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Exercise sheet 14: Reflection, refraction, interaction of EM waves with
matter, Poynting vector, Gauss Law, Magnetic fields, Ampère’s Law

—
18/12/2024

We indicate the challenges of the problems by categories I (“warming-up”), II (“exam-level”), III (“advanced”). For your
orientation: problems attributed to category II have been or could have been considered for an exam (assuming a specific
duration for finding the solution; see comments in the solutions). The exact problem setting cannot be repeated in an

exam however.

Exercise 1.

(EM wave in an absorbing material (good conductor)/Category I)

Consider an electromagnetic wave (EM) E⃗(x⃗, t) = E0ŷ ·ei(k⃗·x⃗−ωt) propagating along x⃗-direction in a lossy material.
We assume metallic aluminium (Al) exhibiting a complex refractive index ñ = n + iκ with κ > 0. In a lossy

material k⃗ = ωñ
c k̂ with k̂ being the unit vector in propagation direction. We consider light that in vacuum has

a wavelength λ of 546 nm. For this one finds n = 0.82 and κ = 5.99 in Al. Show that the light wave exhibits a
decaying amplitude when entering Al under normal incidence and quantify the so-called decay length after which
the intensity diminishes to 1/e. Compare this value with the wavelength.

Exercise 2.

(Refraction and (total internal) reflection/Category II
(After training for solution: 10 min))

In the figure we sketch a situation where no light beam leaves a prism at
the right edge (= total internal reflection at the second surface that the light
hits). The refractive index n is such that the angle of the refracted beam at
the right surface is just 90◦. This is the definition of the critical angle θc for
total internal reflection.

a) How large is n of the prism assuming that there is air outside the prism
with a refractive index equal to 1?

b) What kind of material would exhibit such a value n?

c) Where does the incident light beam go when the index n is (i) doubled,
and (ii) halved? Calculate the refraction angle when refracted light is
expected.

The following four problems review topics of the previous weeks/chapters in a way which is consistent
with a written exam problem

Exercise 3.

(Poynting vector concept applied to current in a perfect coaxial cable/Category II (After training
for solution: 20 min))

A coaxial cable consists of two concentric long hollow cylinders of zero resistance (perfect conductors); the inner has
a radius a, the outer has radius b, and the length of both is l, with l ≫ b, as shown in Fig. 1. The cable transmits
power from a battery to a load via a DC current I. The battery provides an electromotive force ε between the two
conductors at one end of the cable, and the load is a resistance R connected between the two perfect conductors
at the other end of the cable.

a) We consider that the battery charges the inner conductor to a charge -Q and the outer conductor to a charge
+Q due to the potential difference applied to them. At the same time a current I flows down the inner
conductor and back up the outer one as power is dissipated in R. Find the direction and magnitude of the
electric field E⃗ everywhere.
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Figure 1: A coaxial cable consists of two concentric long hollow cylinders of zero resistance.

b) Find the direction and magnitude of the magnetic field B⃗ everywhere.

c) Apply the concept of the Poynting vector S⃗ inside the coaxial cable and calculate S⃗.

d) By integrating S⃗ over an appropriate surface, find the power that flows into the coaxial cable.

e) How does your result in (d) compare to the power dissipated in the resistor?

Exercise 4.

(Loop on string/Category II (taken from an exam) time: 25 min )
Consider a current-carrying wire with a constant current I1 that is infinitely long. The current is along y-direction.
A square loop formed by a massless rigid conductor is positioned symmetrically above the wire as sketched. The
loop is parallel to the x, y-plane. The loop carries a constant current I2 and resides on a rigid string that is at
height z = h and parallel with the wire. The loop can slide along and rotate around the nonconducting string
without friction. The directions of currents flowing in the closed conductor loop and in the wire are indicated by
arrows.

