
Physique générale: Électromagnétisme (SMT), examen du 16.01.2025

Nom:....................................................................................No. Sciper:.......................No. Place:..............

Tableau d’attribution des points
(pour la correction)

Points Points
Obtenus

Problème 1 5

Problème 2 6

Problème 3 5

Problème 4 6

QCMs 8

Total 30

Formules mathématiques utiles
(selon la voie choisie pour la résolution des problèmes)

2π∫
0

cos2 (x)dx = π

2π∫
0

cos6 (x)dx = 5π

8

d

dx
sin3(ax) = 3asin2(ax) cos(ax)

∫ 1
c − x

dx = − ln(c − x) + const.

∫
ln
(

x

x − c

)
dx = c ln (c − x) + x ln

(
x

x − c

)
+ const.

Constants

Accélération de la pesanteur (gravité) g ∼= 9.8 m/s2 (à la surface de la Terre)
Permittivité du vide ε0 ∼= 8.85 × 10−12 F/m
Perméabilité du vide µ0 ∼= 1.26 × 10−6 H/m
Vitesse de la lumière dans le vide c ∼= 3 × 108 m/s
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Problème 1 [5 points]

Un fluide incompressible avec viscosité η est en écoulement lami-
naire stationnaire unidirectionnel selon x (i.e., v⃗ = vx(z)e⃗x) en-
tre deux plaques parallèles, horizontales, séparées d’une distance
d, en présence d’un gradient de pression ∂P/∂x = A, où A est
une constante (en Pa/m). Les plaques s’étendent à l’infini dans les
directions x et y. La plaque inférieure est immobile. La plaque
supérieure se déplace à une vitesse constante v⃗sup = vsupe⃗x. Suppo-
ser que la force de pesanteur est négligeable (i.e., g⃗ = 0). La vitesse
du fluide en contact avec les plaques est égale à la vitesse même des
plaques (i.e., vx(z = 0) = 0, vx(z = d) = vsup).
Déterminer (en fonction de vsup, A, d, η, z):
(a) le profil des vitesses du fluide vx(z) (en m/s),
(b) la composante selon l’axe x de la force par unité de surface
fsup,x (en N/m2) exercée par le fluide sur la plaque supérieure,
(c) la composante selon l’axe x de la force par unité de surface finf,x

(en N/m2) exercée par le fluide sur la plaque inférieure.
——————————————————————————

Solution:
(a) vx(z) = A

2η
z2 + (vsup

d
− A

2η
d)z [2]

(b) fsup,x = −η
(

Ad
2η

+ vsup

d

)
[2]

(c) finf,x = η
(
−Ad

2η
+ vsup

d

)
[1]

Solution détaillée:
(a) Equation de Navier-Stokes:

−∇P + ρg⃗ + η∇2v⃗=ρ
dv⃗

dt
Ecoulement stationnaire, gravité négligeable, fluide incompressible:

∂v⃗

∂t
= 0 g⃗ = 0 ∇ · v⃗ = 0

Conditions aux bords:
v⃗(z = 0) = 0, v⃗(z = d) = vsupe⃗x

Donc:
dv⃗

dt
= ∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = 0 + (v⃗ · ∇)v⃗ = (v⃗ · ∇)v⃗

mais:
(v⃗ · ∇)v⃗ = (vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
) (vx, vy, vz)

et:
vy = vz = 0

donc:
dv⃗

dt
= (v⃗ · ∇)v⃗ = vx

∂vx

∂x
e⃗x

mais:
∇ · v⃗ = (∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
)

et:
∇ · v⃗ = 0, vy = vz = 0 =⇒ ∂vx

∂x
= 0

donc:
dv⃗

dt
= vx

∂vx

∂x
e⃗x = 0
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(Le fait que dv⃗
dt

= 0 peut être déduit intuitivement en pensant au fait que, dans la situation que nous étudions,
la particule fluide ne subit aucune accélération).
Donc:

