EPFL - PHYS-201(d) - Electromagnetism/Fluids - Fall 2024 Exercise sheet 9

Exercise sheet 9: Induction law, generator, power
13/11/2024

We indicate the challenges of the problems by categories I (“warming-up”), I (“exam-level”), III (“advanced”).
For your orientation: problems attributed to category II have been or could have been considered for an exam
(assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting
cannot be repeated in an exam however.

Exercise 1.
(Cavity in a wire/Category 1I/After training: 30 min )

(I) What is the magnetic field B inside a cylindrical conducting wire carrying a
uniform current density j, at a distance r away from the axis? Use Ampere’s law.
(IT) The figure shows the section of a long cylindrical conducting material of radius
a, within which is a cylindrical cavity of radius b. The cylinders have parallel axes
separated by a distance d, see the figure. A current ¢ is uniformly distributed within
the conducting material (in dark grey in the figure). Answer the following questions.
Hint: Use the result of the preliminary question (I) and the superposition principle.

a) Calculate the magnetic field along the axis of the cavity.

b) Show that the magnetic field is constant in the cavity.

Exercise 2.

(Infinite Solenoid/Category II)
Consider an infinitely long solenoid with n-turns per unit length. The long axis is along the +2z—direction. The
current I flows along the €, direction in cylindrical coordinates. We assume the solution developed in the lecture

concerning the uniform magnetic field B inside the solenoid:
B= ponlé, (1)

Use the formula the definition for magnetic flux ®,, = [[ area enclosed by a pathp: B-di to show that A = Lponrlé,

inside the solenoid and A = %,uonél' €, outside the solenoid. Here, A is the vector potential, b is the radius of
ultrathin solenoid and r is the distance from the long central axis. Considering the solution for the vector field
outside the solenoid: Is there a magnetic field outside the solenoid?

Exercise 3.
(Ring falling towards a wire / Category I)

Consider a conducting ring falling towards a conducting wire carrying a current i,
see figure. According to the induction law, a current é;,q will be induced in the ring
itself. In what direction?
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Exercise 4.
(Current clamp / Category I)

Imagine a straight electric power cable (green line in sketch (a) which is plugged
into the electric grid (I = Ipsinwt with w = 27f). The frequency f in the
electric grid amounts to 50 Hz. You want to find out the current flowing in
the cable without removing the isolation. One possibility is to put a wire loop
next to the cable and detect the inducted current.

a) Calculate the electromotive force emf in a rectangular wire loop with

length | = ﬁ m and width d, which is placed next to the cable at
distance d as indicated in sketch (a).

b) The wire has a resistance of R = 1 Q. In the wire loop, a peak current
of Ipear = 1 mA is measured with an ammeter. Calculate the current
flowing inside the power cable.

¢) The same working principle is also used in commercial devices. Sketch
(b) shows an excerpt from a manual of a current clamp. Can you explain
the instructions? Suppose the device works exactly as in the previous
question, and that whatever inside the clamp plays the role of the green
wire.

d) Does a current clamp based on induction also work for a DC current?

Exercise 5.

Ammeter

(Vector potential and magnetic field for a circular current loop/Advanced Category III)

Consider the problem of a circular loop of radius R, lying in the z, y-plane,
centered at the origin, and carrying a current I, as shown in the figure.

a) Calculate the vector potential ff(r, 0, ®) for r > R at point P in the x, z-plane
(¢ = 0) as sketched. What is the direction of A following your calculation.

Can you explain the orientation with symmetry arguments.

_ 1
Hint: (r2 + R?> — 2rRsin 6 cos d)’) 2 o

= 1+ rft sin 6 cos ¢’
V2 + R? r2 + R?

b) How does A vary as a function of ¢ at fixed r» and 7 For this consider the
direction of A when P is either in the x, z-plane (¢ = 0) as sketched or assumed

to be in the y, z-plane (¢ = m/2). Does this variation as a function of ¢ agree

with the symmetry arguments?

¢) Show that the result of part (a) can be expressed as A(r, 6, ¢) = L2 5T where,

T 4w r2

m = Id is the magnetic dipole moment of the current loop and the vector a is

the directed area of the region surrounded by the loop.

d) Calculate the magnetic field é(r, 0, ) for r > R from /T(r, 0,0).
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Solution 1.
1. Using Ampere’s law (Fig. :

Figure 1:

$ B.ds = pol = B2nr = pgjnr? = B = %é Note that the current is assumed to be along the z-axis

pointing out of the plane of the paper. Hence the unit vector 0 representing cylindrical coordinates points to
as indicated in Figure|l| (a). The magnetic field on the x-axis inside and outside the wire is plotted in Figure

Figure[1] (a) shows the used symbols.

