EPFL - PHYS-201(d) - Electromagnetism/Fluids - Fall 2024 Exercise sheet 14

Exercise sheet 14: Reflection, refraction, interaction of EM waves with
matter, Poynting vector, Gauss Law, Magnetic fields, Ampere’s Law

18/12/2024
We indicate the challenges of the problems by categories I (“warming-up”), II (“exam-level”), III (“advanced”). For your
orientation: problems attributed to category II have been or could have been considered for an exam (assuming a specific
duration for finding the solution; see comments in the solutions). The exact problem setting cannot be repeated in an
exam however.

Exercise 1.

(EM wave in an absorbing material (good conductor)/Category I)

Consider an electromagnetic wave (EM) E(f, t) = Eoy- ¢!k #=wt) hropagating along Z-direction in a lossy material.
We assume metallic aluminium (Al) exhibiting a complex refractive index 7 = n + ik with £ > 0. In a lossy
material k = %l% with k being the unit vector in propagation direction. We consider light that in vacuum has
a wavelength A\ of 546 nm. For this one finds n = 0.82 and k = 5.99 in Al. Show that the light wave exhibits a
decaying amplitude when entering Al under normal incidence and quantify the so-called decay length after which
the intensity diminishes to 1/e. Compare this value with the wavelength.

Exercise 2.

(Refraction and (total internal) reflection/Category II
(After training for solution: 10 min))

In the figure we sketch a situation where no light beam leaves a prism at

the right edge (= total internal reflection at the second surface that the light air
hits). The refractive index n is such that the angle of the refracted beam at
the right surface is just 90°. This is the definition of the critical angle 8. for 45°
total internal reflection.

Y

a) How large is n of the prism assuming that there is air outside the prism
with a refractive index equal to 17

b) What kind of material would exhibit such a value n?

¢) Where does the incident light beam go when the index n is (i) doubled,
and (ii) halved? Calculate the refraction angle when refracted light is
expected.

The following four problems review topics of the previous weeks/chapters in a way which is consistent
with a written exam problem

Exercise 3.

(Poynting vector concept applied to current in a perfect coaxial cable/Category II (After training
for solution: 20 min))

A coaxial cable consists of two concentric long hollow cylinders of zero resistance (perfect conductors); the inner has
a radius a, the outer has radius b, and the length of both is I, with [ > b, as shown in Fig. [I| The cable transmits
power from a battery to a load via a DC current I. The battery provides an electromotive force € between the two
conductors at one end of the cable, and the load is a resistance R connected between the two perfect conductors
at the other end of the cable.

a) We consider that the battery charges the inner conductor to a charge -@ and the outer conductor to a charge
+@ due to the potential difference applied to them. At the same time a current I flows down the inner
conductor and back up the outer one as power is dissipated in R. Find the direction and magnitude of the
clectric field E everywhere.
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Figure 1: A coaxial cable consists of two concentric long hollow cylinders of zero resistance.

b) Find the direction and magnitude of the magnetic field B everywhere.

¢) Apply the concept of the Poynting vector S inside the coaxial cable and calculate S.

d

By integrating S over an appropriate surface, find the power that flows into the coaxial cable.

)
)
)
e) How does your result in (d) compare to the power dissipated in the resistor?

Exercise 4.

(Loop on string/Category II (taken from an exam) time: 25 min )

Consider a current-carrying wire with a constant current I that is infinitely long. The current is along y-direction.
A square loop formed by a massless rigid conductor is positioned symmetrically above the wire as sketched. The
loop is parallel to the x,y-plane. The loop carries a constant current I and resides on a rigid string that is at
height z = h and parallel with the wire. The loop can slide along and rotate around the nonconducting string
without friction. The directions of currents flowing in the closed conductor loop and in the wire are indicated by
arrows.
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z

4

a i
1|/

l, front view

/ top view N
1] z
Ih

wire

Figure 2: Rectangular loop made of a perfect conductor (grey) positioned on a string (broken line). Separated by
a height h a current-carrying wire (black line) is present. The wire is straight and infinitely long. In the center
a top view is shown indicating the two positions for analyzing forces and torques. Geometrical parameters and
current-flow directions are defined in the central sketch and on the right image which shows a front view.

a) Calculate forces and torques acting at positions 1 and 2 due to current I; (see figure) as a function of
separation h and side length a.

b) What is the total force on the string?

¢) Does the loop rotate? If yes, what is the sense of rotation?
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(@ *

Figure 3: A large solid sphere positioned at the origin of the x,y, z coordinate system, and a small solid sphere
located at @ = d. We show the side view onto the central cross-sectional plane of the charged solid spheres (see
text).

Exercise 5.