−∇P + η∇2
v⃗ = 0

mais:
∇2v⃗ = (∇2vx, ∇2vy, ∇2vz) = ∇2vxe⃗x = (∂2vx

∂x2 + ∂2vx

∂y2 + ∂2vx

∂z2 )e⃗x = ∂2vx

∂z2 e⃗x

donc:
−∂P

∂x
e⃗x − ∂P

∂y
e⃗y − ∂P

∂z
e⃗z + η

∂2vx

∂z2 e⃗x = 0

et donc:
η

∂2vx

∂z2 = ∂P

∂x
= A

Après une double intégration:
vx(z) = A

2η
z2 + Bz + C

avec les conditions aux bords:
vx(0) = 0 ⇒ 0 = 0 + 0 + C ⇒ C = 0

vx(d) = vsup ⇒ vsup = A

2η
d2 + Bd ⇒ B = vsup

d
− A

2η
d

Enfin:
vx(z) = A

2η
z2 + (vsup

d
− A

2η
d)z =

(
A

2η
(z − d) + vsup

d

)
z

Ce résultat est cohérent avec le fait qu’en l’absence de gradient de pression (c’est-à-dire pour A = 0), le profil
de la vitesse est celui de Couette conventionnel, c’est-à-dire un profil de vitesse linéaire

vx(z) = vsup

d
z

(b,c)

fsup,x = −η
∂vx

∂z

∣∣∣∣∣
z=d

finf,x = η
∂vx

∂z

∣∣∣∣∣
z=0

mais:
∂vx

∂z
= A

η
z − A

2η
d + vsup

d

donc:
fsup,x = −η

(
Ad

2η
+ vsup

d

)

finf,x = η

(
−Ad

2η
+ vsup

d

)
Ce résultat est cohérent avec le fait qu’en l’absence de gradient de pression (c’est-à-dire pour A = 0), la force
agissant sur la plaque supérieure est dans la direction −x, tandis que celle agissant sur la plaque inférieure
est dans la direction +x. En particulier, nous retrouvons les résultats obtenus pour l’écoulement de Coutte
conventionnel:

fsup,x = −η
vsup

d

finf,x = η
vsup

d
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Problème 2 [6 points]

Deux sphères isolantes identiques de rayon R ont une den-
sité de charge (en C/m3) non uniforme ρ = Ar, où A est
une constante positive (en C/m4) et r est la distance au cen-
tre de la sphère (en m). La centre de la sphère 1 est en
(−2R, 0, 0). Le centre de la sphère 2 est en (2R, 0, 0). La
constante diélectrique relative des deux sphères est ϵr = 1.
Déterminer (en fonction de A, R et y) le champ électrique E
(en V/m) en :
(a) (0, 0, 0)
(b) (3R/2, 0, 0)
(c) (2R, 0, 0)
(d) (0, y, 0) (i.e., le long de l’axe y).
———————————————————————

Solution:
(a) E(0, 0, 0) = 0 [1]
(b) E(3R/2, 0, 0) = −33AR2

784ϵ0
x̂ [2]

(c) E(2R, 0, 0) = AR2

64ϵ0
x̂ [1]

(d) E(0, y, 0)= 1
2ε0

AR4y

(4R2+y2)3/2 ŷ [2]
Solution détaillée:
Champ électrique à l’extérieur (r > R) et à l’intérieur (r < R)
de chacune des deux sphères.
Pour r > R: ∮

S

E · ds = 1
ε0

∫
V

ρdV

∮
S

E · ds =
∮
S

Eds = E
∮
S

ds = E4πr2

1
ε0

∫
V

ρdV = 1
ε0

R∫
0

Ar4πr2dr = A4π

ε0

R∫
0

r3dr = A4π

ε0

1
4R4 = πAR4

ε0

( 1
ε0

∫
V

ρdV = 1
ε0

∫
V

Arr2 sin θdrdθdφ = A

ε0

2π∫
0

dφ

π∫
0

sin θ

R∫
0

r3dr = A

ε0
2π21

4R4 = πAR4

ε0
)

