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Exercise sheet 9: Induction law, generator, power

13/11/2024

We indicate the challenges of the problems by categories I (“warming-up”), II (“exam-level”), III (“advanced”).
For your orientation: problems attributed to category II have been or could have been considered for an exam
(assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting
cannot be repeated in an exam however.

Exercise 1.

(Cavity in a wire/Category II/After training: 30 min )

(I) What is the magnetic field B⃗ inside a cylindrical conducting wire carrying a
uniform current density j, at a distance r away from the axis? Use Ampere’s law.
(II) The figure shows the section of a long cylindrical conducting material of radius
a, within which is a cylindrical cavity of radius b. The cylinders have parallel axes
separated by a distance d, see the figure. A current i is uniformly distributed within
the conducting material (in dark grey in the figure). Answer the following questions.
Hint: Use the result of the preliminary question (I) and the superposition principle.

a) Calculate the magnetic field along the axis of the cavity.

b) Show that the magnetic field is constant in the cavity.

Exercise 2.

(Infinite Solenoid/Category II)
Consider an infinitely long solenoid with n-turns per unit length. The long axis is along the +z⃗−direction. The
current I flows along the e⃗φ direction in cylindrical coordinates. We assume the solution developed in the lecture

concerning the uniform magnetic field B⃗ inside the solenoid:

B⃗ = µ0nIe⃗z (1)

Use the formula 1, the definition for magnetic flux Φm =
˜

area enclosed by a pathΓ B⃗ ·da⃗ to show that A⃗ = 1
2µ0nrIe⃗φ

inside the solenoid and A⃗ = 1
2µ0n

b2

r Ie⃗φ outside the solenoid. Here, A⃗ is the vector potential, b is the radius of
ultrathin solenoid and r is the distance from the long central axis. Considering the solution for the vector field
outside the solenoid: Is there a magnetic field outside the solenoid?

Exercise 3.

(Ring falling towards a wire / Category I)

Consider a conducting ring falling towards a conducting wire carrying a current i,
see figure. According to the induction law, a current iind will be induced in the ring
itself. In what direction?
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Exercise 4.

(Current clamp / Category I)

I

d

d

l A

Ammeter

(a)

(b)

Imagine a straight electric power cable (green line in sketch (a) which is plugged
into the electric grid (I = I0 sinωt with ω = 2πf). The frequency f in the
electric grid amounts to 50 Hz. You want to find out the current flowing in
the cable without removing the isolation. One possibility is to put a wire loop
next to the cable and detect the inducted current.

a) Calculate the electromotive force emf in a rectangular wire loop with
length l = 1

ln (2) m and width d, which is placed next to the cable at

distance d as indicated in sketch (a).

b) The wire has a resistance of R = 1 Ω. In the wire loop, a peak current
of Ipeak = 1 mA is measured with an ammeter. Calculate the current
flowing inside the power cable.

c) The same working principle is also used in commercial devices. Sketch
(b) shows an excerpt from a manual of a current clamp. Can you explain
the instructions? Suppose the device works exactly as in the previous
question, and that whatever inside the clamp plays the role of the green
wire.

d) Does a current clamp based on induction also work for a DC current?

Exercise 5.

(Vector potential and magnetic field for a circular current loop/Advanced Category III)

Consider the problem of a circular loop of radius R, lying in the x, y-plane,
centered at the origin, and carrying a current I, as shown in the figure.

a) Calculate the vector potential A⃗(r, θ, ϕ) for r ≫ R at point P in the x, z-plane

(ϕ = 0) as sketched. What is the direction of A⃗ following your calculation.
Can you explain the orientation with symmetry arguments.

Hint:
(
r2 +R2 − 2rR sin θ cosϕ′)−1/2 ∼=

1√
r2 +R2

(
1 +

rR

r2 +R2
sin θ cosϕ′

)
b) How does A⃗ vary as a function of ϕ at fixed r and θ? For this consider the

direction of A⃗ when P is either in the x, z-plane (ϕ = 0) as sketched or assumed
to be in the y, z-plane (ϕ = π/2). Does this variation as a function of ϕ agree
with the symmetry arguments?

c) Show that the result of part (a) can be expressed as A⃗(r, θ, ϕ) = µ0

4π
m⃗×r̂
r2 where,

m⃗ = Ia⃗ is the magnetic dipole moment of the current loop and the vector a⃗ is
the directed area of the region surrounded by the loop.

d) Calculate the magnetic field B⃗(r, θ, ϕ) for r ≫ R from A⃗(r, θ, ϕ).
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Solution 1.

