
EPFL - PHYS-201(d) - Electromagnetism/Fluids - Fall 2024 Exercise sheet 13

Exercise sheet 13: Propagating and standing waves, Poynting vector,
superposition

—
11/12/2024

We indicate the challenges of the problems by categories I (“warming-up”), II (“exam-level”), III (“advanced”). For your
orientation: problems attributed to category II have been or could have been considered for an exam (assuming a specific
duration for finding the solution; see comments in the solutions). The exact problem setting cannot be repeated in an

exam however.

Exercise 1.

(Radio station/Category II (After training for solution: 25 min))
A radio station (rs) is allowed to broadcast at a maximum average power of 25 kW radially. If an electric field
amplitude of 0.020 V/m is considered to be acceptable for receiving the radio transmission with a relevant signal
strength, estimate how many kilometers away you might be able to hear this station in your radio. Assume a
point-like source which emits a spherical wave. Integrate S⃗ over an appropriately chosen surface.

Exercise 2.

(Poynting vector in a capacitor/Category II (After training for solution: 20 min))

a) Show that the so-called Poynting vector S⃗ = 1
µ0
(E⃗(r⃗, t) × B⃗(r⃗, t)), which describes the energy flux density,

points radially inwards toward the center of a circular parallel–plate capacitor when it is being charged [this
means: E = E(t)].

b) Integrate S⃗ over the cylindrical boundary of the capacitor gap to obtain the energy flux and show that the rate

at which energy enters the capacitor via the Poynting vector S⃗ is equal to the rate at which electrostatic energy
U is being stored in the electric field of the capacitor. Ignore fringing fields of E⃗ to show −

‚
S⃗ · da⃗ = dU

dt .

Exercise 3.

(Energy flow for a standing wave/Category II (After training for solution: 35 min))

Consider the standing electromagnetic wave from the lecture given by E⃗ = 2ẑE0[sin(ky) cos(ωt)] and B⃗ =
−2x̂E0

c [cos(ky) sin(ωt)].

a) Calculate the time-dependent energy densities uE(y, t) and uB(y, t). Draw plots of the densities at ωt values
of 0, π/4, π/2, and 3π/4.

b) Calculate the y component of the time-dependent Poynting vector, Sy(y, t), and plot its value at different
times corresponding to ωt equal to 0, π/4, π/2 and 3π/4. Are these plots consistent with how the energy
densities vary as a function of time t?

c) How large is the time-averaged Poynting vector?

Exercise 4.

(Confined waves/Category II (After training for solution: 15 min))
Consider a string with linear mass density σ, length L and tension T . We neglect gravitational force on the string.
The string is along the x̂ direction, starting at x = 0, ending at x = L. We consider small deformations ξ(x, t)
along the string. The ends of the string are rigidly fixed to an extremely heavy wall. Consider the wave equation
obeyed by ξ(x, t) as discussed in the lecture. The general solution to this equation is the superposition of left- and
right-propagating waves. We assume that all of those waves have the same amplitude ξ0 and phase velocity v.

a) Explain why the boundary conditions for ξ(x, t) impose that the wavelength of left- and right-propagating
waves must be of the form λi =

2L
i , i = 1, 2, ..., in order to lead to constructive interference. What are the

corresponding wavevectors ki and frequencies ωi? The numbers i count the so-called harmonics.

b) Show that the solution ξi(x, t) = 2ξ0 sin(kix) cos(ωit) fulfills the wave equation and boundary conditions.

Page 1 of 6



EPFL - PHYS-201(d) - Electromagnetism/Fluids - Fall 2024 Exercise sheet 13

c) Consider a guitar with a steel string fixed rigidly between two points. When excited, it has a number of
frequencies ωi (harmonics) at which it vibrates. Assume that the tension put on the guitar string produces a
phase velocity of 470 m/s. The length of the string is 66.5 cm. What are the frequencies νi = ωi/(2π) of the
first (i = 1) and second (i = 2) harmonic, i.e. the lowest and the second lowest frequencies? Can their sound
be heard?

Solution 1.

The magnitude of the Poynting vector is the power per unit area. The energy is assumed to be conserved in the
system. Hence, the integral of the Poynting vector over a closed surface around the source must be equal to the
power of the source (both averaged over time). In the problem it is assumed that the power is broadcasted radially.
Therefore, we assume spherical symmetry for the Poynting vector around the source.

