EPFL - PHYS-201(d) - Electromagnetism/Fluids - Fall 2024 Exercise sheet 3

Exercise sheet 3: Fields and Potentials, Gauss’s Law
25/09/2024

We indicate the challenges of the problems by categories I (?warming-up”), IT (”exam-level”), IIT (" advanced”).
For your orientation: problems attributed to category II have been or could have been considered for an exam
(assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting
cannot be repeated in an exam however.

For exercise 1 it is instructive to first watch the video (link)|and slides containing the solution for an electric field
of a charged half-sphere. There we outline how to first analyze symmetries in a 3D scenario and second perform
an integration considering ring-like elements.

Exercise 1.
(Potential and Electric Field of a Charged Circle) (Category I)

a) Find the expression for the potential ¢ at a height z over the center of a circle consisting of a uniformly
charged line as shown in Fig. The general formula for the potential is ¢(7) = [ 2NV Hint: Consider

Teo|F—r1|”
that the line is a 1D charge distribution.

b) Find the electric field at the same point.

Linear charge
density A

Figure 1: Only the line contains the charges. The black points indicate the center of the loop (bottom) and the
position (top) at which the potential ¢ needs to be evaluated.

Exercise 2.
(Charge Density from Electric field) (Category I)

We consider an electric field given by E(F) = kr3# in spherical coordinates. k is a positive constant and # is the
unit vector.

a) Which units does the constant k have?
b) Find the expression for the corresponding charge density p. How does it depend on the radial distance r?

¢) Sketch p(r) as a function of radial distance along a line passing through the origin and in a plane intersecting
the origin.

d) How large is p at r = 1 cm if the electric field amounts to £ = 5 kV/m at the same position?
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Figure 2: Sketch of a charged disk.

Exercise 3.

(Charged Disk) (Category II)
We consider a disk of radius R, carrying a total charge @, uniformly spread over the disk (Fig. |2).

a) Calculate the electric field at a distance z along the disk’s axis.

b) By considering the R — oo limit, find the electric field generated by a charged infinite plane. Hint: For a
charged infinite plane, the surface charge density o can be assumed finite.

¢) When R is finite, discuss the z > R and z < R limits. Hint: consider the electric field in the given limiting
cases up to leading order.

Exercise 4.
(Non-uniformly charged sphere/Category II)

An insulating solid sphere with radius R is unevenly charged. The positive charge density is described by p = Kr
where K is a positive constant (with units of C/m?*) and r is the distance (in units of m) from center of the sphere.

a) Assume the sphere to be surrounded by vacuum (Fig. [3). Find the equation describing the magnitude of the
electric field F at a distance r from the center of the sphere in terms of constant K and radius R. Consider
both cases of r < R and r > R. (Hint: the spherical symmetry allows for Gauss’s law with appropriately
chosen Gaussian surfaces.)

b) Sketch the result E(r) as a function of r from r» = 0 to r > R.

¢) Determine the equation for the electric potential function ¢(r) as a function of 7 in terms of constant K and
radius R. Sketch the result and provide the solutions for ¢(r) at r = 0 and r = R.

d) A point-like negative test charge ¢ with mass m is positioned at a distance r = 4R and first held at rest.
Then it is released. Find the equation for the velocity v at » = 2R in terms of K, R, ¢, and m.
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vacuum

Figure 3: Sketch of the charged sphere with vacuum surrounding.

Solution 1.

We refer to Fig. [} All dg have the same distance |7— 7| from the considered point in space. The vector (7—7") has
always the same angle 6 with the z-axis. We use the notation = (z,y, z). From Fig. [4]it is clear that |7 —#'| = a.

a)

We start with the general formula for the potential as stated in the problem: ¢(7) = [ %. Here, the
term pdV can be identified with an infinitesimal charge dgq. The potential can then be written in terms of dg
as ¢ = [ —T— 47r60|F - Since we are considering a 1D line, the amount of charge dq is Adl, where ) is the linear
charge density. The potential is then found by integrating over the line path I" as:

— _ d _ Al _ (2T ARdy _ AR (27 _ _AR
¢ - .fI‘ d¢ - fl" 47r50|7g“ | 7 JT 4mepa — JO  4dmega T 4mega JO dgo - 47reoa27r'

We conclude that ¢> )‘R . To obtain the potential as a function of z one considers a = v/22 + R2. Then

6 =9(2) = s
For z > R the potential is approximated by ¢(z) ~
of a point-like charge.

2€0z This is the same functional form like the potential

The electric field is F = —V(;S Therefore we compute V(;S

Vd) = (%, %, %). Because of rotational symmetry, the electric field must be along the z-axis. Hence,
% = 0and 8—¢ =0.

1/2
We have a—‘p = % (—mﬁ%) = —W-
We conclude that E = —V¢ = (0, 0, wzﬁ—%w).

For z > R the electric field is approximated as follows: E=: The dependence on the

ZAR
2€o(z2+R2)3/2 22 22
z coordinate is z~2 which is like that of a point-like charge.

Solution 2.
We refer to Fig.

a)

b)

[E] = V/m and [r?] = m3. The unit vector is without a dimension, i.e. [#] = 1. This leads to [k] = [E]/[r®] =
V/m”.

V-E = pleo — p= eoﬁ-E . The electric field has radial symmetry. This suggests to use spherical coordinates.

Because of radial symmetry of E , B9 = 0 = E,, and only the radial component of the electric field is non-zero
E, = krd.
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Linear charge
density 2

Figure 4: Sketch of the problem. Relevant parameters and infinitesimal quantities used to calculate integrals are
defined.

Figure 5: Sketch of problem. Charge density is qualitatively sketched as function of radial distance.