donc:
E4πr2 = πAR4

ε0
⇒ E = AR4

4ε0r2

Pour r < R: ∮
S

E · ds = 1
ε0

∫
V

ρdV

1
ε0

∫
V

ρdV = 1
ε0

r∫
0

Ar4πr2dr = A4π

ε0

r∫
0

r3dr = A4π

ε0

1
4r4 = πAr4

ε0

( 1
ε0

∫
V

ρdV = 1
ε0

∫
V

Arr2 sin θdrdθdφ = A

ε0

2π∫
0

dφ

π∫
0

sin θ

r∫
0

r3dr = A

ε0
2π21

4r4 = πAr4

ε0
)

donc:
E4πr2 = πAr4

ε0
⇒ E = Ar2

4ε0

(a)
Par symétrie, E(0, 0, 0) = 0.
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(b)
Champ électrique produit par la sphère 1 en (3R/2, 0, 0). Nous utilisons l’équation obtenue pour r > R:

r = (3R/2) + 2R = 7R/2

E(3R/2, 0, 0) = AR4

4ε0(7R/2)2 x̂ = AR2

49ε0
x̂

Remarque: Étant donné que la distribution de charge a une symétrie sphérique (bien qu’elle ne soit pas uni-
forme), le même résultat peut être obtenu en considérant que le champ produit par la sphère 1 à une distance
r > R de son centre soit égal au champ produit par la charge contenue dans la sphère 1 (Q) concentrée en son
centre, c’est-à-dire:

E(3R/2, 0, 0) = 1
4πε0

Q

(7R/2)2 =AR2

49ε0

avec:

Q =
∫
V

ρdV =
R∫

0

Ar4πr2dr=4πA

R∫
0

r3dr = 4πA
1
4R4 = πAR4

Champ électrique produit par la sphère 2 en (3R/2, 0, 0). Nous utilisons l’équation obtenue pour r < R:
r = R/2

E(3R/2, 0, 0) = −A(R/2)2

4ε0
x̂ = −AR2

16ε0
x̂

Remarque : Étant donné que la distribution de charge a une symétrie sphérique (bien qu’elle ne soit pas
uniforme), le même résultat peut être obtenu en considérant que le champ produit par la sphère 2 à l’intérieur,
à une distance r = R/2 de son centre, soit égal au champ produit par la charge contenue dans une sphère de
rayon R/2 (Q′) concentrée en son centre, c’est-à-dire :

E(3R/2, 0, 0) = 1
4πε0

Q′

(R/2)2 =AR2

16ε0

Q′ =
∫
V ′

ρdV =
R/2∫
0

Ar4πr2dr=πAR4

16

Champ électrique total en (3R/2, 0, 0):

E(3R/2, 0, 0) = AR2

49ε0
x̂ − AR2

16ε0
x̂ = −33AR2

784ε0
x̂

(c)
Champ électrique produit par la sphère 1 en (2R, 0, 0):

r = 2R + 2R = 4R

E(2R, 0, 0) = AR4

4ε0(4R)2 x̂ = AR2

64ε0
x̂

Champ électrique produit par la sphère 2 en (2R, 0, 0):
r = 0

E(2R, 0, 0) = 0

Champ électrique total en (2R, 0, 0):

E(2R, 0, 0)=AR2

64ε0
x̂
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(d)

Le champ électrique total en (0, y, 0) est dirigé le long de l’axe y. Il est donné par la somme des composantes
le long de l’axe y du champ électrique (identique) produit par les deux sphères.

r =
√

(2R)2 + y2 sin θ = y√
(2R)2 + y2

Donc:

E(0, y, 0) = 2 AR4

4ε0

(√
(2R)2 + y2

)2 sin θŷ = AR4

2ε0

(√
(2R)2 + y2

)2
y√

(2R)2 + y2
ŷ = AR4y

2ε0
(
(2R)2 + y2

)3/2 ŷ

donc:
E(0, y, 0) = AR4y

2ε0
(
(2R)2 + y2

)3/2 ŷ
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Problème 3 [5 points]

