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Exercise sheet 5: Dipole moments, capacitors, dielectrics

9/10/2024

We indicate the challenges of the problems by categories I (”warming-up”), II (”exam-level”), III (”advanced”).
For your orientation: problems attributed to category II have been or could have been considered for an exam
(assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting
cannot be repeated in an exam however.

For exercises on capacitors the video (link) is instructive.

Exercise 1.

(Potential of a spherical capacitor/Category II)
An initially neutral metallic ball (conductor) of radius R1 = 0.1 m is charged up with a charge Q by connecting
the ball to a potential of ϕ0 = 600 V with an ultrathin conductor wire (with respect to the electric ground (earth)
which is the potential valid at infinity). After the charging, the connection is cut abruptly such that the charges
stay on the disconnected ball. Two thin hemispheres (conductors), initially uncharged, of radii R2 = 0.11 m, are
taken from infinity and brought in a position such that they form a closed outer spherical shell with the same center
as the ball, without touching it. Calculate the potential of the inner ball for the following cases:

a) the hemispheres have no connection to the ground (earth) or the ball,

b) the hemispheres are connected to the ground (earth) using a perfect conductor,

c) the hemispheres are isolated from the ground and from the other ball when they are moved. Then, once in
position, they are connected to the ball using a perfect conductor.

Hints:
i) The ground (earth) is defined as a conductor of infinite capacity, such that it can provide/take any amount of
charge without changing its potential which is set to zero. ϕground = ϕ∞ = 0. Something connected to the ground
will always have zero potential.
ii) When a system is isolated, it means that no charge can leave it. Thus, its charge does not change. Its potential,
however, can change.

Exercise 2.

(Two different dielectrics; category I)
We consider the plate capacitors represented in Fig. 1 which have large surface area S and are separated by a small
distance d, brought to the potential difference ∆ϕ.

a. Express electric field E, electric displacement D, polarization P, and surface charge density σfree in those
capacitors as a function of the distance d, the surface area S, the potential difference ∆ϕ, and the dielectric
constants ϵ1 and ϵ2.

Figure 1: Type 1 (left) and type 2 (right) capacitors.

b. Calculate the absolute values of capacitances of the capacitors for S = 400 mm2, d = 10 mm, ϵ1 = 3.4 (pyrex
glass), ϵ2 = 5 (plexiglass). Refer to Fig. 1.
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c. Using the expression obtained in a., sketch the electric field inside the capacitor for the type 1 capacitor.
Consider the following cases: (i) ϵ1 < ϵ2, (ii) ϵ1 = ϵ2, and (iii) ϵ1 > ϵ2. What happens at the dielectric
interface? Describe the physical origin of what you see.

Exercise 3.

(Insertion of a dielectric slab: isolated capacitor; category I)
A parallel plate capacitor is charged using a voltage generator. The generator is then disconnected, leaving the
capacitor charged and isolated. A dielectric slab is then inserted between the conductive plates. Describe quali-
tatively how the charge Qfree, the potential difference ∆ϕ, the electric field E, and the capacitance C vary. The
capacitance is defined as C = Qfree

∆ϕ . Does the energy stored in the capacitor vary?

Exercise 4.

(Sphere with dielectric shell/Category II)
An insulating solid sphere with radius R is unevenly charged. The positive charge density is described by ρ = Kr
where K is a positive constant (with units of A.s/m4) and r ≤ R is the distance (in units of m) from center of
the sphere. This problem was discussed in exercise 4 of problem sheet 3. The electrical field outside the orange
sphere (Fig. 2) is given in the solution of problem sheet 3. Now the same sphere is surrounded by a homogeneous
dielectric shell ( blue shell in Fig. 2) extending from r = R to r = 2R. Consider an electric permittivity of εr = 2.
Sketch E(r) relative to the curve provided in in Ex. 4 on sheet 3. Hint: consult the solutions of exercise 4 on
problem sheet 3.

Figure 2: Sketch of the charged sphere with dielectric and vacuum surrounding.
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Solution 1.

For a sphere (metallic ball): E = Q
4πϵ0R2 . The electric field is in the radial direction.

For the calculation of a capacitance (always positive) of a spherical capacitor one can write ∆ϕ = −
´ a
b
E⃗ · d⃗l =

Q
4πϵ0

(
1
a − 1

b

)
, where Q is assumed to be positive and b > a. In this case the result is a positive value.