1. Using Ampere’s law (Fig. 1):¸
Σ
B⃗ · ds⃗ = µ0I ⇒ B2πr = µ0jπr

2 ⇒ B⃗ = µ0jr
2 θ̂. Note that the current is assumed to be along the z-axis

pointing out of the plane of the paper. Hence the unit vector θ̂ representing cylindrical coordinates points to
as indicated in Figure 1 (a). The magnetic field on the x-axis inside and outside the wire is plotted in Figure
1 (b).

Figure 1 (a) shows the used symbols.

Figure 1: (a) Cylindrical conductor carrying uniform current density. Sketch for calculating the magnetic field
inside the conductor assuming the specified direction for the current density. The circumference that is defined
by the radius vector r⃗ is Σ = 2πr. An infinitesimal part of Σ is represented by ds. The vector ds⃗ is directed
tangentially to the circumference Σ. (b) Magnetic field of the cylindrical conducting wire plotted in a cartesian
coordinate system on the x-axis. The field is zero in the center.

2. a. Total field is given by the superposition of two fields generated by two cylinders: one carrying j⃗ and the
other one (the cavity) −j⃗. The current density is j = i

π(a2−b2) . The first wire generates a field inside the

cavity along its axis B⃗(d) = θ̂ µ0jd
2 = θ̂ µ0id

2π(a2−b2) . The second wire assumed to exist in the cavity does

not generate any field in its own center (Figure 1 (b)). To obtain a general expression we consider Fig 2.

b. The reference system and all geometrical quantities to solve this step are shown in Fig. 2. Let us
compute the magnetic field inside the cavity at an arbitrary point P⃗ . By superposition principle we sum
the contribution of the two wires B⃗(P⃗ ) = B⃗1(P⃗ ) + B⃗2(P⃗ ) = µ0jr1

2 θ̂1 +
µ0jr2

2 (−θ̂2). We express the unit
vectors of the two magnetic fields in terms of cartesian unit vectors x̂ and ŷ (Fig. 2):

θ̂1 = − sin(α)x̂+ cos(α)ŷ

−θ̂2 = sin(β)x̂− cos(β)ŷ

Expressing cosine and sine terms as a function of the distance yields

θ̂1 = − y

r1
x̂+

x+ d

r1
ŷ

−θ̂2 =
y

r2
x̂− x

r2
ŷ

Exploiting these calculations we find B⃗(P⃗ ) = µ0jr1
2

(
− y

r1
x̂+ x+d

r1
ŷ
)
+ µ0jr2

2

(
y
r2
x̂− x

r2
ŷ
)
= µ0jd

2 ŷ.

We thus conclude that the total field inside the cavity B⃗(P⃗ ) = µ0jd
2 ˆdoes not depend on spatial coordi-

nates. Its magnitude is proportional to the current density and the separation d between the centers of
the two cylinders.
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Figure 2: Cavity is drawn with geometrical parameters and reference system.

Solution 2.

The schematic of the exercise is shown in figure 3.

Figure 3: Schematic of an infinitely long Solenoid of radius b, with areas inside (blue) and outside (green) marked.

B⃗ = µ0nIe⃗z (2)

Inside the coil (r < b):

Φm =

¨
blue surfaceB⃗ · da⃗

= |B⃗| · πr2

= µ0nIπr
2

(3)

Using Stoke’s theorem, ¨
B⃗ · da⃗ =

¨
∇⃗ × A⃗ · da⃗ =

˛
A⃗ · d⃗l (4)

Symmetry analysis of A⃗ suggests that it must be a vector field circulating around the vector field B⃗ in a plane
perpendicular to B⃗, as B⃗ is assumed to consist of infinitely long, straight field lines: A⃗ = Aφe⃗φ. Using cylindrical
coordinates,

⇒
˛

A⃗ · ds⃗ = Aφ · 2πr (5)

Use equation 3 to get Φm = µ0nIπr
2 = Aφ · 2πr. ⇒ Aφ = 1

2µ0nIre⃗φ
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Outside the coil (r > b):

Φm =

¨
green surfaceB⃗ · da⃗

= |B⃗| · πb2

= µ0nIπb
2

(6)

Equation 5 still reads:
¸
A⃗ · ds⃗ = Aφ · 2πr.

