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Charge separation (Triboelectric effect)
Electric force = Coulomb force
From individual charges to charge distributions
Electric field calculations
Conservative Coulomb force
Electric potential
Work done in an electric field
Gauss’s law
Application of Gauss’s law
. Electrostatic potential in an ion crystal
. Conductor with charges in the stationary state
. Force on charges in a conductor sheet
. Poisson and Laplace equations
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1.13 Poisson and Laplace equations
g

Comment: When the charge distribution is not known the previous formalisms for calculating
electrical fields are of limited use.

But if electrical potential values on specific surfaces in space are known,

the relevant electrical field can still be derived (uniqueness theorem).

After this section

you will know a formalism which does not require the
knowledge of the charge density.

The formalism is based on the Laplace equation.
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Sofar.  E = —V¢(P)

S o o p(7)
V-E=-V¢F =—"
€0 “del squared”
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Poisson equation V2p(r) = e V2= A= Jx2 + 02 T 072

= the Laplacian

For p = 0 (space without charges):

Laplace equation  |72¢(7) = 0

“second-order partial differential equation*
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Added note:

There was a question how to solve the Laplace equation if the solution depends on two coordinates instead of one.

There are two aspects to consider:

Partial solutions of the problem can be found by considering one-dimensional Laplace equations (in separate directions).
These solutions are valid also for the higher dimensional Laplace equation but do not represent the general solution.

For the general solution one follows an approach for which one considers that the general formula of the total potential function

is composed of a product of two one-dimensional functions e.g. X(x) and Y(y) (separation of variables). One puts this product ansatz

into the Laplace equation, to get a "new" Laplace equation . By this equation one separates terms for X(x) and Y(y). One of the terms is set to a
positive constant and one to the negative number such that their sum always fulfills the "new" Laplace equation. Now the two directions can be
solved separately and are connected via the auxiliary constant. Both equations are second-order partial differential equations.

Note that at this point one often needs to guess the appropriate harmonic

function(s), insert them and test if they can fulfill the two equations at the same time plus the boundary conditions (potential values on the
boundaries.

The Laplace equations in 2D and 3D dimensions do not have a simple analytical solution in general and will not be considered further in
PHYS201(d).



Practical implications with Laplace equation
g

- Analyze the symmetry of the electrostatic problem (e.g. potential between
two charged planes, between two cylindrical charge distributions)

- Choose the most appropriate coordinate system (cartesian, cylindrical, spherical)

- Search for the del squared operator applied to a scalar function in the relevant coordinate
system (Math Tool Box 1), and consider only its derivatives relevant for the problem

- Integrate twice considering indefinite integrals by introducing constants of integration
(exercise on problem sheet 4).

- The final function needs to be checked against the boundary conditions
(potential values at specific points in space); putting-in these “boundary” values
determines the values of the integration constants

- Once a function is found (without knowing the charges beforehand!)
and it fulfills the Laplace equation (check!),
then the only unique solution has indeed been found (theorem of uniqueness,
see next page).
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Unigqueness theorem, harmonic functions

Solutions of the Laplace equation have the following characteristics:

1) Theorem of uniqueness

Consider a volume €2 (single- or multiple-connected) and its surface S:
If the potential ¢ Is given everywhere on S (boundary condition),
this solution ¢(7°) is the only one for the volume Q

2) Consider point P(x,y,z) being part of €, and

1
2 denotes a sphere of radius R around the point P, then ¢(P) =

ATR? £ b(r)ds

This is the average value of ¢(7°) on S.

3) The class of functions that solve the Laplace equation are called
harmonic functions (twice continuously differentiable functions)
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E 4“0/ rdv - ¢ Closed line integral for static
charge distribution:
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taken from Purcell




: Different usage of del-operator
g

del-operator: 1In Cartesian coordinates. V=%»

IF, dF, 0F,
+ — 4

H ‘. l‘ 7‘1 c‘. ! :

div F =

=V -F

Scalar product used in

7 E=L
€0

Gauss’ law (divergence):

[ A, Ay
culA=x| — - )
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Vector product used in
Maxwell equation (curl):

VxE=0

8 1. L 0@ 2 ig’)
+§— +1-
dx dy az

grad @ =X

“Multiplication” used with
potential function (gradient):

L_?)(x,g/,z)
=-=V- qb(x,y,z)

(formulas taken from MathToolbox |)




How much charge is distributed on the inner surface

of the neutral conductor shell (spherical shell around
charge g)~

E. The charge on the inner shell amountﬂ

to—q. 54%

B. The charge is distributed over a large
area and its absolute value is larger
than qg.

C.  Thecharge on the inner surface is
negative and its absolute value is
smaller than q.

i 31%
D. The charge is zero.
13%
Conductor shell 0
3%
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Solution: imagine a Gauss's surface which is just following the central o™ 2 o™
position inside the conductor shell and which surrounds the chargeq & N K

plus the unknown charge distributed on the inner surface of the shell.
As the electric field is zero in the conductor, and Gauss's law must hold, the total charge enclosed
must add up to zero. This fixes the charges on the inner surface to -q. in total spread of the surface.



	Phys201d_01_Electrostatics_1.13_Grundler2024.pdf
	Pages from PHYS201d_Ch1.13_Completed.pdf
	Pages from PHYS201d_Electrostatics1_10to_1_13_2023_Completed-2.pdf

	Pages from PHYS201d_DielectricsCapacitance2024_Completed-2.pdf
	Blank Page