For the isolated ball, after biasing it to ϕ0 = 600 V, the stored charge is Q = 4πϵ0R1ϕ0. This is found by inverting
the formula by which one evaluates ϕ for a charge Q.

a) Hemispheres are isolated from both ground and the ball. The charge Q of the ball induces charge accumulation
−Q on the inner wall of the hemispheres.

Consequently +Q accumulates on the outer wall. The total net charge of the shell is zero and there is no
modification of voltage ϕ∗ of the ball, i.e. ϕ∗ = ϕ0.

b) Hemispheres are grounded. Charge −Q will appear on the inner wall of the hemispheres to counteract the
electric field of charge Q of the ball. The modified voltage of the ball is

ϕ∗ = −
´ R1

R2
E⃗ · d⃗l = Q

4πϵ0

(
1
R1

− 1
R2

)
= ϕ0

(
1− R1

R2

)
= 54.5V.

c) Hemispheres are isolated until reaching their final position then they are electrically connected to the metallic
ball. To restore equilibrium charge flows from the conductor ball to the (outer surface of) the conductor
hemispheres as the outer hemispheres form a Faraday cage and enforce E = 0 within this closed shell. The
original charge Q is now distributed over a spherical surface with a larger radius. This modifies the capacitance
of the interconnected conductors (ball and hemispheres).

The formula for the capacitance of the hemisphere reads Ch = 4πϵ0R2. Once the charge has reached its new
equilibrium Ch = Q/ϕ∗ ⇒ ϕ∗ = Q

4πϵ0R2
= ϕ0

R1

R2
= 545.5 V.

Solution 2.

a. Systems are both illustrated in Fig. 3.

Figure 3: Type 1 and type 2 capacitors.

Type 1. Let us consider Gaussian surfaces enclosing an interface with a metallic plate for both dielectrics sepa-
rately and the surface of the closed cylindrical volume inside each dielectric and parallel to the interface
amounts to Aα. From Gauss’s law in dielectric matter we write

‚
D⃗α ·da⃗ =

´
Aα

D⃗α ·da⃗ =
´
Aα

σfree,αda,
with α = 1, 2 being the index referring to dielectric 1 and 2. Integrals are solved to find: D1A = σfree,1A

and −D2A = σfree,2A. The surface charge density of each plate is ±σfree =
±Qfree

S according to the
potential difference. The surface densities of free charges for dielectric 1 and 2 are σfree,1 = +σfree and
σfree,2 = −σfree, respectively. We find that D1 = D2 = D = σfree.
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The voltage drop across the capacitor equals the potential difference across the capacitor. We assume

∆ϕ is positive. Then, the potential difference is ∆ϕ = −
´
E⃗ · d⃗l = E1

d
2 + E2

d
2 =

(
D1

ϵ1ϵ0
+ D2

ϵ2ϵ0

)
d
2 =

dD
2ϵ0

(ϵ−1
1 + ϵ−1

2 ) ⇒ D = 2ϵ0∆ϕ/d

(ϵ−1
1 +ϵ−1

2 )
= σfree. Here, E⃗ and d⃗l have been taken anti-parallel which follows

from the assumption of positive ∆ϕ. Also D⃗α = ϵαϵ0E⃗α (α = 1, 2) holds. Solving for Eα one finds

E1,2 = 2∆ϕ
d

ϵ2,1
ϵ1+ϵ2

. For the polarization vector in each dielectric P⃗1,2 the relation with the electric field is

exploited: P⃗1,2 = (ϵ1,2 − 1)ϵ0E⃗1,2 ⇒ P1,2 = 2∆ϕϵ0
d

ϵ2,1(ϵ1,2−1)
ϵ1+ϵ2

.

The capacitance of such system reads Ctype1 = Q/∆ϕ = (σS)/∆ϕ = (DS)/∆ϕ = 2ϵ0S/d

(ϵ−1
1 +ϵ−1

2 )
. This is

equivalent to two capacitors with the same plate surface areas and plate spacing d/2 that are connected
in series. Indeed, C−1

type 1 = d
2Sϵ0

(ϵ−1
1 + ϵ−1

2 ) = C−1
1 + C−1

2 .

