
1. Electrostatics

1. Charge separation (Triboelectric effect)
2. Electric force = Coulomb force
3. From individual charges to charge distributions
4. Electric field calculations
5. Conservative Coulomb force
6. Electric potential
7. Work done in an electric field
8. Gauss’s law
9. Application of Gauss’s law
10. Electrostatic potential in an ion crystal
11. Conductor with charges in the stationary state
12. Force on charges in a conductor sheet
13. Poisson and Laplace equations



1.13 Poisson and Laplace equations

Comment: When the charge distribution is not known the previous formalisms for calculating 
electrical fields are of limited use.
But if electrical potential values on specific surfaces in space are known, 
the relevant electrical field can still be derived (uniqueness theorem).

After this section
you will know a formalism which does not require the 
knowledge of the charge density.
The formalism is based on the Laplace equation.
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Added note:

There was a question how to solve the Laplace equation if the solution depends on two coordinates instead of one.

There are two aspects to consider:

Partial solutions of the problem can be found by considering one-dimensional Laplace equations (in separate directions).
These solutions are valid also for the higher dimensional Laplace equation but do not represent the general solution.

For the general solution one follows an approach for which one considers that the general formula of the total potential function 
is composed of a product of two one-dimensional functions e.g. X(x) and Y(y) (separation of variables). One puts this product ansatz 
into the Laplace equation, to get a "new" Laplace equation . By this equation one separates terms for X(x) and Y(y). One of the terms is set to a 
positive constant and one to the negative number such that their sum always  fulfills the  "new" Laplace equation. Now the two directions can be 
solved separately and are connected via the auxiliary constant. Both equations are second-order partial differential equations.
Note that at this point one often needs to guess the appropriate harmonic 
function(s), insert them and test if they can fulfill the two equations at the same time plus the boundary conditions (potential values on the
boundaries. 

The Laplace equations in 2D and 3D dimensions do not have a simple analytical solution in general and will not be considered further in 
PHYS201(d).



Practical implications with Laplace equation

- Analyze the symmetry of the electrostatic problem (e.g. potential between
two charged planes, between two cylindrical charge distributions)

- Choose the most appropriate coordinate system (cartesian, cylindrical, spherical)

- Search for the del squared operator applied to a scalar function in the relevant coordinate 
system (Math Tool Box I), and consider only its derivatives relevant for the problem

- Integrate twice considering indefinite integrals by introducing constants of integration 
(exercise on problem sheet 4).

- The final function needs to be checked against the boundary conditions
(potential values at specific points in space); putting-in these “boundary” values 
determines the values of the integration constants

- Once a function is found (without knowing the charges beforehand!)
and it fulfills the Laplace equation (check!),
then the only unique solution has indeed been found (theorem of uniqueness, 
see next page).





Mindmap I for Electrostatics

Adapted from: https://www.mindmeister.com/79285653/static-electricity?fullscreen=1#
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Further completed the mindmap
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Poisson Eq.

E-field as grad(potential)



Summary of Chapter 1 (inspired by Purcell)
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force:
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Recap: Different usage of del-operator

Scalar product used in
Gauss’ law (divergence):

𝛻 · 𝐸 ൌ
𝜌
𝜀଴

Vector product used in
Maxwell equation (curl):

𝛻 ൈ 𝐸 ൌ 0
𝐸 𝑥,𝑦, 𝑧
ൌ െ𝛻 · 𝜙 𝑥, 𝑦, 𝑧

“Multiplication” used with
potential function (gradient):

del-operator:

(formulas taken from MathToolbox I)



How much charge is distributed on the inner surface 
of the neutral conductor shell (spherical shell around 
charge q)?

A. The charge on the inner shell amounts 
to –q.

B. The charge is distributed over a large 
area and its absolute value is larger 
than q.

C. The charge on the inner surface is 
negative and its absolute value is 
smaller than q.

D. The charge is zero.

shell

Solution: imagine a Gauss's surface which is just following the central 
position inside the conductor shell and which surrounds the charge q 
plus the unknown charge distributed on the inner surface of the shell. 
As the electric field is zero in the conductor, and Gauss's law must hold, the total charge enclosed 
must add up to zero. This fixes the charges on the inner surface to -q. in total spread of the surface.
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