Figure 2: Rectangular loop made of a perfect conductor (grey) positioned on a string (broken line). Separated by
a height h a current-carrying wire (black line) is present. The wire is straight and infinitely long. In the center
a top view is shown indicating the two positions for analyzing forces and torques. Geometrical parameters and
current-flow directions are defined in the central sketch and on the right image which shows a front view.

a) Calculate forces and torques acting at positions 1 and 2 due to current I1 (see figure) as a function of
separation h and side length a.

b) What is the total force on the string?

c) Does the loop rotate? If yes, what is the sense of rotation?
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Figure 3: A large solid sphere positioned at the origin of the x, y, z coordinate system, and a small solid sphere
located at x = d. We show the side view onto the central cross-sectional plane of the charged solid spheres (see
text).

Exercise 5.

(Charged Spheres) (Category II time needed after training: 20 min; this is taken from an exam)
Positive electrical charges are uniformly distributed in the volume of a large three-dimensional sphere of radius
Rl. The value of the uniform charge density is ρC. Assume that the large sphere of radius Rl is positioned next to
a small sphere [Fig. 3 (a)]. The central coordinate of the former sphere is at the origin of the coordinate system.
The central coordinate of the small sphere is on the x-axis with x = d. The small sphere of radius Rs is uniformly
charged with negative charges of a density ρs = −ρC. The radii of the two spheres are such that they do not
touch. Derive the formula for the electrical field vector E⃗ on the x-axis inside the small sphere depending on
ρC, Rl, x, and d.
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Exercise 6.

(Optical Fiber) (Category II time needed after training: 15 min; this is taken from an exam)

We consider a cylindrical optical fiber (Fig. 4) consisting of lossless transparent materials A in the core and B in the
shell (cladding). The fiber resides in vacuum. The shell of material B surrounds the core. Light of a specific wave-
length enters the fiber as sketched in the figure. The materials have different indices of refraction nA = 1.480 and
nB = 1.440. All light rays shown are in the same plane which is the mirror plane of the fiber through the central axis.

Figure 4: Sketch of the fiber.

a) What is the critical angle θ3 for the total internal reflection at the interface between materials A and B, i.e.,
core and cladding?

b) For what range of angle θ1 is light totally internally reflected at the core-cladding interface?

c) If light is totally internally reflected at the upper core-cladding interface of the fiber, will it be totally internally
reflected at the lower core-cladding interface (assuming the relevant interfaces to be parallel)?
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Solution 1.

ñ = n+ iκ and k⃗ = ω
c ñk̂ ⇒ k⃗ = (n+ iκ)ωc k̂

E⃗(r⃗, t) = E⃗1e
i(k⃗·r⃗−ωt) = E⃗0e

i(nω
c k̂·r⃗−ωt) · ei(iκω

c ·k̂·r⃗) = E0e
i(nω

c k̂·r⃗−ωt)︸ ︷︷ ︸
1○

· e−(κω
c ·k̂·r⃗)︸ ︷︷ ︸
2○

where 1○ is the description of an electromagnetic wave in a lossless medium, and 2○ represents the attenuation,
i.e., exponential decay, of the wave.

Assuming, k̂ · r⃗ = x, ⇒ E⃗(x, t) = E0e
i(nω

c x−ωt) · e−(κω
c x) Putting in the values given in the problem,

⇒ E⃗(x, t) = E0e
i( x

106.0 nm−3.45×1015t) · e−( x
14.5 nm ). To find the decay length we have to consider the intensity

I ∝ |E⃗|2. Using the derived expression of the electric field, we get a decay length of λdecay = c
2κω = 7.3 nm, which

is much smaller than the vacuum wavelength of the incoming light (546 nm).

Solution 2.

a) Using the Snell’s law with the notation from the problem set and the sketch in Fig. 5, we obtain

sin θr
sin θi

=
nI

nII
=

sin 90◦

sin 45◦
⇒ nI = n =

1 · 1
sin 45◦

=
√
2,

where nII represents the refractive index of air, and nI = n with n being the unknown refractive index of the
prism. The difference with the lecture (on the right) is just that we consider refraction for a beam coming
from an optically denser medium and entering air. Snell’s law applies in the given form, always considering
that medium I contains θi (incident beam impinging on the considered interface) and medium II contains θr
of the refracted beam. In the given case: θr > θi.

