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Exercise sheet 8: Magnetic fields, Ampère-Laplace (Biot-Savart) law,
Ampère’s law

6/11/2024

We indicate the challenges of the problems by categories I (”warming-up”), II (”exam-level”), III (”advanced”).
For your orientation: problems attributed to category II have been or could have been considered for an exam
(assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting
cannot be repeated in an exam however.

Exercise 1.

(Thomson’s discovery/From Griffiths/Category I)
In 1897, J.J. Thomson“discovered” the electron by measuring the charge-to-mass ratio of “cathode rays”. He
selected particles of a specific speed via the following“trick”: He passed the beam through uniform crossed electric
and magnetic fields E⃗ and B⃗, respectively. They were mutually perpendicular and both of them were perpendicular
to the beam. He adjusted the magnitude of the electric field E until he got zero deflection for a fixed magnetic
field B0. What was the speed of the particles in terms of E and B0 which had a straight trajectory?

Exercise 2.

(Mass Spectrometer/Category I)

We consider the mass spectrometer represented in the sketch. Two isotopes of
lithium, with an atomic masses of 6 au and 7 au, are ionized (Li+) and accelerated
by a potential difference of 900 V. The accelerated ions enter a uniform magnetic
field B = 0.04 T, which deflects the beam. After moving along a semi-circle, the
ions hit a photographic film. Two spots separated by a distance x appear on the
film. Calculate x. Neglect friction, relativistic effects and gravitational force. Useful
unit conversion: 1 au = 1.66× 10−27 kg.

Exercise 3.

(Wire loop/Category II/After training: 15 min)

Using Ampère-Laplace law (Biot-Savart law), calculate the magnetic field B⃗ along the axis of a circular loop of
radius R carrying a current i.

Exercise 4.

(Ribbon/Category I (by following the hint)/After training: 10 min)
The sketch (see Fig. 1) shows the cross section of a very thin ribbon of width w, carrying a uniform current i
going into the plane of the sheet. The length of the ribbon is assumed to be infinite. Hint: Use the superposition
principle for the solution if you consider the ribbon to be composed of a linear array of infinitely long wires. Their
field was calculated in the lecture.

1. Find the norm and direction of the magnetic field B⃗ at a point P in the ribbon’s plane at a distance d. Please
make a drawing.

2. Draw the norm of the magnetic field as a function of d, with d going from 0 to ∞, and comment on the
behaviour of B⃗ in both limits.

Exercise 5.

(Current in sheet/Griffiths/Category I)

Find the magnetic field of a uniform surface current K⃗ = Kx̂ flowing over the whole x−y-plane (see Fig. 2), i.e. an

infinitely long and wide sheet of current K⃗. Hint: Analyze first the expected symmetry and relevant components
of the magnetic field.
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Figure 1: Schematic of the cross-section of a very thin ribbon of width w, carrying a uniform current i going into
the plane of the sheet.

Figure 2: Sheet of current and possible Amperian loop to analyze the magnetic field B after symmetry analysis.

Solution 1.

The force acting on the electrons is the Lorentz force F⃗ = q(E⃗ + v⃗ × B⃗). To have zero deflection of the electron

trajectory means that the acceleration is zero. This, by Newton’s law, leads to F⃗ = q(E⃗ + v⃗ × B⃗0) = 0⃗. From here

one finds that E⃗ = −v⃗× B⃗0. The settings of the experiment are such that v⃗ ⊥ B⃗0 hence |v⃗× B⃗0| = vB0. One finds
for the magnitude of the electric field that E = vB0. This means that at a fixed setting of the electric field and the
magnetic field, the particles that do not deflect from their original trajectory travel with velocity v = E/B0.

Solution 2.

Let us use M , Q and vM for the particle with mass 7 au and m, q and vm for the particle with mass 6 au. The
process to find the curvature radius is the same for the two objects, it will be shown only once.

The magnetic force F⃗ acting on the charged particle q is F⃗ = qv⃗ × B⃗. The magnetic interaction induces

a centripetal motion of the object. The centripetal acceleration relating to F⃗ is ac =
v2
m

Rm
, with Rm being the

curvature radius. ac is perpendicular to the tangential velocity vm and points inward towards the center of the

circular trajectory that the particle is describing. It follows that qvmB = m
v2
m

Rm
⇒ vm = RmqB

m . When the particle
enters the zone with uniform magnetic field it has been accelerated with an electrostatic potential thus acquiring
kinetic energy: qV = 1

2mv2m.

Combining our knowledge about the system we obtain that qV = 1
2m

(
RmqB

m

)2

. Solving forRm we conclude that

Rm = 1
B

√
2mV
q . The same procedure is applied also for the other particle. The separation between the two spots

on the photographic film is x = 2(RM −Rm). Introducing the numerical values we find x = 2 ·(0.2858−0.2646)m =
0.0424m = 42.4mm

Solution 3.

