
EPFL - PHYS-201(d) - Electromagnetism/Fluids - Fall 2024 Exercise sheet 11

Exercise sheet 11: Displacement current, magnetic energy
—

27/11/2024
We indicate the challenges of the problems by categories I (”warming-up”), II (”exam-level”), III (”advanced”). For your
orientation: problems attributed to category II have been or could have been considered for an exam (assuming a specific
duration for finding the solution; see comments in the solutions). The exact problem setting cannot be repeated in an

exam however.

Exercise 1.

(Magnetic field from displacement current/Category I)
Suppose that a circular parallel–plate capacitor has a radius of R0 = 3.0 cm and a plate separation of d = 5.0 mm.
A sinusoidal potential difference V = V0 sin (2πft) is applied across the plates, where V0 = 150 V and f = 60 Hz.
Ignore fringing fields of E. Hint: This exercise is meant to show that fields from the term dE/dt in a capacitor are
small at 60 Hz, i.e., when AC currents/electric fields vary slowly.

a) In the region between the plates, show that the magnitude of the induced magnetic field is given by B =
B0(R) cos(2πft), where R is the radial distance from the capacitor’s central axis.

b) Determine the expression for the amplitude B0(R) of this time-dependent (sinusoidal) field when R ≤ R0

and when R > R0.

c) Plot B0(R) in tesla for the range 0 ≤ R ≤ 10 cm.

d) Now assume that a wire connected to the capacitor carries exactly the amount of absolute charge current I
as given by the maximum displacement current ID flowing through the whole cross-section of the capacitor in
its gap. The wire is assumed to be infinitely long and has a diameter of 2 mm. Calculate the magnetic field
generated by I just at its surface in the limit of an infinitely long wire. Compare this value with the field
B in the gap of the capacitor at R = 1 mm. How much weaker is this field generated by the displacement
current in the capacitor compared to the field of the charge-based current?

Exercise 2.

[Self-inductance and magnetic energy in toroidal solenoid
/Category II (After training for solution: 25 min)]

Consider a toroidal solenoid (coil) with the geometrical parameters
presented in the figure. Complete winding contains N turns all around the
core.

a) Calculate the self-inductance, L, of the system.

b) Obtain the magnetic energy density, u, stored in the system.

c) Calculate the total energy, U , stored in the system.

d) Evaluate L for a toroidal solenoid with dimensions of 2a = 10 mm,
2b = 15 mm and h = 5 mm with N = 100 turns of wire. How much
magnetic energy is stored in the system if one applies a current of I = 3
A to the solenoid. Suppose that we store the same amount of energy
on a circular plate capacitor with plate diameter of R = 2b = 15 mm
and distance between plates d = h = 5 mm filled with a dielectric with
dielectric constant of 5. How much voltage, V , needs to be applied?

Exercise 3.

(Faraday’s disk / Category II (After training time needed: 20-25 min))
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Faraday’s disc was the first electromagnetic generator. The working principle is as
follows: A conductor disc (metal) of radius a rotates with a constant angular velocity

ω about a vertical axis, through a uniform field B⃗, pointing up. A circuit is made by
connecting one end of a resistor to the axle and the other end to a sliding contact,
which touches the edge of the disk (see sketch).

a) Find the expression for the current in the resistor. Hint: When the disk rotates
the charges in the conductor inherit a velocity vector.

b) Now let’s consider to construct a bicycle dynamo using Faraday’s disk. Instead
of the resistor, we power a lightbulb with an electrical power consumption
Pel. = 4 W and resistance R = 1 Ω. Due to size restrictions, we choose a disk radius of a = 2 cm.
Using permanent magnets, we provide B = 0.2 T. Calculate the frequency of rotation f (turns per second,
f = ω/2π) needed to supply 4 W to the bulb. Is the required frequency realistic for the application as a
bicycle dynamo?

Exercise 4.