⇒ A⃗φ =
1

2
µ0nI

b2

r
e⃗φ (7)

Now for B⃗ for r > b: Equation 7 needs to be considered in B⃗ = ∇⃗ × A⃗. Remember that Az = 0 and Ar = 0,
only Aφ ̸= 0.

∇⃗ × A⃗ = (
1

r

∂Az

∂φ
− ∂Aφ

∂z
)e⃗r + (

∂Ar

∂z
− ∂Az

∂r
)e⃗φ +

1

r
(Aφ + r

∂Aφ

∂r
− ∂Ar

∂φ
)e⃗z (8)

The only non-zero terms here are:
Aφ

r and 1
r r

∂Aφ

∂r .

Aφ

r
=

1

2
µ0nI

b2

r2
(9)

1

r
r
∂Aφ

∂r
=

∂Aφ

∂r
=

∂

∂r
(
1

2
µ0nI

b2

r
) = −1

2
µ0nI

b2

r2
(10)

Using 9 and 10 in 8, B⃗ = ∇⃗ × A⃗ =
Aφ

r + 1
r r

∂Aφ

∂r = 1
2µ0nI

b2

r2 + (− 1
2µ0nI

b2

r2 ) = 0 The vector field A⃗ calculated
before is consistent with our original assumption that B = 0 outside of the infinitely long solenoid.

Solution 3.

The ring is falling. Using Ampere’s law for a magnetic field generated by a wire B ∝ r−1 we know that the magnetic
flux in the ring is increasing. Geometry of the system is illustrated in Fig. 4. To counteract this increasing magnetic

Figure 4: Sketch to understand the geometry of system when the ring is falling.
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flux the current will start flowing counterclockwise in the ring.

Solution 4.

a) emf is ∆V = −dΦ
dt .

We must find the flux

Φ =
´
Σ
B⃗ · dσ⃗ = µ0I(t)l

2π

´ 2d
d

dr
r = µ0I(t)

2π l · ln(2).
We conclude that

∆V (t) = − d
dt

(
µ0I(t)
2π l · ln(2)

)
= −I0ω cos(ωt)µ0l

2π ln(2) = −I0ω cos(ωt)µ0

2π .

b) |∆Vpeak| = RIpeak = I0ω
µ0l
2π ln(2) ⇒ I0 = RIpeak

2π
µ0ωl·ln(2) =

1000
20π A = 15.9 A.

c) The current flows in opposite direction in the two wires. Measuring at the same time these two conductors
does not detect any current because for opposite current the generated magnetic fields cancel each other out
giving zero total field.

d) For a DC current the field is constant in time therefore the time derivative of the flux, i.e. the electromotive
force, is zero. This method does not work for DC measurements.

Solution 5.

a) The vector potential of the loop is given by A⃗(r⃗) =
µ0I

4π

¸ dl⃗′

|r⃗ − r⃗′|
. Considering the geometry of the problem

we have: r⃗ = rêr(θ, ϕ = 0) and r⃗′ = Rêr′(θ
′ = π

2 , ϕ
′). From the radial unit vector in spherical coordinate

êr(θ, ϕ) = sin θ cosϕx̂+sin θ sinϕŷ+cos θẑ, we have r⃗ = r(sin θx̂+cos θẑ) and r⃗′ = R(cosϕ′x̂+sinϕ′ŷ). Hence,

|r⃗−r⃗′| =
(
r2 +R2 − 2rR sin θ cosϕ′)1/2. The loop element vector is dl⃗′ = Rdϕ′êϕ′ = Rdϕ′(− sinϕ′x̂+cosϕ′ŷ)

where we express the azimuthal unit vector in Cartesian coordinates. Therefore, we need to evaluate the
following integration to obtain A⃗:

A⃗ =
µ0I

4π

ˆ 2π

0

Rdϕ′(− sinϕ′x̂+ cosϕ′ŷ)

(r2 +R2 − 2rR sin θ cosϕ′)
1/2

.

Using the hint given in the exercise, we obtain

A⃗ =
µ0I

4π

R√
r2 +R2

ˆ 2π

0

dϕ′(− sinϕ′x̂+ cosϕ′ŷ)

(
1 +

rR

r2 +R2
sin θ cosϕ′

)
.

The x component of vector potential, Ax vanishes as follows

Ax =
µ0I

4π

R√
r2 +R2

ˆ 2π

0

dϕ′
(
− sinϕ′ − rR

r2 +R2
sin θ sinϕ′ cosϕ′

)
=

µ0I

4π

R√
r2 +R2

[
cosϕ′ +

rR

r2 +R2
sin θ

(
1

2

(
1

2
cos 2ϕ′

))]2π
0

= 0.