(a) (b) inside wire
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(a) Cylindrical conductor carrying uniform current density. Sketch for calculating the magnetic field

inside the conductor assuming the specified direction for the current density. The circumference that is defined
by the radius vector 7 is ¥ = 27r. An infinitesimal part of X is represented by ds. The vector ds is directed
tangentially to the circumference ¥. (b) Magnetic field of the cylindrical conducting wire plotted in a cartesian
coordinate system on the x-axis. The field is zero in the center.

2.

a. Total field is given by the superposition of two fields generated by two cylinders: one carrying ] and the

other one (the cavity) ] The current density is j = W The first wire generates a field inside the

cavity along its axis B(d) = P e}

kol d — §__t9id__ The second wire assumed to exist in the cavity does
not generate any field in its own center (Figure (

b)). To obtain a general expression we consider Fig

. The reference system and all geometrical quantities to solve this step are shown in Fig. 2] Let us

compute the magnetic field inside the _cavity at an arbltrary point P. By superposition principle we sum
the contribution of the two wires B(P) = By (P) + By(P) = Lor 0, + toJra (_ 05). We express the unit
vectors of the two magnetic fields in terms of cartesian unit Vectors % and ¢ (Fig. :

01 = —sin(a)Z + cos(a)y
—0y = sin(B)& — cos(B)7

Expressing cosine and sine terms as a function of the distance yields

N d
b =Lz %
1 1
—Oy = Yi_ ﬁg
T2 T2

Exploiting these calculations we find B(P) = Lol (—ﬁi + ztd ) + HoJrz (icﬁ - %Q) = tojdg

T2 2

We thus conclude that the total field inside the cavity B(P) = ks 4 Joes not depend on spatial coordi-
nates. Its magnitude is proportional to the current density and the separation d between the centers of
the two cylinders.
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cavity y

r

Figure 2: Cavity is drawn with geometrical parameters and reference system.

Solution 2.
The schematic of the exercise is shown in figure [3]

Figure 3: Schematic of an infinitely long Solenoid of radius b, with areas inside (blue) and outside (green) marked.

B = ponlé. (2)
Inside the coil (r < b):
(I)m = // blue surfaceé -da
= |§| - r? (3)
= ponlmr?

Using Stoke’s theorem,

//E-dd://ﬁx/f-dd’:géﬁdf (4)

Symmetry analysis of A | suggests that it must be a vector field circulating around the vector field Bina plane

perpendicular to B as B is assumed to consist of infinitely long, straight field lines: A=A »€,. Using cylindrical
coordinates,

:ygﬁ-dé':Ag,-Qm“ (5)

Use equation to get @, = ponlar? = A, - 2ar. = A, zuonlré'ip
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Outside the coil (r > b):

o, = //green surface B - dd

— |B] - b (6)
= ponlmwb?
Equation 3| still reads: ¢ A - d5= A, - 277
- 1 b2
= A, = §,uonl7e<p (7)

Now for B for r > b: Equation B needs to be considered in B = V x A. Remember that A, =0and A, =0,
only A, # 0.

104, 04, 0A, O0A, ., 1 0A, O0A,

VxA= ey — ~(A - g 8
. (r dy 0z )e +(82 ar )%Jrr( a or 0<p)6 (8)
The only non-zero terms here are: % and %raéi £,
A, 1 b2
-5 = 5#071[72 9)
1 0A, O0A, a1 b2 1 b?
- = = —(zponl—) = —=ponl— 1
v or or BT(QMOH r) gHon 2 (10)

Using |§| and [10{in8) B =V x A = % + %T% = %,uonlf—z + (—%uonli’—z) = 0 The vector field A calculated
before is consistent with our original assumption that B = 0 outside of the infinitely long solenoid.

Solution 3.

The ring is falling. Using Ampere’s law for a magnetic field generated by a wire B o< r~! we know that the magnetic
flux in the ring is increasing. Geometry of the system is illustrated in Fig. 4l To counteract this increasing magnetic

a

|

Figure 4: Sketch to understand the geometry of system when the ring is falling.
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flux the current will start flowing counterclockwise in the ring.

Solution 4.
a) emfis AV = —22
We must find the flux
= [ Bdg = gt [ = 2] in(2).
We conclude that
AV(t)=—4 (“"I(t)l In(2 )) = —Igw cos(wt) 22lin(2) = —Iow cos(wt)L2.

b) |AVpear| = Rlpear = Tow521n(2) = Io = Rlpeak ity = SonA = 15.9 A.

¢) The current flows in opposite direction in the two wires. Measuring at the same time these two conductors
does not detect any current because for opposite current the generated magnetic fields cancel each other out
giving zero total field.

d) For a DC current the field is constant in time therefore the time derivative of the flux, i.e. the electromotive
force, is zero. This method does not work for DC measurements.