(Bicycle dynamo / Category II (After training time needed: 15-20 min))
Consider a commercial bicycle dynamo as sketched below. Instead of spinning a coil in a magnetic field (compare
with Exercise 3), a permanent magnet is spinning with respect to a fixed coil (solenoid). The part labeled ”Soft iron
core” allows one to guide the magnetic field lines of the rotating magnet through the ”fixed coil”. As a consequence
one can assume a magnetic field inside the coil which amounts to B(t) = B0 sin(ωt) with B0 = 0.2 T. The coil has
N = 1000 turns and all the turns have a radius a = 2 cm.

Figure 1: Bicycle Dynamo.

a) Calculate the frequency of rotation f (turns per second, f = ω/2π) needed to apply a time-averaged electric
power Pavg = 4 W to the bulb with R = 1 Ω. (Here we neglect any self-inductance of the coil. Time-
averaged electric power means that one averages the time-dependent dissipated power P (t) over one period
T . The time-averaged power Pavg is found to be emf2

0 /2R where emf0 is the amplitude of the time-dependent
electromotive force.)

b) Plausibility check (optional): A cyclist drives with a velocity v = 20 km/h. The bicycle wheel’s radius is
rW = 31 cm. The radius of the dynamo wheel is rD = 0.5 cm. Calculate the frequency f that is relevant for
induction and compare to the value of a).

Solution 1.

a) From Ampere’s law including the displacement current, we find in the gap of a capacitor (see Fig. 2)¸
Γ
B⃗ · d⃗l = µ0ϵ0

dΦE

dt . The electric flux ΦE is given by EπR2
path if the radius of the Amperian loop Rpath is

smaller than the capacitor radius R0, and EπR2
0 if the radius of the Amperian loop is larger than R0. For

Rpath < R0 we obtain:

B(2πRpath) = µ0ϵ0πR
2
path

(
dE
dt

)
= µ0ϵ0πR

2
path

(
1
d
dV
dt

)
⇒ B = µ0ϵ0πR

2
path

(
1
d

2πfV0

2πRpath
cos(2πft)

)
= µ0ϵ0πR

2
path

(
fV0

Rpathd
cos(2πft)

)
.
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Figure 2: Sketch showing parallel plate capacitor and chosen line path for Ampere’s law.

⇒ B0(R) = µ0ϵ0πRpath

(
fV0

d

)
. Inside the capacitor, the field increases with the distance from the axis. For

a distance Rpath larger than R0 from the central axis we have B0(R) = µ0ϵ0πR
2
0

(
fV0

Rpathd

)
b) For R = Rpath ≤ R0 we have B0(R ≤ R0) = µ0ϵ0πR

(
fV0

d

)
(See Fig. 3). Inserting the known numerical

values one finds B0(R ≤ R0) = cR with c = µ0ϵ0π
(

fV0

d

)
≈ 6.29 · 10−11 T/m.

For R ≥ R0 we have B0(R ≥ R0) = µ0ϵ0πR
2
0

(
fV0

Rd

)
→ B0(R ≥ R0) = c′ 1R with c′ ≈ 5.66 · 10−14 Tm.

c) See Fig. 4.

d) We start from the definition of the displacement current density in vacuum J⃗D = ϵ0
∂E⃗
∂t . The flux of J⃗D over

the surface Σ = πR2 is the displacement current and it is equal to:

´
Σ
J⃗D · da⃗ = ID = ϵ0

´
Σ

∂E⃗
∂t · da⃗ = ∂

∂tϵ0
´
Σ
E⃗ · da⃗ = ∂

∂tϵ0ΦE = ϵ0
∂ΦE

∂t = ϵ0
πR2

d
dV (t)
dt = 2π2ϵ0V0fR

2

d cos(2πft). To
summarize:

ID(R, t) = 2π2ϵ0V0fR
2

d cos(2πft)

The space-dependent component of ID is maximum at R = R0: ID,max =
2π2ϵ0V0fR

2
0

d .