(Charged Spheres) (Category II time needed after training: 20 min; this is taken from an exam)
Positive electrical charges are uniformly distributed in the volume of a large three-dimensional sphere of radius
R). The value of the uniform charge density is pc. Assume that the large sphere of radius Rj is positioned next to
a small sphere [Fig. [3| (a)]. The central coordinate of the former sphere is at the origin of the coordinate system.
The central coordinate of the small sphere is on the z-axis with z = d. The small sphere of radius Ry is uniformly
charged with negative charges of a density ps = —pc. The radii of the two spheres are such that they do not
touch. Derive the formula for the electrical field vector E on the z-axis inside the small sphere depending on
pc, Ry, z,and d.
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Exercise 6.
(Optical Fiber) (Category II time needed after training: 15 min; this is taken from an exam)

We consider a cylindrical optical fiber (Fig. E[) consisting of lossless transparent materials A in the core and B in the
shell (cladding). The fiber resides in vacuum. The shell of material B surrounds the core. Light of a specific wave-
length enters the fiber as sketched in the figure. The materials have different indices of refraction np = 1.480 and
np = 1.440. All light rays shown are in the same plane which is the mirror plane of the fiber through the central axis.

i claddin
partially reflected ray upper side vawm . g\

central axis
offiber .0 _

incident light ray

lower side

Figure 4: Sketch of the fiber.

a) What is the critical angle 63 for the total internal reflection at the interface between materials A and B, i.e.,
core and cladding?

b) For what range of angle 6, is light totally internally reflected at the core-cladding interface?

c) If light is totally internally reflected at the upper core-cladding interface of the fiber, will it be totally internally
reflected at the lower core-cladding interface (assuming the relevant interfaces to be parallel)?
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Solution 1.

ﬁ:n—l—mandlg:%ﬁl%égz(n+iﬁ)%l%

E(Ft) = E*lei(is.rtm) _ Eoez(”TwlAc-Ffwt) (52 kT) _ Eoei(%k.ﬂwt) Lo (B2 k)
@ @)
where () is the description of an electromagnetic wave in a lossless medium, and (2) represents the attenuation,
i.e., exponential decay, of the wave.
Assuming, k7= T, = E(x, t) = Eyetz=wt) . o=(“2) Putting in the values given in the problem,
= E(x,t) = Eye!(tostam —3:45x10°) . o~(mmd5m) . To find the decay length we have to consider the intensity

c

I x |E |2. Using the derived expression of the electric field, we get a decay length of Adecay = 5.5 = 7-3 nm, which

is much smaller than the vacuum wavelength of the incoming light (546 nm).

Solution 2.
a) Using the Snell’s law with the notation from the problem set and the sketch in Fig. 5] we obtain
sinf, nr sin 90° 1-1 _ \/i

= = = Snp=n=—
sinf; nyr  sin4b° sin 45°

where n; represents the refractive index of air, and n; = n with n being the unknown refractive index of the
prism. The difference with the lecture (on the right) is just that we consider refraction for a beam coming
from an optically denser medium and entering air. Snell’s law applies in the given form, always considering
that medium I contains 6; (incident beam impinging on the considered interface) and medium II contains 6,
of the refracted beam. In the given case: 6, > 0;.

From lecture:

Ray picture (*geometrical optics”)

Reflection law
-« Incident Reflected

beam beam
6; =6y,

. Medium|

b n=n for a transparent
75 4 dielectric (insulator) only’
| some part is

reflected

Medium |

4 r“} . Medium |1
N Medium Il

8,
ng=1 \

v
Refracted ray
Snell’s law for refraction:

sin(6) _ny _ vy
sin(6;) ny v

Figure 5: Sketch for the solution 4.

b) Such a value of n is consistent with a quartz prism.
c¢) We again use the Snell’s law. From part (a), n = v/2. (i) When n is doubled n,,c,, = 2v/2. This means,

sinf,  ny N sinf, 2v/2
sinf;  ngg sin45° 1

This would lead to the value of the sin 6, being greater than 1, which is invalid. Here, the beam gets reflected
at the surface, before ever being refracted.

(ii) When n is halved npe = % This means,
sinf,  nr sin 6,

1 1
— = = — =sinf, = - =60, =30°
sinf; nyr sin 45° V2 St 2
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Solution 3.

a)

Consider a Gaussian surface in the form of a cylinder with radius r and length [, coaxial with the cylinders.
Inside the inner cylinder (r < a) and outside the outer cylinder (r > b) no charge is enclosed and hence the
field is 0. In between the two cylinders (a < r < b) the charge enclosed by the Gaussian surface is —(Q, the
total flux through the Gaussian cylinder is

dp = #E - dA = E(27rl) (1)
Thus, Gauss’s law leads to E(2nmrl) = 4222, or

Q

2meqrl - 2meqgrl

7 (inward) for a < r < b, 0 elsewhere (2)

Just as with the F field, the enclosed current I.,. in the Ampere’s loop with radius r is zero inside the inner
cylinder (r < a) and outside the outer cylinder (r > b) and hence the field there is 0. In between the two
cylinders (a < r < b) the current enclosed is —1I.

