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Exercise sheet 10: Induction, inductances, LC oscillator
—

20/11/2024

We indicate the challenges of the problems by categories I (“warming-up”), II (“exam-level”), III (“advanced”).
For your orientation: problems attributed to category II have been or could have been considered for an exam
(assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting
cannot be repeated in an exam however.

Exercise 1.

(Induction and motion as considered in General Physics I /Category II)
A metal bar of mass m slides with velocity v and without friction on two parallel conducting rails (see figure). The
rails are semi-infinite and separated by a distance d. At one end of the rails a resistor with resistance R electrically
connects the rails. Assume that the resistances of bar and rails are negligible. A uniform field B is perpendicular
to the plane and points along the –z⃗-direction.

a) Calculate the current I flowing in the circuit. How does it depend on v,B,R and geometrical parameters
(neglect the self-inductance)? Indicate the direction of the current when velocity v is pointing to the right.

b) Assume now that at a given position x = 0 and time t = 0, the bar has an initial velocity v0 parallel to the
rails, pointing away from the resistor. No external force is applied to the bar for t > 0. Calculate the formula
for the time-dependent velocity v(t) of the bar.

Exercise 2.

(Rotating square loop / Category II
(after training time needed: 20-25 min))

Consider a square loop rotating around a vertical axis with constant angular velocity
ω. The square loop is made of a wire of resistance R. The loop is placed in a uniform
magnetic field B⃗ that is perpendicular to the axis of the rotation, see figure.

a) Calculate the induced current I in the loop. Evaluate the current flow direction
for the sketched graph.

b) Calculate the torque τ necessary to keep the loop turning.

c) Show that the time-dependent mechanical power Pmech(t) = τ(t)ω (General
Physics I) is equal to the electrical power dissipated in the wire.

Exercise 3.

(Decaying signal/Category I)

The coil in the circuit of the figure below is shown to have an inductance of 0.01 H. When the switch is closed,
the oscilloscope sweep is triggered. The 105 ohm resistor is large enough (as you will discover) so that it can be
treated as essentially infinite for part (a) and (b) of this problem.
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a) Determine, as well as you can, the value of the capacitance C neglecting first any resistance in the loop formed
by the coil and capacitor.

b) Now estimate the value of the resistance R of the coil. We assume that only this value R is responsible for
the observed decay of the oscillating signal. Hint: Consider R to be in series with L.

c) What is the magnitude of the voltage across the oscilloscope input, a“long” time after the switch has been
closed, say several seconds after?

Exercise 4.

(Self-inductance versus mutual inductance/Category II/
(After training for solution: 30 min))

The current I1 through a long solenoid (coil 1) with n1 turns per meter and radius
R1 is changing with time (given by dI1/dt). A further circular coil 2 surrounds coil
1 (see figure). For the calculation of the magnetic field in coil 1 assume the solenoid
to be infinitely long.

a) First disregard coil 2. Calculate the strength of the electric field induced by
dI1/dt as a function of distance r from the central axis of the solenoid. Sketch
the result as a function of r.

b) Use the previous approximation: (i) Calculate the maximum emf developed
along the solenoid assuming the following parameters: R1 = 1 cm, length
l1 = 15 cm, and an absolute number of turns N1 = 150. Here, l1 is the length
of the considered segment. The current follows I1(t) = I0sin(ωt) with I0 = 5 A
and ω = 2π50 Hz. (ii) Are the maximum I and maximum emf reached at the
same time? (Hint: The field lines are encircled N1 times by the wire of the
solenoid)

c) Now consider coil 2 to be present. It has a total of N2 turns. What is the
mutual inductance M when one assumes that all the flux from the solenoid
(coil 1) passes through the outer coil 2; how does it depend on the parameters
n1, N2, and R1? (Hint: No current flow in coil 2, ends of coil 2 are open. To
calculate M one must consider that coil 2 encircles the flux of coil 1 N2 times.)

d) Relate the mutual inductance M to the self-inductances L1 and L2 of the
solenoid (coil 1) and the coil 2, respectively. Assume that coil 2 is wound very
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tightly onto the solenoid (R2 = R1), and it has the same length l. Still, the
number of its turns is different. The approximation of the magnetic field of an
infinitely long solenoid is considered to be valid in both cases.