Now we assume that the same amount of current flows through an infinitely long wire with diameter β.
The generated magnetic field B⃗W is circumferential. Biot-Savart’s law is used to compute the magnetic field
generated by the current carrying wire at a distance r = β/2 with β = 2 mm:

B⃗W (β/2) = êϕ
µ0ID,max

2π(β/2) .

Therefore BW = 2π·(4π10−7)·(8.85·10−12)150·60·0.032
0.005·0.002 T = 5.66 · 10−11 T = 56.6 pT.

The magnetic field generated from the displacement current in the capacitor for the numerical values specified
from the text amount to:
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Figure 3: Sketch showing parallel plate capacitor and chosen line path for Ampere’s law in the two cases: (a)
R ≤ R0, and (b) R ≥ R0.

BC(R = 1mm) = πϵ0µ0V0fR
d = π·(4π10−7)·(8.85·10−12)150·60·0.001

0.005 T = 6.29 · 10−14 T = 0.0629 pT

We conclude that BC is smaller than BW by a factor BC/BW ≈ 0.0011. The magnetic field contributions
due to ∂E

∂t are both absolutely and relatively very small. This justifies that such effects were neglected in the
discussion of low frequency AC circuits in Chapter 6.

Solution 2.

a) We evaluate Ampere’s law in a central x−y plane. The magnetic field inside the coil at a < r < b in the central

x− y plane can be calculated as
¸
B⃗ · d⃗l = 2πrB = µ0NI → B⃗ =

µ0NI

2πr
êϕ. This solution is valid in different

planes along z. The flux passing through one turn of the coil is the integral of this field over a cross-section

of the coil in the y − z plane i.e. Φ1 =
´
B⃗ · n̂ da =

´ b
a
(Bêϕ) · (h drêϕ) =

´ b
a

µ0NI

2πr
h dr =

µ0NIh

2π
ln

(
b
a

)
. The

total flux passing through the circuit of N turns is, Φtot = NΦ1 =
µ0N

2Ih

2π
ln

(
b
a

)
≡ LI. The self-inductance

of this coil is L =
µ0N

2h

2π
ln

(
b
a

)
.

b) Since there is no magnetic core, the magnetic energy density is given by u =
1

2

B2

µ0
=

µ0N
2I2

8π2r2
.

c) The total energy U is the integration of energy density u over the volume of the coil i.e. U =
´
V
dV u =

´ b
a
2πrh dr

(
µ0N

2I2

8π2r2

)
=

µ0N
2I2h

4π
ln

(
b
a

)
. To check the result we calculate U/L with L calculated in part (a)

which reads U
L = 1

2I
2. Hence, we find U = 1

2LI
2 by rearranging the terms. This is the general formula for

energy stored in an inductance. The result of (c) is consistent with (a).

d) L =
4π × 10−7 × 104 × 5× 10−3

2π
ln

(
7.5
5

)
H = 4.05µH. For energy stored in the coil we have U = 1

2LI
2 =

0.5 × 4.1 × 10−6 × 9 J ≃ 18.25µJ. The capacitance is C =
ϵrϵ0(πb

2)

d
= 1.56pF. Therefore, the required

potential difference amounts to V =

√
2U

C
= 4830.5 V.
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Figure 4: Magnetic field is continuous at the transition R = R0

Solution 3.

We exploit the disk symmetry and apply cylindrical coordinate (r, z, φ).

a) The velocity of a generic point P within disk’s radius is v⃗r = ωrφ̂, with r being the distance from the disk’s

axis. Assuming a charged particle with charge q at point P the magnetic Force F⃗M acting on the particle is:

F⃗M(r) = qv⃗r × B⃗ = q(ωrφ̂)× (Bẑ) = qωBrr̂

The force has radial direction.

For the following calculation it is important to realize that in equilibrium without a connected circuit one
finds for the Lorentz force F⃗L = qE⃗(r) + qv⃗r × (Bẑ) = 0. This equation indicates that v⃗r × (Bẑ) corresponds
to an electric field.

