
Physique générale: Électromagnétisme (SMT), examen du 25.01.2024
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Problème 1 [5 points]

Une coque hémisphérique de rayon R, d’épaisseur et de masse
négligeables, est appuyée contre une paroi verticale lisse. La coque
hémisphérique est entièrement remplie d’eau à travers un très petit
trou à son sommet (c’est-à-dire en (0, 0, R)). La densité de l’eau est ρ.
Déterminez la force minimale F = (Fx, Fy, Fz) qui doit être appliquée
à la coquille pour la maintenir en place, en supposant que la pression
atmosphérique Patm est uniforme autour de la coque hémisphérique.
———————————————————————————————

Solution:
F = (0, −πR3ρg, (2/3)πR3ρg) [(1, 2, 2) points]

Solution détaillée:
Méthode 1:
La coque hémisphérique est soumise à la force due à la pression exercée
par l’eau à l’intérieur et à la force due à la pression exercée par l’air à
l’extérieur. La pression exercée par l’eau à l’intérieur:

Pint = Patm + ρg(R − z)
La pression exercée par l’air à l’extérieur:

Pext = Patm

donc la différence de pression agissant sur la surface de la coque
hémisphérique est:

Pc = Pint − Pest = ρg(R − z) = ρgR(1 − cos θ)
La force dFc agissant sur l’élément de surface ds de la coque
hémisphérique est:

dFc = Pcds

ds = R2 sin θdθdφ(sin θ cos φ, sin θ sin φ, cos θ)

donc:
dFc,x = dFc · x̂ = PcR

2 sin2 θ cos φdθdφ

dFc,y = dFc · ŷ = PcR
2 sin2 θ sin φdθdφ

dFc,z = dFc · ẑ = PcR
2 sin θ cos θdθdφ

Fc,x =
∫ π

0

∫ π

0
PR2 sin2 θ cos φdθdφ = ρgR3(

∫ π

0
sin2 θdθ

∫ π

0
cos φdφ−

∫ π

0
cos θ sin2 θdθ

∫ π

0
cos φdφ) = 0

Fc,y =
∫ π

0

∫ π

0
PR2 sin2 θ sin φdθdφ = ρgR3(

∫ π

0
sin2 θdθ

∫ π

0
sin φdφ−

∫ π

0
cos θ sin2 θdθ

∫ π

0
sin φdφ) = πR3ρg

Fc,z =
∫ π

0

∫ π

0
PR2 sin θ cos θdθdφ = ρgR3(

∫ π

0
sin θ cos θdθ

∫ π

0
dφ−

∫ π

0
cos2 θ sin θdθ

∫ π

0
dφ) = −(2/3)πR3ρg

donc la force minimale qui doit être appliquée à la coque hémisphérique
est:

F = −Fc = (0, −πR3ρg, (2/3)πR3ρg)

Note:
La pression atmosphérique est uniforme donc la force d’Archimède agis-
sant sur coque hémisphérique rempli d’eau est nulle.
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Méthode 2:
L’intuition permet d’éviter tous les calculs pour les composantes Fx et Fz. La composante Fy peut également,
bien que de manière plus élaborée, être obtenue intuitivement.

Fx:
Par symétrie du problème Fx = 0.

Fz:
Fz = mg = ρ(2/3)πR3g est le poids de la coque hémisphérique remplie d’eau.

Fy:
Au lieu de considérer les forces sur la coque hémisphérique, nous pouvons considérer les forces sur le fluide à
l’intérieur de celle-ci. Les forces agissant sur le fluide dans la direction y sont la force de réaction de la paroi
F1,y en raison de la pression du fluide et la force due à la pression atmosphérique externe F2,y. La différence
entre ces deux forces fournit la force Fy que nous devons appliquer de l’extérieur.

F1,y =
∫ R

0

∫ 2π

0
(ρgr(R − r cos θ) + Patm)rdrdθ = ρgπR3 + πR2Patm

F2,y = PatmR2
∫ π

0

∫ π

0
sin2 θ sin φdθdϕ = πR2Patm

donc:
Fy = F2,y − F1,y = −ρgπR3

La force de réaction de la paroi F1,y peut être obtenu aussi en considérant qu’elle est donnée par la pres-
sion au centre de la surface en contact avec la paroi multipliée par la surface de contact entre la paroi et le liquide:

F1,y = Pint(0, 0, 0)πR2 = πR3ρg + R2Patm

Ceci se justifie par le fait que la pression dépend linéairement de z et que la surface de contact est circulaire.
On peut donc considérer la pression moyenne qui est celle au centre de la surface circulaire.
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Problème 2 [5 points]

Une charge ponctuelle positive Q est placée en (0, 0, a/2) au-dessus d’une
plaque très mince carrée de côté a placée dans plan xy et avec densité de
charge uniforme positive σ.
Trouvez la force F = (Fx, Fy, Fz) agissant sur la charge ponctuelle Q.
——————————————————————————————

Solution:
F = (0, 0, σQ/6ϵ0) [(0.5, 0.5, 4) points]

Solution détaillée:

Methode 1:
La force agissant sur Q due au champ E créé par la plaque est F = QE.