Applying Ampere’s law,
/ B-ds= B(27r) = polencs
r

we obtain

S = iﬁ x B = i _QW?OTZf X (—% %) = 47rcilr2lk (from right to left) (4)
On the other hand, for » < a and r > b, we have S=o0.
With dA = (2rrdr)k, the power is
P= S dA = 47r260z /b :2 (27rdr) = 25; lln(g) (5)
Since .
e = /E.d§= b 27260 dr = 27360 ln(g) =IR (6)

the charge @ is related to the resistance R by Q = %ng% 1)%. The above expression for P becomes

_ 2mellR 1 b 9
YT
~ In(b/a) 27reoll n(3) R @

which is equal to the rate of energy dissipation in a resistor with resistance R.

Solution 4.

a)

We calculate the magnetic field B due to I, and then analyze the forces acting on positions 1 and 2. We

refer to Fig. @ By =¢ ’5011 with 72 = h2 + (a/2)2. This is the known result of a very long wire.

We consider an infinitesimal fraction di of the square loop: at position 2 the force acting on it is dFy, =
I>dl x By. We integrate over the length a of the relevant segment to find the total force at position 2:

= Lath(—g,,).
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Figure 6: Sketch of the problem with relevant parameters to conduct the vectorial analysis of forces and torques.

Analogously we find the force acting at position 1:

ﬁl = IQCLHOIl (+€T1)

27r

We define the radial unit vectors as follows: €, = (—aT/Q, 0,2) and €,, = (

a/2 o h

£=,0,3)

Using the forces F 1 and ﬁg we find the torques:

Ty = 7y X Fy = ryFy, €, (pointing into the paper), with Foy = Fylcos(a)] = Fay[h/r].
The torque is collinear with the y-axis: the force lies in the x, z-plane and 75 is directed along .

We obtain that:

- __a hz _ apolils ol1l2a’h >
T2 = §F2;€y = 2 -

a h -
2 om /b2 1(a/2)2 /het(a2)2 ¥ AxlhZH{a/2)7 Y

We note that 7 = 71 X ﬁl = TH.

The total torque is the vector sum: 7= 71 + 7o = 27

[

b) The total force on the string is F = Fy + Fy = 2F5 ||(—€;) because the z-components cancel out. We need to
compute Fy .

By ) = sin(a)|Fo| = 2|y,
We conclude that F = %(—é’x)

c¢) The square loop rotates in the clockwise direction as the total torque is directed along +y-direction.

Solution 5.

We use Gauss’s law to compute to separately the electric field generated by the large sphere El and the one
generated by the small sphere E.
For the large sphere we need to consider z > Rj. The Gauss’s law reads ¢f Ey - d@ = Q/eo. @ represents in this

case the total charge that is uniformly distributed in the large sphere. The vectors E) and da are parallel to each
other and point towards the same direction. The electric field has the same magnitude everywhere on the Gaussian
surface and can be taken out of the integral. Therefore Gauss’s law simplifies to:
El g?ﬁda = E147T{E2 = Q/Eo.

We now express @ in terms of the charge density: @ = pc%ﬂ'R?.

The electric field of the large sphere at a point x, along the z-axis with z, = £ > R is then:
=3 ~ ~ 4rR?
El(‘r) = J"4771x2 Q/Co = xpélcﬂiole :
Using the same approach we compute the electric field due to the small sphere at the point x, = x. Here we

need to consider that this point lies inside the sphere volume. Making use of Fig. [7] we observe that z;, < R;.

Gauss’s law is 5@3 ES - d@ = @ene/€0. The enclosed charge reads genc = —pcgmc‘z.
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Gaussian surface f or large sphere

Gaussian surface
for small sphere

Figure 7: Sketch of the problem geometry.

. e A’
Ei(x) = iﬁqenc /€0 = i%. Now we need to express x, in a way consistent with the coordinate system
of the large sphere: we notice that |z| = |z — d].
4 3 3
_ a—pcym(z—d)° . —pc(z—d)
=T 471'6?)‘11—d|2 =T 3eo|lz—d|? *
By superposition principle the total electric field is:

Fuo(s) = Bi(o) + Bule) = (225 — gt o

The formula for E, () is rewritten into: E(x)

Solution 6.
a) At the critical angle 65 i, the angle of refraction is 90°. Applying Snell’s law gives sinfs ¢,iy = ng/na =

w1 (ng\ _ w.—1(1.440\"1 _ o
03 crit = sin (nA) = sin (1_480) =76.7°.

b) There is total internal reflection for:
90° > 03 > 03 crit 0 =90° — 03 (8)

Additionally, we have SM0L — ma — 01 rit = sin™! (na sin (90° — 03)) = 20.0°. The relevant range of 6; for

sin 6o 1

total internal reflection is therefore: 0 < 6; < 20.0°.

¢) Due to the law of reflection 6, = 6;, the incident angle 03 for total internal reflection at the top material
A /material B interface is also the relevant incident angle for the bottom interface: yes, the light will be
totally internally reflected at both interfaces.
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