Deux fils plats conducteurs identiques de largeur a, de longueur
infinie et d’épaisseur négligeable, sont disposés dans le plan xy,
tous deux parallèles à l’axe y et séparés par une distance a. Les
deux fils sont parcourus par un même courant I dans la direction
de l’axe y, mais en sens opposé. Le courant est réparti de manière
uniforme sur toute la largeur a des fils.
Déterminer, (en fonction de a et I):
(a) le champ magnétique B en (3a/2, 0, 0) (en T),
(b) la force par unité de longueur f2 qui agit sur le fil 2 (en N/m),
(c) la force par unité de longueur f1 qui agit sur le fil 1 (en N/m).
—————————————————————————–

Solution:
(a) B(3a/2, 0, 0) = −µ0I

πa
ln (3) ẑ [2]

(b) f2 = µ0I2

2πa
ln
(

27
16

)
x̂ [2]

(c) f1 = −µ0I2

2πa
ln
(

27
16

)
x̂ [1]

Solution détaillée:
(a) Un fil plat de longueur infinie parcouru par un courant I
uniformément distribué sur sa largeur et orienté dans la direction
longitudinale du fil est équivalent à une série de fils de section
infinitésimal disposés côte à côte, chacun portant un courant
(I/a)dx. Le champ magnétique produit par un fil infini de section
infinitésimal à une distance radiale r du fil peut être calculé à
l’aide de la loi d’Ampère:∫

C

B · dl = µ0

∫
S

J · ds ⇒

∫
C

B · dl = B2πr µ0

∫
S

J · ds = µ0I ⇒

B2πr = µ0I ⇒ B = µ0I

2πr

Utilisons ce résultat pour calculer le champ magnétique produit par
le fil 1 le long de l’axe x, pour x > a, c’est-à-dire B(x, 0, 0).

dB(x, 0, 0) = − µ0

2π(x − x′)
I

a
dx′ẑ

B(x, 0, 0) = −
a∫

0

µ0

2π(x − x′)
I

a
dx′ẑ = − µ0I

2πa
ln
(

x

x − a

)
ẑ

B(3a/2, 0, 0) = − µ0I

2πa
ln
(

3a/2
3a/2 − a

)
ẑ = − µ0I

2πa
ln (3) ẑ

Le champ magnétique produit par les deux fils en (3a/2, 0, 0) est le
même. Donc, le champ magnétique total en (3a/2, 0, 0) est:

B(3a/2, 0, 0) = −µ0I

πa
ln (3) ẑ
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Remarque: Le même résultat peut être obtenu en utilisant la loi de Biot-Savart:

Le même résultat peut être obtenu en utilisant la loi de Biot-Savart:

dB = µ0

4π

J × r̂
r2 dV J = (0,

I

adz
, 0) r = (x′, y, 0)

r =
√

x′2 + y2 r̂ = 1√
x′2 + y2

(x′, y, 0)

donc
J × r̂ = − I

adz

x′√
x′2 + y2

ẑ

et donc
dB(x, 0, 0) = − µ0

4π

1
(x′2 + y2)

I

adz

x′√
x′2 + y2

dx′dydzẑ = − µ0

4π

I

a

x′

(x′2 + y2)3/2 dx′dyẑ

et donc

B(x, 0, 0) = − µ0

4π

I

a

x∫
x−a

dx′
+∞∫

−∞

x′

(x′2 + y2)3/2 dyẑ = − µ0

4π

I

a

x∫
x−a

dx′ 2x′

x′2 ẑ = − µ0

4π

I

a

x∫
x−a

dx′ 2
x′ = µ0

2π

I

a
ln
(

x

x − a

)
ẑ
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(b)
La force qui agit sur une partie du fil plat 2 de longueur l, largeur a, épaisseur dz (volume V2 = ladz), parcouru
par un courant I et immergé dans un champ magnétique B est (voir le dessin à la page précédente):