Solution 1.

a) The force acting on the system is the magnetic force F = q|v⃗ × B⃗| = q|E⃗|. The term |v⃗ × B⃗| is equivalent to
an electric field |E⃗| = |v⃗ × B⃗|.

Because of this there is a voltage drop ∆V between the conducting rails: ∆V = |E⃗|d. From Ohm’s law it
follows that a current I flows through the system that is I = ∆V

R .

From these considerations one obtains that I = ∆V
R = |E⃗|d

R = |v⃗×B⃗|d
R . The bar is moving perpendicularly to

the field. One concludes that:
I = vBd

R

The bar moves to the right. This causes a flux increase because the area is increasing. The induced current
flows counterclockwise to counteract the flux increase.

Another approach to find the current I is to use the expression of the electromotive force emf = −dϕ
dt =

−d(BA)
dt = −d(B·d·v·t)

dt = −Bdv. Once the emf is estimated then using Ohm’s law one finds I = emf/R = −Bdv
R

b) One notices that this is a 1D problem: Newton’s law yields F = IdB = −Bdv
R dB = mdv

dt ⇒ − v(Bd)2

R = mdv
dt .

From this one should separate the variables and solve for the velocity v:

dv
v = − (Bd)2dt

mR = −dt
τ . We have defined 1

τ = (Bd)2

mR .
´ v(t′)
v(0)

dv
v = −

´ t′
0

dt
τ

ln[v(t′)]− ln[v(0)] = − t′

τ . We rename v(0) = v0.

v(t′) = v0e
−t′/τ : this is the time-dependent expression for the velocity.

Solution 2.

a) The magnetic flux Φ in the wire is given by Φ = BL2cos(θ) where θ is defined in Fig. 1 (The specific
definition of θ is helpful for the calculation of the torque shown below). The angle θ depends on the time
t following θ = ω · t + θ0, where θ0 is the angle at t = 0. The induced current in the loop is then given by

I = ∆V
R = − 1

R
dΦ
dt = − 1

R
d
dt (BL2 cos(ωt + θ0)) =

BL2

R ω sin(ωt + θ0) using Ohm’s law I = ∆V
R (where ∆V is

the voltage induced by Henry-Faraday induction law due to the rotation of the loop).

b) The magnetic force acting onto the induced current I calculated is F = ILB because field B and current I
are along directions which are perpendicular to each other. The corresponding torque (which one needs to
counteract to rotate the loop at constant angular velocity) is generated by a pair of forces acting on the two
sides of the loop, i.e.,

τ⃗ = r⃗× F⃗ +(−r⃗× (−F⃗ )) = 2r⃗× F⃗ (Fig. 1) where r is a vector pointing from the rotation axis to the relevant
point where we consider the force (the length of r is L/2). The torque applied to the loop for constant angular
velocity is −τ⃗ such that the sum of both torques is zero (Newton’s first law for constant velocity). One finds

for the absolute value of the torque |τ⃗ | = 2F L
2 sin(θ) = (BL2)2ω

R sin2(ωt+ θ0). The torque is time-dependent.

c) The mechanical power is Pmech(t) = τ(t)ω and the electrical power is Pel(t) = RI2(t). Inserting the previous
results in the equations one discovers that Pmech(t) = τ(t)ω = RI2(t) = Pel(t).
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Figure 1: Sketch to understand the torque within the system. Magnetic field is incoming from the left, force acting
on the sides of the loop has different directions as the induced current in those regions flows in opposite directions.
The rotation of the loop is assumed to be counter-clockwise.

Solution 3.

a) We consider only the right part of the entire circuit, this part forms an RLC circuit. Left part is not considered
as its resistance r = 105 Ω is much larger than the resistance R attributed to the coil. By Kirchhoff’s law we
know LdI

dt + RI + 1
CQ = 0 under the following assumption: we assume the current I to flow to the upper

capacitor plate which is still charging up and already positively charged a bit. Differentiating with respect to

time this equation yields the RLC circuit difference equation Ld2I(t)
dt2 +R dI(t)

dt + 1
C I(t) = 0.

The RLC circuit differential equation is rewritten dividing all terms by the inductance L:

d2I(t)
dt2 + R

L
dI(t)
dt + 1

LC I(t) = 0.