The divergence operator is used in spherical coordinates (Mathematical Tool Box I). Because E depends only

A(r®E,) _ k or® _ 5kr* _ 2
or —r29r = 2 = Skr*.

on r, only the relevant term in the divergence operator is used and V-E= r%

We conclude that p = eoﬁ - E = beghr? = p(r). The charge density increases quadratically from the center
of the charged body.

¢) Charge density as function of radial distance is illustrated in Fig.

d) First we find the value of k: k = E/r® = % =5-10°Y. Then we compute:
p(r=1cm) = 5eghr? =5- (8.85-10712) - 5 109 - 10125 = 2.2125 1055 = 1.381 - 1044]e|/m?.

m3
Solution 3.
a) The system is symmetric with respect to z-axis, see Fig. @ Cylindrical coordinates are used for the following
solution.

Exploiting the symmetry of the problem we can argue that all electric field components not aligned with the
z-axis cancel out.

The non-zero electric field component is E, = E -2 = E - (cosf) = E - 2

cosf = % is found from Fig. @ In addition one finds d = v/r2 + 22.

We consider a uniform surface charge density o = @/.S, with S being the total area of the disk. Each element
dgq on the ring-like area (black) can be evaluated from: dq = odrrdy where @ is the angle in the plane of the

disk. Similar to exercise 1, for each ring-like area, the total charge dgring = 027T dq = f02 "odrrdy = 2nordr
The contribution to the electric field amounts to \dE_" | = 4;:#. If we go around such a ring the contributions

in z and y directions cancel out and only the components in z direction add up (dE needs to be projected
on the z axis considering cosf). Hence for a ring-like area (black) where dgq has a distance d from P, the
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y

Figure 6: dr is the infinitesimal width of the circular annulus at a distant r from the center of the disk. z is the
distance along z-axis of the generic point P from the center of the disk. d = v/22 + r2 is the distance between a
point of the ring (black) to the point P. The point P lies on the z-axis. Because of the symmetry of the problem,
off-z-axis components of the electric field cancel out.

electric field contribution at point P is evaluated as follows: dE, = dqi:f{)c;e = i:g)?‘;iiﬁr) We express cos 6
as follows: cosf = ﬁ (see above).
To obtain the total field we integrate over the disk considering a radius R: Fiot(z) f 0 4Tr€§z;‘;ir f;) e

oz

_o zZ
STl = % (1 - JW)

b) If R — +oo the electric field found in (a) approaches E = 5Z-. This agrees with the result obtained for the
electric field on one side of an infinitely wide charged plate

c¢) For finite R let us look at two limiting cases.

z> R . Let x = g. ‘We have to consider the case where r < 1:

bt = (1- 7imm) = 2 (1 o) - 5 (1- 7).

Performing a Taylor series around x — 0 until leading order gives:

Bor(2) = 5 (1 _ \/11+7x2> ~ o (1 _ (1 _ %:ﬁ +(9(x4))> - (1 _ (1 _ g +0(§f))> .

Thus, the electric field in the limit z > R is given by E =~ m, i.e. the electric field of a point-charge.
z < R . Let x = %. We have to consider the case where y < 1:

-9 (q1_ z -7 X ~ 7 1_
Bren(2) = 2¢o <1 \/W) 2¢9 (1 m) 2€9 (1=0+0().

The electric field in the limit z < R is given by E =~ % In the near field, the solution looks like the
result obtained for the electric field on one side of an infinitely wide charged plate, i.e. a plate capacitor.
Capacitors will be discussed in more detail during the next lecture.

Solution 4.
a) For r < R from Gauss’s law with a Gaussian surface at r < R we have ¢f E.dd = 4nr?E = Qg—gc with

s 1 T
enc = P = ramr-ar = 4m rear =4m =T =TT,
Q dv Kr'dnr?dr’ = AnK Bar! 4K4/4 Kr*
1% 0 0
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Therefore, the electric field is obtained as

1 Kr?
4rr?FE = —nKr? = E(r) = =
o) 4eg
For r > R again applying Gauss’s law ¢f E.dd = 4nr®E = Qg—;‘
r R r 1 R
Qenc = /// pdV = /Kr’47r7“'2dr’ = 47TK/ r3dr’ = 471'K/ r’3d7”—|—47rK/ Oxdr' = 4nK {7"4] = KR
1% 0 0 R 4 1o
1 KR*
4rr’F = —nKR* = E(r) = .
€0 4egr?

b) The electric field of part (b) is sketched in Fig.

¢) To calculate electric potential we have ¢(r) — ¢(co) = — [ E(r')dr’. We set ¢(c0) = 0. For r > R

"KRrR* , [KR']" KR!
o(r) = - oo deQr’? dr’ = [4507"’]00_ deor
Forr < R ‘ "
_ = | E(dr' = — E(dr' — | EG@)dr!
6(r) — 3(c0) /Oo (+')dr /Oo (+')dr /R (+')dr
T , ;L rKr/Q ;L KT/?’ T
otr) = () - [ 6’ = otm) — [ S —otm) - [T=|
K

R3 Kr3 KR? KR3 r3
o(r) = - - = 4- 73
450 1250 1260 1260 R
Sketch of the potential is given in Fig.

d) According to energy conservation law, the electric potential energy (ET = q¢(r)) of the charged particle will

change into kinetic energy (EX = 1mv?)

EP + EK = EP + EE

KR*

Ef) = EP(4R) = *|Q|m;

By = E"(2R) = —lal ——5 7

EF = EX(4R) = 0; EF = EX(2R) = %va

KRS | |KR3 L
160 gg, T2
1, KR3 <1 1) B |q‘KR3

2 4 16e0

—|al
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Figure 7: Sketch of the electric field F as a function of radial distance r.
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Figure 8: Sketch of the electric potential ¢ as a function of radial distance r.
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