Figure 5: Sketch for the solution 4.

b) Such a value of n is consistent with a quartz prism.

c) We again use the Snell’s law. From part (a), n =
√
2. (i) When n is doubled nnew = 2

√
2. This means,

sin θr
sin θi

=
nI

nII
⇒ sin θr

sin 45◦
=

2
√
2

1

This would lead to the value of the sin θr being greater than 1, which is invalid. Here, the beam gets reflected
at the surface, before ever being refracted.

(ii) When n is halved nnew = 1√
2
. This means,

sin θr
sin θi

=
nI

nII
⇒ sin θr

sin 45◦
=

1√
2
⇒ sin θr =

1

2
⇒ θr = 30◦
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Solution 3.

a) Consider a Gaussian surface in the form of a cylinder with radius r and length l, coaxial with the cylinders.
Inside the inner cylinder (r < a) and outside the outer cylinder (r > b) no charge is enclosed and hence the
field is 0. In between the two cylinders (a < r < b) the charge enclosed by the Gaussian surface is −Q, the
total flux through the Gaussian cylinder is

ΦE =

‹
E⃗ · dA⃗ = E(2πrl) (1)

Thus, Gauss’s law leads to E(2πrl) = qenc

ϵ0
, or

E⃗ =
qenc

2πϵ0rl
r̂ = − Q

2πϵ0rl
r̂ (inward) for a < r < b, 0 elsewhere (2)

b) Just as with the E field, the enclosed current Ienc in the Ampere’s loop with radius r is zero inside the inner
cylinder (r < a) and outside the outer cylinder (r > b) and hence the field there is 0. In between the two
cylinders (a < r < b) the current enclosed is −I.

Applying Ampere’s law, ˆ
Γ

B⃗ · ds⃗ = B(2πr) = µ0Ienc,

we obtain

B⃗ = −µ0I

2πr
ϕ̂ (clockwise viewing from the left side) for a < r < b, 0 elsewhere (3)

c) For a < r < b, the Poynting vector is

S⃗ =
1

µ0
E⃗ × B⃗ =

1

µ0
(− Q

2πϵ0rl
r̂)× (−µ0I

2πr
ϕ̂) =

QI

4π2ϵ0r2l
k̂ (from right to left) (4)

On the other hand, for r < a and r > b, we have S⃗ = 0.

d) With dA⃗ = (2πrdr)k̂, the power is

P =

"
S

S⃗.dA⃗ =
QI

4π2ϵ0l

ˆ a

b

1

r2
(2πrdr) =

QI

2πϵ0l
ln(

b

a
) (5)

e) Since

ε =

ˆ
E⃗.ds⃗ =

ˆ a

b

Q

2πrlϵ0
dr =

Q

2πlϵ0
ln(

b

a
) = IR (6)

the charge Q is related to the resistance R by Q = 2πϵ0lIR
ln(b/a) . The above expression for P becomes

P =
2πϵ0lIR

ln(b/a)

I

2πϵ0l
ln(

b

a
) = I2R (7)

which is equal to the rate of energy dissipation in a resistor with resistance R.

Solution 4.

a) We calculate the magnetic field B⃗1 due to I1 and then analyze the forces acting on positions 1 and 2. We

refer to Fig. 6: B⃗1 = e⃗θ
µ0I1
2πr , with r2 = h2 + (a/2)2. This is the known result of a very long wire.

We consider an infinitesimal fraction d⃗l of the square loop: at position 2 the force acting on it is dF⃗2 =
I2d⃗l × B⃗1. We integrate over the length a of the relevant segment to find the total force at position 2:

F⃗2 = I2a
µ0I1
2πr (−e⃗r2).
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Figure 6: Sketch of the problem with relevant parameters to conduct the vectorial analysis of forces and torques.

Analogously we find the force acting at position 1:

F⃗1 = I2a
µ0I1
2πr (+e⃗r1).

We define the radial unit vectors as follows: e⃗r1 = (−a/2
r , 0, h

r ) and e⃗r2 = (a/2r , 0, h
r ).

Using the forces F⃗1 and F⃗2 we find the torques:

τ⃗2 = r⃗2 × F⃗2 = r2F2⊥e⃗y (pointing into the paper), with F2⊥ = F2[cos(α)] = F2[h/r].