For the solution, we pick a specific point in space r⃗ for the receiver at a distance r, thereby the propagation
direction is given (k̂ = êr). The electric and magnetic field of the wave can be written as:

E⃗(r⃗, t) =E0 cos(k⃗ · r⃗ − ωt+ δ)ê1,

B⃗(r⃗, t) =
E0

c
cos(k⃗ · r⃗ − ωt+ δ)(k̂ × ê1),

where ê1 is an arbitrary unit vector perpendicular to the propagation direction k̂.
The Poynting vector, using ε0µ0 = 1

c2 , reads:

S⃗ =
1

µ0
E⃗ × B⃗ =

E2
0

µ0c
cos2(k⃗ · r⃗ − ωt+ δ)ê1 × (k̂ × ê1),

S⃗ = (ε0c
2)
E2

0

c
cos2(k⃗ · r⃗ − ωt+ δ)[k̂(ê1 · ê1)− (ê1 · k̂)ê1],

where we used
ê1 · ê1 = 1, ê1 · k̂ = 0,

S⃗ = ε0cE
2
0 cos

2(k · r − ωt+ δ)êr.

P =

‹
sphere

S⃗ · n̂da =

‹
S⃗ · êrda =

¨
(ε0cE

2
0 cos

2(kr − ωt+ δ)êr) · (êrr2 sin θdθdϕ)

P = 4πr2ε0cE
2
0 cos

2(kr − ωt+ δ)

⟨P ⟩ = ⟨4πr2ε0cE2
0 cos

2(kr − ωt+ δ)⟩ = 4πr2ε0cE
2
0 [

1

T

ˆ T

0

cos2(kr − 2π

T
t+ δ)dt]

⟨P ⟩ = 4πr2(
1

2
ε0cE

2
0) = 2πr2ε0cE

2
0
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From here we extract the radius:

r =

√
⟨P ⟩

2πε0cE2
0

=

√
25× 103W

2π(8.85× 10−12 C2/(Nm2))(3× 108 m/s)(0.02 v/m)2
= 61200 m = 61.2 km.

Solution 2.

See Fig. 1 for a schematics on the structure.

Figure 1: Sketch of a plate capacitor (blue). The radius of one plate is taken to be r0.

a) For any point between capacitor plates the Poynting vector points toward the axis of the capacitor (Fig. 1):

S⃗ = 1
µ0
E⃗ × B⃗.

b) Using Ampere’s law (make reference to solution of exercise 1 from exercise sheet 11 for more details) we find

B2πRpath = µ0ϵ0
d(πR2

fluxE)

dt → B =
[
1
2µ0ϵ0

R2
flux

Rpath

dE
dt

]
Rflux=Rpath=r0

= 1
2µ0ϵ0r0

dE
dt , with r0 being the radius

of the circular plate. Therefore knowing the formula for the Poynting vector and that electric and magnetic
fields are orthogonal to each other S =| S⃗ |= 1

µ0
| E⃗ × B⃗ |= 1

µ0
EB = 1

µ0
E 1

2µ0ϵ0r0
dE
dt = 1

2ϵ0r0E
dE
dt .

The energy flow into the capacitor volume V ′ is given by the flux of S⃗ calculated via
‚

S⃗ · da⃗ over the closed
surface of the considered volume V ′. The relevant equation from the lecture is the continuity equation in
integral form: − d

dt

˝
V ′ uEMdV −

‚
surface(V ′)

S⃗ · da⃗ = 0. Here, the first term is an integration performed

for the volume in which the relevant energy density uEM is considered (here the inner region of the plate
capacitor forming a cylindrical volume V ′). The second term evaluates the energy flux across the surface of

the considered volume V ′. Reordering the equation provides: −
‚

surface(V ′)
S⃗ · da⃗ =

d(
˝

V ′ uEMdV )

dt . Following

the text of the problem we analyze moments in time at which S⃗ points inwards. The vector quantity da⃗ in
the surface integral points -by convention- outwards, i.e., the scalar product of S⃗ and da⃗ provides a negative
contribution to the integral. The minus-sign in front of the integral makes the inward energy flux overall
positive, hence, uEM increases at the relevant moments of time. This mathematical consideration is hence
consistent with the text in the problem. The term

˝
V ′ uEMdV provides the amount of total energy U being

inside the capacitor.