The non-vanishing y component of vector potential, Ay is

Ay =
µ0I

4π

R√
r2 +R2

ˆ 2π

0

dϕ′
(
cosϕ′ +

rR

r2 +R2
sin θ cos2 ϕ′

)
=

µ0I

4π

R√
r2 +R2

[
sinϕ′ +

rR

r2 +R2
sin θ

(
1

2

(
ϕ′ +

1

2
sin 2ϕ′

))]2π
0

=
µ0I

4π

(
rπR2

(r2 +R2)
3/2

)
sin θ.
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Figure 5: Two mirror image elements on the loop with respect to axis ϕ = 0.

Contribution of each element dl⃗′ to the vector potential is dA⃗ ∝ dl⃗′

|r⃗ − r⃗′|
. From this we see that dA⃗ is parallel

to dl⃗′. Hence, we now analyze the symmetries of elements dl⃗′ around the loop to describe their respective

contribution of dA⃗ to the total vector potential. Consider two elements dl⃗′1 and dl⃗′2 which are mirror images
with respect to the axis ϕ = 0 (which is defined by projecting the observation point P onto the x− y plane).

By decomposing dA⃗ to its parallel and perpendicular components with respect to the axis ϕ = 0, we have:
dA⃗ = dA⃗∥ + dA⃗⊥. It is evident from Fig. 5 that dA⃗∥,1 = −dA⃗∥,2 and dA⃗⊥,1 = dA⃗⊥,2. Integrating over full

loop results in a non-vanishing A⃗⊥ while A⃗∥ vanishes.

b) The same arguments from part (a) holds for any ϕ as it is shown in Fig. 6. Therefore, for each ϕ we will have

a non-vanishing A⃗ = A⃗⊥ = Aϕêϕ′ where Aϕ =
µ0I

4π

(
rπR2

(r2 +R2)
3/2

)
sin θ.

c) For the case of r ≫ R we can approximate the result of the previous part as A⃗ = A⃗⊥ = Aϕêϕ =
µ0I

4π

(
rπR2

r3

)
sin θêϕ. Knowing that m⃗ = Ia⃗ = IπR2ẑ and r⃗ = rêr we have

m⃗× r⃗ = IrπR2

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

0 0 1

sin θ cosϕ sin θ sinϕ cos θ

∣∣∣∣∣∣∣∣∣∣
= IrπR2 (x̂(− sin θ cosϕ) + ŷ(sin θ sinϕ))

= IrπR2 sin θêϕ

Hence, A⃗(r, θ, ϕ) =
µ0

4π

m⃗× r⃗

r3
=

µ0

4π

m⃗× r̂

r2
.

d) The magnetic field is given by B⃗ = ∇⃗ × A⃗. In spherical coordinates by considering Ar = 0 and Aθ = 0 we
have:
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Figure 6: Two mirror image elements on the loop with respect to axis ϕ.

∇⃗ × A⃗ =
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣

êr rêθ r sin θêϕ

∂

∂r

∂

∂θ

∂

∂ϕ

Ar rAθ r sin θAϕ

∣∣∣∣∣∣∣∣∣∣∣
=

1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣

êr rêθ r sin θêϕ

∂

∂r

∂

∂θ

∂

∂ϕ

0 0 r sin θAϕ

∣∣∣∣∣∣∣∣∣∣∣
=

1

r2 sin θ

[
êr

(
∂

∂θ
(r sin θAϕ)

)
+ rêθ

(
− ∂

∂r
(r sin θAϕ)

)]
.

Using Aϕ =
µ0I

4π

(
πR2

r2

)
sin θ, we obtain B⃗ = Br êr +Bθ êθ with

Br =
1

r2 sin θ

∂

∂θ

(
r sin θ × µ0I

4π

(
πR2

r2

)
sin θ

)
=

2µ0

4π

IπR2

r3
cos θ =

2µ0m

4πr3
cos θ,

Bθ =
−1

r sin θ

∂

∂r

(
r sin θ × µ0I

4π

(
πR2

r2

)
sin θ

)
=

µ0

4π

IπR2

r3
sin θ =

µ0m

4πr3
sin θ.

This result is consistent with the formulas given in the lecture (”magnetic field of a magnetic dipole / current
loop”).
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