From here we find the expression of E⃗(r) = qv⃗r×(Bẑ)
q = F⃗M(r)

q for the electric field originating from the

magnetic force F⃗M. Hence F⃗M(r) divided by the charge q is equivalent to the local electric field E⃗(r) acting
on the charge. This electric field gives rise to the electromotive force ∆V between the center with r = 0 and
the outer edge with r = a of the disc. To compute ∆V we evaluate the electrostatic potential difference due
to the assumed electric field FM(r)/q between the center of the disk and a point on the outer edge:

∆V =
´ a
0

1
q F⃗M · dr⃗ =

´ a
0
ωBrr̂ · dr⃗ =

´ a
0
ωBr · dr = ωBa2

2 .

Using Ohm’s law we find for the current I flowing in the circuit:

I = ∆V
R = ωBa2

2R .

b) The dissipated power Pdiss through the resistor R caused by the electromotive force ∆V is

Pdiss =
(∆V )2

R ⇒ ∆V =
√
PdissR ⇒

√
PdissR = ωBa2

2 ⇒ ω = 2
Ba2

√
∆PdissR.

Inserting numerical values it is found that
1
2πω = 1

2π5 · 10
4 rad

s = 7.96 kHz.

The device can not be used as a bicycle dynamo.
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Solution 4.

a) We write down the formula for the magnetic flux induced in the coil Φ(t) = B(t)πa2N

from which we obtain the emf emf(t) = −dΦ
dt = −B0 cos(ωt)ωπa

2N .

In the following we motivate the formula for the time-averaged power Pavg = emf2
0 /2R given in the problem,

where emf0 is the amplitude of the time-dependent electromotive force. We start by stating the time-
dependent power dissipated in the load resistor P (t) = emf2(t)/R using the known formula for power in a
resistor. This value is now averaged over one period of rotation of the dynamo:

Pavg = ⟨P ⟩ = 1

R
⟨(Eemf )

2⟩ = 1

R
(B0ωπa

2N)2
1

T

ˆ T

0

cos2(ωt)dt

The brackets ⟨⟩ represent the mean value (averaged value) over a period T , that’s why we consider the integral
ranging from 0 to T of the time dependent term (cos(ωt))2 and then divide the result of the integration by
one period T .

The integration over time results in

1

T

ˆ T

0

cos2(ωt)dt =
1

T

ˆ T

0

(
1 + cos(2ωt)

2

)
dt

=
1

2T

ˆ T

0

dt+
1

2T

ˆ T

0

cos(2ωt)dt

=
1

2
+

1

2T

[
sin(2ωt)

2ω

]T
0

=
1

2
+

1

2T

 sin

(
2× 2π

T
× T

)
− sin(0)

2× 2π

T

 =
1

2
.

One concludes that
⟨P ⟩ = 1

R ⟨(Eemf )
2⟩ in general. This relation is now used to find the solution of the problem:

⟨P ⟩ = 1
2

1
R (B0ωπa

2N)2.

Therefore, the relation between the frequency of the rotation and the average power is obtained by inverting
the previous equation and isolating and solving for ω:

√
2⟨P ⟩R = B0Na2πω ⇒ ω =

√
2⟨P ⟩R

B0Na2π
.

Inserting numerical values one finds 1
2πω = 1

2π

√
2·4·1

0.2·1000·0.022π Hz = 1.79 Hz.

b) One turn of the cycle wheel corresponds to rw
rD

= 62 turns of the dynamo. At v = 20 km/h = 5.56m/s the

wheel rotates with a frequency fw = ω
2π = 1

2π
5.56m/s
0.31m = 2.85 Hz.

This means that the induction occurs at a frequency f = 62fw = 176.7 Hz. This value is well larger than the
value found in (a). Hence at a much smaller velocity of the bike than 20 km/h the lamp is already bright
and helps one to find the way in the dark.
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