Given a cylindrical volume V ′ which is consistent with the capacitor volume the Poynting vector is constant
on its curved surface and can therefore be taken out of the integral: −

‚
surface(V ′)

S⃗ · da⃗ = SA = S2πr0d =

ϵ0dπr
2
0E

dE
dt , where A is the total surface area of the curved outer surface of the cylindrical volume (the planar

top and bottom surfaces of the cylindrical volume V do not count because S⃗ and their da⃗ are orthogonal and
no flux contribution is provided). The amount of stored energy in the capacitor provided by an electric field
of strength E reads U =

(
1
2ϵ0E

2
)
(πr20d). The rate of change of U is dU

dt = ϵ0πdr
2
0E

dE
dt . By comparison of

the two quantities one finds dU
dt |V ′ = −

‚
surface(V ′)

S⃗ · da⃗ which represents the energy conservation as stated

above.
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Solution 3.

a) The time dependent energy densities are:

uE =
1

2
ε0|E|2 =

1

2
ε0 (2E0)

2
sin2

(
2πy

λ

)
cos2

(
2πct

λ

)
= uE,m sin2

(
2πy

λ

)
cos2

(
2πct

λ

)

uB =
1

2µ0
|B|2 =

1

2µ0

(
2E0

c

)2

cos2
(
2πy

λ

)
sin2

(
2πct

λ

)
= uB,m cos2

(
2πy

λ

)
sin2

(
2πct

λ

)
where, uE,m and uB,m are maximum electric and magnetic energy densities which are ploted in Fig. 2 (a)
and (b), respectively.

Figure 2: (a) electric and (b) magnetic energy densities for the standing wave.

b) For the Poynting vector S⃗ we have:

S⃗ =
E⃗ × B⃗

µ0
=

1

µ0

[{
ẑ 2E0 sin

(
2πy

λ

)
cos

(
2πct

λ

)}
×
{
(−x̂)

2E0

c
cos

(
2πy

λ

)
sin

(
2πct

λ

)}]

S⃗ =
4E2

0

µ0c
sin

(
2πy

λ

)
cos

(
2πy

λ

)
sin

(
2πct

λ

)
cos

(
2πct

λ

)
(−ŷ)

S⃗ = (−ŷ)
E2

0

µ0c
sin

(
2
2πy

λ

)
︸ ︷︷ ︸

term 1○

sin

(
2
2πct

λ

)
︸ ︷︷ ︸

term 2○

Term 1○ oscillates between -1 and +1 as a function of y (at fixed time t), but at half of the wavelength of
the electromagnetic wave as it is shown in Fig. 3.

Term 2○ oscillates between -1 and +1 as a function of time, t, (at fixed y), but at twice the frequency of the
electromagnetic wave as it is shown in Fig. 4.
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Figure 3: Spatial dependence of the Poynting vector of the standing wave.

Figure 4: Time dependence of the Poynting vector of the standing wave.

c) Time-averaged Poynting vector,
〈
|S⃗|

〉
, is:

〈
|S⃗|

〉
=

E2
0

µ0c
sin

(
2
2πy

λ

)〈
sin

(
2
2πct

λ

)〉
= 0

The time energy transferred into a specific direction is zero and is stored in place.
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Solution 4.

a) The ends of the string are rigidly fixed to an extremely heavy wall. Therefore, the wave has nodes at x = 0
and x = L which leads to (i) ξ(0, t) == 0 and (ii) ξ(L, t) = 0 for any time t.

To have constructive interference the length L of the string must be a multiple of half of the wavelength
→ L = iλ2 for i = 1, 2, 3, 4.... This leads to the following condition for λ:

λi =
2L
i (Fig. 5) From this condition it follows:

Figure 5: Solution 4a - sketch for first three modes of confined waves in the string

ki =
2π
λi

= 2π i
2L = i πL and

ωi = vki = v iπ
L

From the lecture notes we know that v =
√(

T
σ

)
b) The wave equation is ∂2ξi(x,t)

∂t2 = v2 ∂2ξi(x,t)
∂x2 . We plug into this equation the expression for ξi = ξi(x, t). The

wave equation becomes:

∂2

∂t2 (2ξ0 sin(kix) cos(ωit)) = v2 ∂2

∂x2 (2ξ0 sin(kix) cos(ωit))

((−ω2
i )2ξ0 sin(kix) cos(ωit)) = v2((−k2i )2ξ0 sin(kix) cos(ωit))

It follows that:

−ω2
i ξi(x, t) = −v2k2i ξi(x, t) hence

ω2
i = v2k2i → ωi = vki

The boundary conditions then becomes (i) ξ(0, t) = 2ξ0 sin(ki0) cos(ωit) = 0 this is verified because of
sin(ki0) = 0 and (ii) ξ(0, t) = 2ξ0 sin(kiL) cos(ωit) = 0 → sin(kiL) = 0 this is verified because of kiL = iπ.

c) v = 470 m/s; L = 0.665 m; k1 = π
L for i=1 and k2 = 2π

L for i=2

λν = v. Therefore it follows that ν1 = v
λ1
= 353.4 Hz and ν2 = v

λ2
= 706.8 Hz. These sounds can be heard as

the frequency is above 20 Hz and below 20 kHz.
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