The torque is collinear with the y-axis: the force lies in the x, z-plane and r⃗2 is directed along x.

We obtain that:
τ⃗2 = a

2F2
h
r e⃗y = a

2
aµ0I1I2

2π
√

h2+(a/2)2
h√

h2+(a/2)2
e⃗y = µ0I1I2a

2h
4π[h2+(a/2)2] e⃗y

We note that τ⃗1 = r⃗1 × F⃗1 = τ⃗2.

The total torque is the vector sum: τ⃗ = τ⃗1 + τ⃗2 = 2τ⃗2

b) The total force on the string is F⃗ = F⃗1 + F⃗2 = 2F2,||(−e⃗x) because the z-components cancel out. We need to
compute F2,||.

F2,|| = sin(α)|F⃗2| = a/2√
h2+(a/2)2

|F⃗2|.

We conclude that F⃗ = 2µ0I1I2a
2

4π[h2+(a/2)2] (−e⃗x)

c) The square loop rotates in the clockwise direction as the total torque is directed along +y-direction.

Solution 5.

We use Gauss’s law to compute to separately the electric field generated by the large sphere E⃗l and the one
generated by the small sphere E⃗s.

For the large sphere we need to consider x > Rl. The Gauss’s law reads
‚

E⃗l · da⃗ = Q/ϵ0. Q represents in this

case the total charge that is uniformly distributed in the large sphere. The vectors E⃗l and da⃗ are parallel to each
other and point towards the same direction. The electric field has the same magnitude everywhere on the Gaussian
surface and can be taken out of the integral. Therefore Gauss’s law simplifies to:
El

‚
da = El4πx

2 = Q/ϵ0.
We now express Q in terms of the charge density: Q = ρC

4
3πR

3
l .

The electric field of the large sphere at a point xp along the x-axis with xp = x > Rl is then:

E⃗l(x) = x̂ 1
4πx2Q/ϵ0 = x̂

ρC
4
3πR

3
l

4πϵ0x2 .
Using the same approach we compute the electric field due to the small sphere at the point xp = x. Here we

need to consider that this point lies inside the sphere volume. Making use of Fig. 7 we observe that xs < Rs.
Gauss’s law is

‚
E⃗s · da⃗ = qenc/ϵ0. The enclosed charge reads qenc = −ρC

4
3πx

3
s.
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Figure 7: Sketch of the problem geometry.

E⃗s(x) = x̂ 1
4πx2

s
qenc/ϵ0 = x̂

−ρC
4
3πx

3
s

4πϵ0x2
s

. Now we need to express xs in a way consistent with the coordinate system

of the large sphere: we notice that |xs| = |x− d|.
The formula for E⃗s(x) is rewritten into: E⃗s(x) = x̂

−ρC
4
3π(x−d)3

4πϵ0|x−d|2 = x̂−ρC(x−d)3

3ϵ0|x−d|2 .

By superposition principle the total electric field is:

E⃗tot(x) = E⃗l(x) + E⃗s(x) =
(

ρCR3
l

3ϵ0x2 − ρC(x−d)3

3ϵ0|x−d|2

)
x̂

Solution 6.

a) At the critical angle θ3,crit the angle of refraction is 90◦. Applying Snell’s law gives sin θ3,crit = nB/nA ⇒
θ3,crit = sin−1

(
nB

nA

)
= sin−1

(
1.440
1.480

)−1
= 76.7◦.

b) There is total internal reflection for:

90◦ ≥ θ3 ≥ θ3,crit θ2 = 90◦ − θ3 (8)

Additionally, we have sin θ1
sin θ2

= nA

1 ⇒ θ1,crit = sin−1 (nA sin (90◦ − θ3)) = 20.0◦. The relevant range of θ1 for
total internal reflection is therefore: 0 ≤ θ1 ≤ 20.0◦.

c) Due to the law of reflection θr = θi, the incident angle θ3 for total internal reflection at the top material
A/material B interface is also the relevant incident angle for the bottom interface: yes, the light will be
totally internally reflected at both interfaces.
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