F2 =
∫
V2

J × BdV J = (0, − I

adz
, 0) B = (0, 0, − µ0

2π

I

a
ln
(

x

x − a

)
)

donc
J × B = I

adz

µ0

2π

I

a
ln
(

x

x − a

)
x̂

donc

F2 =
∫
V2

I

adz

µ0

2π

I

a
ln
(

x

x − a

)
dxdydzx̂ =

+l/2∫
−l/2

dy

3a∫
2a

dx
I

a

µ0

2π

I

a
ln
(

x

x − a

)
x̂

donc la force par unité de longueur est:

f2 =
3a∫

2a

dx
I

a

µ0

2π

I

a
ln
(

x

x − a

)
x̂ = µ0

2π

I2

a2

3a∫
2a

ln
(

x

x − a

)
dx

mais (voir page 1) ∫
ln
(

x

x − a

)
dx = c ln (a − x) + x ln

(
x

x − a

)
donc

3a∫
2a

ln
(

x

x − a

)
dx =

[
a ln (a − x) + x ln

(
x

x − a

)]3a

2a
=

= a ln (a − 3a) + 3a ln
( 3a

3a − a

)
− a ln (a − 2a) − 2a ln

( 2a

2a − a

)
=

= a
(

ln (−2a) + 3 ln
(3

2

)
− ln (−a) − 2 ln (2)

)
= a

(
ln (−2a) + ln

(27
8

)
− ln (−a) − ln (4)

)
= a ln

(27
16

)
donc

f2 = µ0I
2

2πa
ln
(27

16

)
x̂

(c)
La force entre les deux fils est répulsive. Par symétrie, la force qui agit sur le fil 1 est donnée par:

f1 = −f2 ⇒ f1 = −µ0I
2

2πa
ln
(27

16

)
x̂
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Problème 4 [6 points]

Une boucle conductrice rectangulaire avec des côtés a et b, une résistance
R, et une inductance négligeable, tourne avec une vitesse angulaire con-
stante ω autour de l’axe z.
Le centre de la boucle est en (0, 0, 0). A l’instant t = 0, la boucle est
dans le plan xz. Déterminer le travail mécanique W (en J) nécessaire
pour maintenir la boucle en rotation à vitesse angulaire constante ω pen-
dant une rotation complète dans un champ magnétique indépendant du
temps:
(a) uniforme B = B0x̂
(b) non-uniforme B = B0

(
1 − 4y2

a2

)
x̂

—————————————————————————————
Solution:
(a) W = πB2

0ωa2b2

R
[3]

(b) W = 5π
8

B2
0ωa2b2

R
[3]

Solution détaillée:
(a) La force électromotrice induite dans la boucle est:

E(t) = − d

dt

∫
S

B · ds

Nous pouvons exprimer B et ds dans le système en rotation x′y′z′ comme:
B = B0(cos(ωt)x̂′ + sin(ωt)ŷ′)

ds = dx′dz′ŷ′

donc
B · ds = B0 sin(ωt)dx′dz′

et donc ∫
S

B · ds = B0 sin(ωt)
∫ a/2

−a/2
dx′

∫ b/2

−b/2
dz′ = B0 sin(ωt)ab

et donc
E(t) = −B0ω cos(ωt)ab

Le courant induit dans la boucle est:

I(t) = E(t)
R

= B0ω cos(ωt)ab

R
La puissance dissipée dans la résistance à tout moment est donnée par:

P (t) = RI(t)2

L’énergie totale dissipée pendant une rotation complète est l’intégrale de
la puissance sur une période T = 2π

ω
:

EJ =
∫ T

0
P (t) dt = B2

0ω2a2b2

R

∫ 2π
ω

0
cos2(ωt)dt

mais ∫ 2π
ω

0
cos2(ωt)dt = (1/ω)

∫ 2π

0
cos2(α)dα = (1/ω)π

avec α = ωt et dt = (1/ω)dα. Donc l’énergie totale dissipée pendant une
rotation complète est:

EJ = πB2
0ωa2b2

R

Par conservation de l’énergie, le travail mécanique effectué pour main-
tenir la boucle en rotation est égal à l’énergie totale dissipée dans la
résistance. Donc le travail mécanique est :

W = EJ = πB2
0ωa2b2
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(b) Répétons la même procédure adoptée en a), en exprimant les vecteurs dans le système x′y′z′. Dans ce cas,
il faut également exprimer la coordonnée y dans le système x′y′z′.

y = x′ sin(ωt) + y′ sin(ωt)
mais, sur la surface interne de la boucle, y′ = 0 donc:

y = x′ sin(ωt)
B et ds dans le système en rotation x′y′z′:

B = B0(1 − 4x′2 sin2(ωt)
a2 )(cos(ωt)x̂′ + sin(ωt)ŷ′)

ds = dx′dz′ŷ′

donc
B · ds = B0(1 − 4x′2 sin2(ωt)

a2 ) sin(ωt)dx′dz′

et donc ∫
S

B · ds = B0 sin(ωt)(
∫ a/2

−a/2
dx′

∫ b/2

−b/2
dz′ − 4 sin2(ωt)

a2

∫ a/2

−a/2
x′2dx′

∫ b/2

−b/2
dz′) =

= B0 sin(ωt)(ab − 4 sin2(ωt)
a2

2
3

a3

8 b) = B0 sin(ωt)(ab − sin2(ωt)
3 ab) =

= B0 sin(ωt)ab(1 − sin2(ωt)
3 )

et donc

E(t) = − d

dt

∫
S

B · ds = −B0ab(ω cos(ωt) − 3ω sin2(ωt) cos(ωt)
3 ) = −B0ωab cos(ωt)(1 − sin2(ωt)) =

= −B0ωab cos3(ωt)

Le courant induit dans la boucle est:

I(t) = E(t)
R

= B0ω cos3(ωt)ab

R
La puissance dissipée dans la résistance à tout moment est donnée par:

P (t) = RI(t)2

L’énergie totale dissipée pendant une rotation complète est l’intégrale de la puissance sur une période T = 2π
ω

:

EJ =
∫ T

0
P (t) dt = B2

0ω2a2b2

R

∫ 2π
ω

0
cos6(ωt)dt

mais ∫ 2π
ω

0
cos6(ωt)dt = (1/ω)

∫ 2π

0
cos6(α)dα = (1/ω)5π

8
avec α = ωt et dt = (1/ω)dα. Donc l’énergie totale dissipée pendant une rotation complète est:

EJ = 5π

8
B2

0ωa2b2

R
Par conservation de l’énergie, le travail mécanique effectué pour maintenir la boucle en rotation est égal à
l’énergie totale dissipée dans la résistance. Donc le travail mécanique est :

W = EJ = 5π

8
B2

0ωa2b2

R
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Remarque 1: la force électromotrice induite peut également être obtenue en utilisant l’équation
E(t) =

∮
C

(v × B) · dl

∮
C

(v × B) · dl =
B∫

A

(v × B) · dl +
C∫

B

(v × B) · dl +
D∫

C

(v × B) · dl +
A∫

D

(v × B) · dl

AB, CD : (v × B) ⊥dl ⇒
B∫

A

(v × B) · dl =
D∫

C

(v × B) · dl = 0

BC, DA : (v × B) ∥ dl ⇒
C∫

B

(v × B) · dl =
D∫

A

(v × B) · dl ̸= 0

donc:

ε(t) =
∮
C

(v × B) · dl = 2
C∫

B

(v × B) · dl

v = ωa

2 cos (ωt) ŷ − ωa

2 sin (ωt) x̂

(a)
(v × B) · dl =

(
B0

ωa

2 cos (ωt) ẑ
)

· dzẑ = B0
ωa

2 cos (ωt) dz

ε(t) = 2
C∫

B

(v × B) · dl = 2
b/2∫

−b/2

B0
ωa

2 cos (ωt) dz =B0ωa cos (ωt)
b/2∫

−b/2

dz =B0ωab cos (ωt)

ε(t) = B0ωab cos (ωt)

(b)

(v × B) · dl =
(

B0

(
1 − 4y2

a2

)
ωa

2 cos (ωt) ẑ
)

· dzẑ = B0

(
1 − 4y2

a2

)
ωa

2 cos (ωt) dz

y = a

2 sin (ωt)

B0

(
1 − 4y2

a2

)
ωa

2 cos (ωt) dz = B0
(
1 − sin2 (ωt)

) ωa

2 cos (ωt) dz = B0
ωa

2 cos3 (ωt) dz

ε(t) = 2
C∫

B

(v × B) · dl = 2
b/2∫

−b/2

B0
ωa

2 cos3 (ωt) dz =B0ωacos3 (ωt)
b/2∫

−b/2

dz =B0ωabcos3 (ωt)