A solution to this equation is I(t) = Imax exp(−γt) sin(ωt + α) with damping constant γ = R
2L and ω =√

ω2
0 − γ2. Assuming a low damping constant one obtain ω = ω0. In the plot four cycles are shown to be

completed in ∆t = 1 ms. Therefore ω = 2π 4
10−3 = 25133 rad/s. Assuming then low damping one finds

C = 1
Lω2 = 1

(25133 rad/s)20.01H = 1.58× 10−7 F.

b) For t = γ−1 the signal has been reduced by 1/e. This occurs approximately for t = 0.5 ms. We attribute
the decay to the dissipation in the resistance of the coil, hence R = RL in a). Therefore γ = RL

2L = 1
0.5ms ⇒

RL = 2L
0.5ms = 2·10mH

0.5ms = 40.0Ω

c) After a long time T ≫ γ−1 oscillations have decayed and only DC current flows in the circuit through the
two resistors in series r = 100 kΩ and RL = 40Ω. We conclude Vbattery = Vr + VRL

⇒ VRL
= Vbattery − rI =

Vbattery − r
Vbattery

r+RL
= RL

r+RL
Vbattery = 7.997 mV.

Solution 4.

a) Let us use Maxwell’s law (integral form of induction’s law) to relate electric and magnetic field:¸
Γ
E⃗ · d⃗l = −dΦenc

dt .

where Φenc is the enclosed magnetic flux. Here we assume an infinitely long solenoid therefore its magnetic
field inside is given by

B = µ0n1I1,
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where n1 represents the number of turns (windings) per meter of coil 1. Firstly let us consider a closed loop
inside the solenoid

r < R1, then

we have

E2πr = −πr2 dB
dt ⇒ E = − r

2µ0n1
dI1
dt .

Inside the solenoid the absolute value (magnitude | E |) of the electric field increases linearly with the radial
distance r (Fig. 2).

Figure 2: Sketch displaying the magnitude and dependence of | E | as a function of distance r from the center of
the infinitely long coil.

Secondly let us focus on a closed loop outside the solenoid i.e r > R1 so that we find

E2πr = −πR2
1
dB
dt ⇒ E = −R2

1

2r µ0n1
dI1
dt .

Outside the solenoid the absolute value of the electric field decreases as r−1. At r = R1 the field is

E(r = R1) = −R1

2 µ0n1
dI1
dt .

b) emf = ∆V = −dΦ
dt .

The flux Φ in consideration is the one through all the turns of coil 1, i.e., N1 = n1 · l1. Therefore
∆V (t) = −N1

dΦsingle turn

dt = −N1µ0n1πR
2
1
dI1
dt = −N1µ0n1πR

2
1I0ω cos(ωt).

We conclude

| ∆Vmax |= N1µ0n1πR
2
1I0ω = 150 · 4π10−7(J/(A2m)) 150

15 cmπ(1 cm)2 · 5A · 2π50Hz = 0.093 V.

The maximum of the electromotive force and that of the current are not reached at the same time. Indeed
when ∆V = ∆Vmax the current is zero according to the proposed temporal dependence.

c) For this calculation we need to calculate the flux of the magnetic field of coil 1 through the cross-sectional
area of coil 2. The induction law reads ∆V2 = −dϕ21

dt ,

where Φ21 = M · I1 is the magnetic flux through coil 2 due to a current I1 in coil 1. M is the mutual
inductance. Following the problem set the flux in coil 2 is considered to be the flux of coil 1. The relevant
flux is hence calculated from the magnetic field generated by coil 1 (B1 = µ0n1I1) times πR2

1:

∆V2 = −N2µ0n1πR
2
1
dI1
dt

The factor N2 is needed as coil 2 encircles the magnetic field lines of coil 1 N2 times. We find that the mutual
inductance M is

M = N2µ0n1πR
2
1.

d) Making use of the assumptions given by the text and rearranging terms in the solution of item (c) we obtain:

M = N2µ0n1πR
2
1 = N2(µ0n1πR

2) = (µ0n2πR
2)(µ0n1πR

2) l
µ0πR2 = (µ0n

2
2πR

2)(µ0n
2
1πR

2) l
µ0πR2n1n2

=

(µ0n
2
2lπR

2)(µ0n
2
1lπR

2) l
µ0πR2n1n2l2

= L1L2
1

µ0πR2n1N2
= L1L2

M ⇒ M2 = L1L2 ⇔ M =
√
L1L2,
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with L1 and L2 being the self-inductances of coil 1 and coil 2.
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