From the Ampère-Laplace’s (Biot-Savart’s) law we derive: dB⃗ = µ0I
4π

u⃗t×u⃗rdl
r2 = µ0I

4π
ds⃗×r⃗
|r⃗|3 (Fig. 3), where ds is the

infinitesimal portion of circular loop. Because of symmetry all components off-z-axis cancel out, i.e., dB⃗ = dBẑ.
We solve this problem using cylindrical coordinates to exploit the symmetry. Refer to Fig. 3.
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r⃗ is always perpendicular to ds⃗ therefore |ds⃗ × r⃗| = |(ds)r|. To compute the total magnetic field at a generic

point z0 on the z-axis we calculate B⃗ =
´
dBẑ =

´
µ0I
4π

ds
|r⃗|2 ẑ cosϑ. The term cosϑ is motivated by the fact that we

project the vector ds⃗× r⃗ on the z-axis. It holds cosϑ = R√
R2+z2

0

.

The integral is evaluated over the entire circumference (indicated with Γ) that is described by the current loop:¸
Γ
µ0I
4π

ds
|r⃗|2 ẑ cosϑ = ẑ

( ¸
Γ

µ0I
4π

ds
|r⃗|2

R√
R2+z2

0

)
.

We apply cylindrical coordinates and write ds = Rdφ, where dφ is the angle in the plane of the loop running
from 0 to 2π through the entire circular loop.

B⃗(z0) = ẑ
´ 2π
0

µ0I
4π

Rdφ
R2+z2

0

R√
R2+z2

0

= ẑ µ0I
2

R2

(R2+z2
0)

3/2

Figure 3: Loop circuit is carrying current I. Geometrical parameters for determining distance and vectors at a
generic point along its axis.

Solution 4.

The ribbon can be broken down in strips with infinitesimal width dx. Then we use the superposition principle for all
these individual infinitely long, very narrow wires. We know the result of the field around such a wire with current
Iwire: Bwire =

µ0

2π
Iwire

x where x is the distance from the wire. Each of the wires carries a current di = (I/w)dx. We

sum up contributions coming from each of these parallel wires to find the magnetic field in point P⃗ . The drawing
of the system is illustrated in Fig. 4.

1. B = µ0

2π

´
Ribbon

di
x = µ0I

2πw

´ w+d

d
dx
x = µ0I

2πw ln
(
1 + w

d

)
.

The field direction is along ẑ.

2. For fixed width w, the field intensity goes to zero for d
w → ∞ and goes to infinity for d

w → 0.

The plotted physical quantity in fig. 5 is the normalized field intensity Bnorm = B/
(

µ0I
2πw

)
= ln

(
1 + 1

d/w

)
.

Solution 5.

The sketch of the problem is represented in Fig. 6. By Ampère-Laplace’s (Biot-Savart’s) law it follows that the

magnetic field can not have any x-component, i.e. B⃗ · x̂ = 0.
By symmetry any contribution along z coming from a filament at +y is cancelled out by the corresponding

filament at −y. Therefore the z-component of the magnetic field is also zero: B⃗ · ẑ = 0.
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Figure 4: Schematics of the geometry of the problem. The center of the reference framework is the point at which
we are interested in measuring the magnetic field. B⃗ points along z-axis.

Figure 5: Magnetic field as function of d/w. Magnetic field is normalized before plotting. Normalization factor is
µ0I
2πw

The magnetic field has non-zero y-component B⃗ · ŷ ̸= 0. We will now find the expression of By.

To recap so far we know that the current-carrying sheet generates a magnetic field B⃗ = (0, By, 0).

To calculate By we use Ampere’s law
¸
Γ
B⃗ · ds⃗ = µ0Ienc where ds⃗ follows the chosen Amperian loop along

path Γ as sketched in Fig. 7. The amperian loop Γ, that we selected, lies in the y, z-plane and the loop extends
both above and below the sheet with a length l as indicated. The integral in the Ampere’s law for this case gives¸
Γ
B⃗ · ds⃗ = B · (2l). In the integral all contributions with ds⃗ lying along z-axis vanish as we have discussed that

Bz = 0. Then we reach the result By · (2l) = µ0Ienc → By · (2l) = µ0 · (Kl).
The magnetic field magnitude is found to be By = 1

2µ0K. This result does not depend on the distance between
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Figure 6: Sketch of problem 5

Figure 7: Sketch of the Amperian loop

the current sheet and the position in space (such a uniform vector field was found in electrostatics for the electric
field of a uniformly charged infinitely wide plane).

By using the right hand rule one can infer the magnetic direction and conclude that

a) for z < 0: B⃗ = (+ŷ) 12µ0K

b) for z > 0: B⃗ = (−ŷ) 12µ0K.
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