ε(t) = B0ωabcos3 (ωt)
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Remarque 2: le travail nécessaire pour une rotation complète W peut également être calculée à partir de la
puissance P nécessaire pour maintenir la bobine en rotation à une vitesse angulaire constante ω (voir le dessin
à la page précédente):

W =
2π/ω∫
0

Pdt P = N · ω N = rAD × FAD + rCB × FCB ω = ωẑ B = B(y)x̂

FAD =
∫
V

J × BdV =
∫
V

I

dxdy
ẑ × B (y) x̂dxdydz =

b/2∫
−b/2

IB
(

y = a

2 sin (ωt)
)

dzx̂ = IbB
(

y = a

2 sin (ωt)
)

x̂

rAD =
(

a

2 cos (ωt) ,
a

2 sin (ωt) , 0
)

donc
rAD × FAD = Ib

a

2 cos (ωt) B
(

y = a

2 sin (ωt)
)

ẑ

mais
rAD × FAD = rCB × FCB

donc
N = 2Ib

a

2 cos (ωt) B
(

y = a

2 sin (ωt)
)

ẑ = Iab cos (ωt) B
(

y = a

2 sin (ωt)
)

ẑ

Pour la question (a) avec champ magnétique uniforme B = B0x̂:
N = Iab cos (ωt) B0ẑ

donc
P = Iba cos (ωt) B0ω

mais
I = B0ω cos(ωt)ab

R

donc
P = B0ω cos(ωt)ab

R
ba cos (ωt) B0ω = B2

0ω2a2b2cos2 (ωt)
R

et donc

W =
2π/ω∫
0

Pdt = B2
0ω2a2b2

R

2π/ω∫
0

cos2 (ωt) dt = πB2
0ωa2b2

R

 2π/ω∫
0

cos2 (ωt) dt = 1
ω

π


Pour la question (b) avec champ magnétique non-uniforme B = B0

(
1 − 4y2

a2

)
x̂:

B
(

y = a

2 sin (ωt)
)

= B0

1 −
4
(

a
2 sin (ωt)

)2

a2

 = B0
(
1 − sin2 (ωt)

)
= B0cos2 (ωt)

N = Iab cos (ωt) B0cos2 (ωt) ẑ = Iabcos3 (ωt) B0ẑ

donc
P = Ibacos3 (ωt) B0ω

mais
I = B0ωcos3 (ωt) ab

R

donc
P = B0ωcos3 (ωt) ab

R
bacos3 (ωt) B0ω = B2

0ω2a2b2cos6 (ωt)
R

et donc

W =
2π/ω∫
0

Pdt = B2
0ω2a2b2

R

2π/ω∫
0

cos6 (ωt) dt = 5π

8
B2

0ωa2b2

R

 2π/ω∫
0

cos6 (ωt) dt = 1
ω

5π

8


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Questions à choix multiple
(une seule réponse correcte par question, 8 questions, 1 point/question,)

Question 1

Une sphère solide de masse ms est maintenue au repos par rapport à un réservoir rempli d’eau
avec une corde attachée au fond du réservoir. La sphère a une densité ρs = (1/2)ρe où ρe est
la densité de l’eau. Le réservoir accélère verticalement vers le haut avec une accélération a.
L’accélération du champ gravitationnel est indiquée par g. Déterminer la tension de la corde
T (en N) pour ms = 4 kg, a = 2 m/s2, g = 9.8 m/s2, ρe = 1000 kg/m2.

A. 8.0 N
B. 11.8 N
C. 31.2 N
D. 39.2 N
E. 47.2 N
F. 55.2 N
G. 78.4 N
H. 0 N

Question 2

Une particule de masse m et de charge positive q se déplace à une vitesse
v = v0x̂ en (0, R, 0). Une particule avec charge positive Q est fixée à l’o-
rigine (0, 0, 0). Les deux charges se trouvent dans un champ magnétique
uniforme B = B0ẑ. Quelle doit être B0 pour que la trajectoire de par-
ticule en mouvement soit un cercle de rayon R autour de la particule
immobile ?

