turn) 

Mill is heat engine: black surface heats up, 
detailed mechanism leading to motion is 
complicated, research papers are written 
about this! 



Momentum of electromagnetic wave

• EM waves carry linear momentum as well as energy

• momentum density (momentum per volume):

d p

dV
=

S

c2 =
I

c2 dp is momentum carried in volume dV

• momentum current density (momentum per area and time)

momentum transported by EM wave:

c
d p

dV
=

S

c
=

I

c

momentum stored in wave in some volume of space



• if EM radiation is incident on an object for a time dt and if 
radiation is entirely absorbed:

    object gains momentum incident

d p =
S

c
A dt

Radiation Pressure

• Newton’s 2nd Law (F = dp/dt):  force

Prad =
F

A
=

S

c
=

I

c

F =
S

c
A 

• Radiation exerts pressure

(for total absorption)



• if radiation is totally reflected by object, then magnitude of 
momentum change of the object is twice that for total 
absorption.

incident

reflected

d p =  2
S

c
A dt

• Newton’s 2nd Law (F = dp/dt):  force

Prad =
F

A
= 2

S

c
= 2

I

c

F =  2
S

c
A 

• Radiation exerts pressure

(for total reflection)



Prad =
I

c
 (total absorption)

Prad =
2I

c
 (total reflection)

incident

incident

reflected

absorbed

Using the arguments above it can also be shown that:

If an electromagnetic wave does not strike a surface, it still 
carries momentum away from its emitter, and exerts Prad=I/c 
on the emitter.



Example: a satellite orbiting the earth has solar energy 
collection panels with a total area of 4.0 m2.  If the sun’s 
radiation is incident perpendicular to the panels and is 
completely absorbed, find the average solar power absorbed 
and the average force associated with the radiation pressure.  
The intensity (I or Saverage) of sunlight prior to passing through 
the earth’s atmosphere is 1.4 kW/m2.

Power = IA = 1.4 × 103
W

m2
4.0 m2 = 5.6 × 103W = 5.6 kW

Assuming total absorption of the radiation:

Prad =
Saverage

c
=

I

c
=

1.4 × 103 W
m2

3 × 108 m
s

= 4.7 × 10−6Pa

F = PradA = 4.7 × 10−6
N

m2
4.0 m2 = 1.9 × 10−5N

Caution! The letter P 
(or p) has been used 

in this lecture for 
power, pressure, and 

momentum! 



New starting equations from this lecture:


0

1
S= E B

 

2 2
max max

average

0 0

E cB1 1
S = =

2 c 2

 

max

max 0 0

E E 1
= =c =

B B




2
2

B E 0

0

1 1 B
u =u = E =

2 2




2
2 max

0 max

0

B1 1
u = E =

2 2

 


U 2 U
p =   or 

c c
rad

I 2I
P =   or   

c c

, ,
 

  


2
k =  =2 f   f = =c

k
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