Solution 5.

pol . dll
ar 7|7 — \
we have: 7 = ré.(0,¢ = 0) and r’ = Ré,.(0' = F,¢’). From the radial unit vector in spherical coordinate
é,(0, ) = sin 6 cos ¢z +sin 0 sin ¢+ cos 02, we have ¥ = r(sin 0z +cos 0Z%) and P = R(cos ¢'Z+sin ¢'f). Hence,
[F—17| = (r? + R? — 2rRsinf cos gb’)l/Q. The loop element vector is dI = Rd¢/éy = Rdd'(— sin ¢/ &+cos ¢')
where we express the azimuthal unit vector in Cartesian coordinates. Therefore, we need to evaluate the
following integration to obtain A:

a) The vector potential of the loop is given by ff(f') = . Considering the geometry of the problem

A= MOI/% Rd¢'(—sin ¢’z + cos ¢')
4m (r2+ R2 — ZrRsinecosqb’)l/Q.
Using the hint given in the exercise, we obtain
A= ”OI 2Wd in ¢/ 9 (14 =P singeosd’
m @' (—sin ¢’ + cos ¢') +msm cosg' | .

The z component of vector potential, A, vanishes as follows

2m
'LLOI . rkRo )
Apg = —— m/ dg¢’ <_Sln¢/_r2+R251n€Sln¢/COS¢/>
NJOI R rR 1 1 , 2m
T Ar Jio e 0= (zcos2 —0.
47r\/m[ ¢+2+stm (2 5 €08 2¢ . 0

The non-vanishing y component of vector potential, A, is

I °r rR
A, = ,uo m/ d¢’ (cosqb + Y sin 6 cos? ¢>'>

ol R rR o
= E\/ﬁ {s ng + —— 2R sm€( ((b —i—sm2¢>)]0
2
ot (i N
4m (r2+R2)3/2
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Figure 5: Two mirror image elements on the loop with respect to axis ¢ = 0.

77
Contribution of each element dl’ to the vector potential is dA —. From this we see that dA is parallel

—

=

to dl’. Hence, we now analyze the symmetries of elements dl’ around the loop to describe their respective
contribution of dA to the total vector potential. Consider two elements dl71 and dl72 which are mirror images
with respect to the axis ¢ = 0 (which is defined by projecting the observation point P onto the x — y plane).
By decomposing dA to its parallel and perpendicular components with respect to the axis ¢ = 0, we have:
dA = d/_l'H + d/YL. It is evident from Fig. that df_l'HJ = fd/YH,Q and dﬂflvl = d/fl,g. Integrating over full

loop results in a non-vanishing A, while Aj vanishes.
b) The same arguments from part (a) holds for any ¢ as it is shown in Fig. @ Therefore, for each ¢ we will have

5o 1 R?
a non-vanishing A = A| = Agéy where Ay = ’ZL (2’/‘7T2)3/2> sin 6.
T \(r*+ R

c) For the case of r > R we can approximate the result of the previous part as A = A, = Aué, =
ol (’I‘ﬂ'RQ

1 3 ) sin@és. Knowing that m = 1@ = ImR?Z and 7 = ré,. we have
T r

T Y Z
m x 7= IrrR? 0 0 1
sinfcos¢ sinfsing cosf

= IrnR? (&(—sin @ cos ¢) + 7(sin O sin ¢))
= IrmR*sinféy4

S nXT X P
Hence, A(r,@,qﬁ):@m T _ T 3 !

dr 3 Aw 7

d) The magnetic field is given by B=VxA In spherical coordinates by considering A, = 0 and Ay = 0 we
have:
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Figure 6: Two mirror image elements on the loop with respect to axis ¢.

ér Té rsinféy ér Tég Tsinbéy
- o 1 0 0 0 1 o 0 0
A= —— — — - |- —
VX r2sinf |Or 00 0¢ r2sinf |[Or 00 0¢
A, rAy rsinfAy 0 0 rsindAy
1 . [0 . R 0 .
= g [er <80 (r 51n9A¢)> +7ép (_87‘ (r sm9A¢))] .
1 2 -
Using Ay = 'leo (iﬁ) sin @, we obtain B = B,.é, + Byéy with
T

o 1 3 . /J,()I 7'('1%2 .
Br—m% (T51n9x47r<r2 sin 6

2u0 ITR?
= — co
4 3 s

_ -1 0 . ol TR? .
By = i (rsm@ X . (7’2 sin 0

po ITR? | 0 Lom
= — sinf =
47 3 3

sin 6.

This result is consistent with the formulas given in the lecture ("magnetic field of a magnetic dipole / current
loop”).
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