A. mv0/RQq
B. 2Q/4πε0R

2v0
C. qQ/4πε0R

2v0
D. mv0/Rq
E. Q/4πε0R

2v0
F. (mv0/Rq) + (Q/4πε0R

2v0)
G. (mv0/Rq) − (Q/4πε0R

2v0)
H. 0

Question 3

Un long fil rectiligne est parcouru par un courant constant I. Une tige
métallique de longueur l se déplace à la vitesse v par rapport au fil. Quel-
le est la force électromotrice induite dans la tige ?

A. (µ0Iv/2π) ln((l + d)/d)
B. (µ0Iv) ln((l + d)/d)
C. µ0Iv/2π
D. µ0Iv
E. (µ0Iv/4π) ln((l + d)/d)
F. (µ0Iv/2π) ln(l/d)
G. µ0Iv ln(l/d)
H. 0

Question 4

Un sous-marin (sou-marin A) se déplace dans l’eau à une vitesse de 8 m/s, en émettant
une onde sonore à une fréquence de 2800 Hz. Un deuxième sous-marin (sous-marin B)
se déplace à 9 m/s. Les deux sous-marins se dirigent l’un vers l’autre. La vitesse du son
dans l’eau est de 1533 m/s. Quelle fréquence est détectée par un observateur à bord du
sous-marin B lorsque les deux sous-marins se rapprochent l’un de l’autre ?

A. 2797 Hz
B. 2802 Hz
C. 2831 Hz
D. 2865 Hz
E. 3067 Hz
F. 5604 Hz
G. 5662 Hz
H. 5923 Hz
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Question 5

Un disque conducteur de rayon a tourne avec une vitesse angulaire ω dans un champ
magnétique B uniforme et perpendiculaire au disque. Un circuit conducteur est formé en
connectant une extrémité d’une résistance R à l’axe du disque et l’autre extrémité de la
résistance au bord du disque, les deux connexions se faisant par des contacts glissants. La
résistance et ses contacts restent immobiles. Déterminez le courant I dans la résistance
R, en supposant que la résistance et l’inductance du disque soient négligeables.

A. ωBa2/R
B. ωBa2/2R
C. ωBa/R
D. ωBa/2R
E. 2ωBa2/R
F. 2ωBa/R
G. 4ωBa/R
H. 0

Question 6

Supposons que la voilure solaire d’une véhicule spatial soit parfaitement réfléchissante,
d’aire 1000 m2, et orientée perpendiculairement au rayonnement solaire d’intensité 1000
W/m2. Le véhicule spatial a une masse de 1000 kg. Si nous négligeons l’attraction
gravitationnelle du Soleil et des planètes, combien de temps faut-il au véhicule spatial
pour atteindre une vitesse de 1 m/s à partir du repos ?

A. 1.5×102 s
B. 3.0×102 s
C. 1.5×103 s
D. 3.0×103 s
E. 1.5×104 s
F. 3.0×104 s
G. 1.5×105 s
H. 3.0×105 s

Question 7

Un téléphone portable peut détecter des ondes électromagnétiques ayant une amplitude
de champ électrique aussi faible que 0.005 V/m. En supposant que l’antenne du répéteur
émette des ondes sphériques avec une puissance de 100 W, à quelle distance maximale d
le téléphone portable peut-il encore détecter le signal émis par l’antenne ?

A. 1 km
B. 5 km
C. 15 km
D. 22 km
E. 57 km
F. 120 km
G. 155 km
H. 234 km

Question 8

Un faisceau laser rouge pénètre dans un prisme en verre ayant pour base un triangle
équilatéral. L’angle d’incidence est α = 60◦. L’indice de réfraction de la lumière rouge
dans le prisme est nverre = 1.51. L’angle d’émergence dans l’air β, en supposant que l’air
ait un indice de réfraction nair = 1, est approximativement:

A. 0◦

B. 15◦

C. 30◦

D. 40◦

E. 50◦

F. 60◦

G. 75◦

H. 90◦
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