Type 2. Voltage drop is constant therefore ∆ϕ = E1d = E2d ⇒ E1 = E2 = E = ∆ϕ/d. Using already mentioned
relations one obtains D1,2 = ϵ1,2ϵ0

∆ϕ
d and P1,2 = (ϵ1,2 − 1)ϵ0

∆ϕ
d . For the total charge Q we calculate

that σα = Dα therefore Q = S1σ1 + S2σ2 = (S/2)(σ1 + σ2).

The capacitance for this structure is Ctype 2 = Q/∆ϕ = (S/2)(σ1+σ2)
∆ϕ = ϵ0S

2d (ϵ1 + ϵ2) =
ϵ1ϵ0S
2d + ϵ2ϵ0S

2d =
C1 + C2 that is equivalent to two capacitors connected in parallel configuration.

b. Using the numerical parameters of the text calculations yield Ctype 1 = 1.43 pF and Ctype 2 = 2.97 pF.

c. Using the expression for the electric field obtained in a., one finds for the electric field inside the capacitor
the plot shown in Fig. 4. For this plot, we have assumed arbitrary values for the dielectric constants that
cover the three cases. For the case ϵ1 ̸= ϵ2, there is a discontinuity at the dielectric interface at d/2, with the
electric field increasing or decreasing depending on the relative sizes of the dielectric constants. The origin of
this jump in electric field is the presence of bound charge at the interface.

The accumulated bound charge Qbound present at the interface is due to e.g. the polarization of the molecules
(acting as small dipoles) within each dielectric. Their orientation is induced by the electric field that is
generated by surface charges of the capacitor. Depending on the direction of the electric field, the bound
charge Qbound at the interface of the two dielectrics can be either positive for ϵ2 < ϵ1 or negative for ϵ2 > ϵ1.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

r

d

E


2
Δ
ϕ

d
(ϵ
1
+
ϵ 2
)


ϵ1<ϵ2

ϵ1=ϵ2

ϵ1>ϵ2

Figure 4: The electric field E⃗ as a function of position r, both expressed in dimensionless units. r < 0.5 corresponds
to dielectric ϵ1 and r > 0.5 corresponds to dielectric ϵ2.
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Solution 3.

The capacitor is biased to a fixed voltage by a voltage generator. After disconnecting the system and isolating
it, the accumulated charge Qfree is kept. Inserting a dielectric material between the two plates does not alter the
charge.

The charge produces an electric field that acts as an external field for the dielectric: E⃗Q. The insertion of the

dielectric modifies the overall electric field in the capacitor, E⃗, as the dielectric becomes polarized.
Due to material polarization, the electric field inside the capacitor (i.e., inside the dielectric) is E⃗ = E⃗Q + E⃗pol,

where E⃗pol is the electric field that is induced by the polarization of the dielectric.
Due to this polarization of the dielectric, the randomly distributed polar molecules rearrange in an ordered

manner according to the sensed electric field (see Fig. 5). Now, because of molecular re-arrangement, the induced
field in the material counteracts the external field. This field, Epol, originates from the bound charges induced by
the polarization, P⃗ , on the surfaces of the dielectric, and it is anti-parallel to E⃗Q.

Therefore, the field E⃗ inside the capacitor decreases.
We conclude that the voltage drop across the capacitor plates decreases, as this value is proportional to the

field: ∆ϕ = Ed.
The capacitance C = Qfree

∆ϕ is inversely proportional to the voltage drop and therefore it increases.

The electrostatic energy density is U/V = ϵ0|E⃗|2
2 . After inserting the dielectric layer, the E decreases and hence

U/V decreases.

Figure 5: The sketch shows the arrangement of the molecules with a dipole moment in a dielectric when it is
inserted between two polarized plates.

Solution 4.

In the presence of a dielectric shell, solutions for the sphere surrounded by vacuum (exercise 4 from exercise sheet
3) hold inside the charged sphere (r ≤ R) and outside the dielectric shell (r > 2R), i.e.,

E(r ≤ R) =
Kr2

4ε0

E(r > 2R) =
KR4

4ε0r2

For R < r < 2R we need to use the Gauss’s law in the presence of a dielectric (for displacement vector D⃗ = ε0εrE⃗),‚
D⃗.da⃗ = 4πr2D = Qenc.

E =
KR4

4ε0εrr2
=

KR4

8ε0r2

The electric fields for when the sphere is surrounded by vacuum or a dielectric are sketched together in Fig. 6.
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Figure 6: Sketch of the electric field of a non-uniformly charged sphere surrounded by vacuum (Blue) and a dielectric
(red).
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