Par symétrie:
E = (0, 0, Ez) F = (0, 0, QEz)

dEz = 1
4πϵ0

dq

r2
r
r

·ẑ = 1
4πϵ0

σds

r3 (x, y, a/2)·(0, 0, 1) = 1
4πϵ0

σds

r3
a

2 = 1
4πϵ0

σdxdy

(x2 + y2 + (a/2)2)3/2
a

2

Ez = 4
∫ a/2

0
dy

∫ a/2

0

1
4πϵ0

σdx

(x2 + y2 + (a/2)2)3/2
a

2 = σ

6ϵ0

donc:
F = (0, 0,

Qσ

6ϵ0
)

Details:
4

∫ a/2

0
dy

∫ a/2

0

1
4πϵ0

σdx

(x2 + y2 + (a/2)2)3/2
a

2 = aσ

2πϵ0

∫ a/2

0
dy

∫ a/2

0

dx

(x2 + y2 + (a/2)2)3/2 =

= aσ

2πϵ0

∫ a/2

0
dy[ x

(y2 + (a/2)2)(x2 + y2 + (a/2)2)1/2 ]a/2
0 = aσ

2πϵ0

∫ a/2

0
dy

a/2
(y2 + (a/2)2)(y2 + 2(a/2)2)1/2 =

a2σ

4πϵ0
[ 2
2(a/2)2 arctan( y√

y2 + 2(a/2)2
)]a/2

0 = σ

πϵ0
[arctan( y√

y2 + 2(a/2)2
)]a/2

0 = σ

πϵ0
arctan( a/2√

(a/2)2 + 2(a/2)2
) =

= σ

πϵ0
arctan( 1√

3
) = σ

πϵ0

π

6 = σ

6ϵ0
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Methode 2:

La force agissant sur la charge Q en raison du champ électrique créé par la plaque carrée chargée est égale à la
force agissant sur la plaque carrée chargée en raison du champ électrique créé par la charge Q.

La composante z de la force agissant sur la surface ds = dsẑ = dxdyẑ est:
dFz = dqE · ẑ = σdsE · ẑ = σE · ds

donc la composante z de la force agissant sur la plaque carrée de surface S = a2 est:
Fz =

∫
S

σE · ds = σ
∫

S
E · ds = σΦE,S

ou, par definition, ΦE,S est le flux du champ électrique à travers la surface S.

La charge Q est au centre d’un cube de côté a, de sorte que le flux à travers la surface S est 1/6 du flux total à
travers toutes les parois du cube. Le flux total est, par la loi de Gauss, donné par Q/ϵ0, donc:

ΦE,S = 1
6

∮
E · ds = 1

6
Q

ϵ0
donc:

Fz = σQ

6ϵ0

mais, par symétrie, F = (0, 0, Fz), donc:
F = (0, 0,

σQ

6ϵ0
)
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Problème 3 [5 points]

Deux plaques parallèles très minces de surfaces A très larges sont placées
à une faible distance d l’une de l’autre. Les deux plaques ont une
densité de charge de surface uniforme σ et −σ, respectivement. Les
deux plaques sont déplacées à une vitesse constante v par rapport au
référentiel fixe xyz dans la direction x. Ignorer les effets de bord.

Déterminer, dans le référentiel fixe xyz:
Le champ magnétique B = (Bx, By, Bz)
a) dans la région entre les deux plaques,
b) dans la région au-dessus de la plaque supérieure.
La force F = (Fx, Fy, Fz)
c) agissant sur la plaque supérieure,
d) agissant sur la plaque inférieure.
—————————————————————————–

Solution:
a) B = (0, µ0σv, 0) [(0.25, 1.5, 0.25) points]
b) B = (0, 0, 0) [0.5 points]
c) F = (0, 0, µ0σ2Av2

2 − σ2A
2ϵ0

) [(0.25, 0.25, 1.5) points]
d) F = (0, 0, −µ0σ2Av2

2 + σ2A
2ϵ0

) [0.5 points]
Solution détaillée:

a), b):
La plaque superiore chargée en mouvement crée un champ magnétique.
La situation est équivalente à celle d’une plaque stationnaire avec une
densité de courant uniforme J = Jsupx̂. Le champ magnétique créé par
la plaque supérieure Bsup peut être calculé à l’aide de la loi d’Ampère.∫

C
Bsup · dl = µ0

∫
S

Jsup · ds

Jsup = nv = σv

dz

µ0

∫
S

Jsup · ds = µ0

∫
S

Jsupds = µ0

∫
S

Jsupdydz = µ0

∫ y2

y1
σvdy = µ0σvw∫

C
Bsup · dl = 2Bsupw

Bsup = µ0σv

2
Le champ magnétique total est la somme du champ magnétique créé
par la plaque supérieure et du champ magnétique créé par la plaque
inférieure. Par symétrie, dans la region entre les plaques:
Bsup = Binf donc B = Bsup + Binf = (0, µ0σv, 0).
Par symétrie, dans la region au-dessus de la plaque supériore:
Bsup = −Binf donc B = Bsup + Binf = (0, 0, 0).
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c), d):
Le champ magnétique agissant sur le charges de la plaque supériore est le champ magnétique produit par la
plaque inférieure:

Binf = µ0σv

2 ŷ

La force due au champ magnétique agissant sur la plaque supérieure est :

dFm = Jsup × BinfdV = σv

dz
x̂ × Binfdxdydz = σvx̂ × Binf ŷdxdy = µ0σ

2v2dxdy

2 ẑ

Fm =
∫

A

µ0σ
2v2dxdy

2 ẑ = µ0σ
2v2A

2 ẑ

Le champ électrique agissant sur le charges de la plaque supériore est le champ électrique produit par la plaque
inférieure, qui peut être déterminée par la loi de Gauss (voir example dans Semaine 5 du cours):

Einf = − σ

2ϵ0
ẑ

La force due au champ électrique agissant sur la plaque supérieure est :

dFe = −σdxdyEinf ẑ = −σ2dxdy

2ϵ0
ẑ

Fe =
∫

A
−σ2dxdy

2ϵ0
ẑ = −σ2A

2ϵ0
ẑ

La force totale agissant sur la plaque supérieure est:

F = Fm + Fe = (0, 0,
µ0σ

2v2A

2 − σ2A

2ϵ0
)

En répétant la même procédure, nous obtenons que la force totale agissant sur la plaque inférieure est:

F = Fm + Fe = (0, 0, −µ0σ
2v2A

2 + σ2A

2ϵ0
)

Evidemment on peut aussi appliquer directement le principe action-réaction: la force totale agissant sur la
plaque inférieur est égale en amplitude mais de sens opposé à celle qui agit sur la plaque inférieure.

Note: Les résultats obtenus sont compatibles avec les lois de transformation d’un référentiel fixe S vers un
référentiel mobile S ′ avec vitesse v. Pour v ≪ c:

E′ ∼= E + v × B B′ ∼= B − v × E
c2

dans notre cas: 
B′ = (0, 0, 0)
E′ = (0, 0, σ/ϵ0)
v = (v, 0, 0)

v × B = (0, −vBz, vBy) v × B = (0, −vEz, vEy)

donc:
B = (0, −vEz/c2, −vEy/c2) E = (0, −v2Ey/c2, (σ/ϵ0) + v2Ez/c2)

pour v ≪ c:
B ∼= (0, µ0vσ, 0) E ∼= (0, 0, σ/ϵ0)
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Problème 4 [5 points]

Une boucle circulaire conductrice de rayon a, résistance R, et inductance
négligeable se déplace dans le plan xy avec une vitesse constante
v = (v, 0, 0). Le champ magnétique est B = (0, 0, B) pour x > 0 et
B = (0, 0, 0) pour x < 0. Déterminer, pour d > 0:
a) Le courant I(d) dans la boucle.
b) La force F(d) = (Fx(d), Fy(d), Fz(d)) qui doit être appliquée à la
boucle pour maintenir sa vitesse constante.
—————————————————————————————

Solution:
a) I(d) = 2vB

√
d(2a−d)
R

[3 points]
b) F(d) = (4vB2(d(2a−d))

R
, 0, 0) [(1.5, 0.25, 0.25) points]

Solution détaillée:
a):
Methode 1:
La force électromotrice induite dans les bobines est donnée par:
ε =

∫
C

(v × B) · dl =
∫

C
((v, 0, 0) × (0, 0, B)) · (−a sin θdθ, a cos θdθ, 0) =

=
∫

C
((0, −vB, 0)) · (−a sin θdθ, a cos θdθ, 0) =

∫
C

−vBa cos θdθ =

= −vBa
∫ arcsin(b/a)

− arcsin(b/a)
cos θdθ = −2vBb

mais (a − d)2 + b2 = a2 donc b =
√

d(2a − d). Donc:

ε = −2vB
√

d(2a − d)
et:

I = ε

R
= −

2vB
√

d(2a − d)
R

La force électromotrice est négative donc le courant circule dans le sens
opposé à la direction d’intégration de la courbe C, c’est-à-dire que le
courant circule dans le sens des aiguilles d’une montre.

Note 1:∫ arcsin(b/a)

− arcsin(b/a)
cos θdθ =

∫ arccos((a−d)/a)

− arccos((a−d)/a)
cos θdθ = (2/a)

√
d(2a − d)

Note 2: En général, un intégrale de ligne peut s’écrire comme suit:∫
C

F · dl =
∫ t2

t1
F(r(t)) · r′(t)dt

Dans notre cas:
F = v × B = (0, −vB, 0)

t = θ t1 = θ1 = − arcsin(b/a) t2 = θ2 = arcsin(b/a)

r(θ) = (a cos θ − (a − d), a sin θ, 0) r′(θ) = (−a sin θ, a cos θ, 0)

donc:
ε =

∫
C

(v × B) · dl =
∫ arcsin(b/a)

− arcsin(b/a)
(0, −vB, 0) · (−a sin θ, a cos θ, 0)dθ =

=
∫ arcsin(b/a)

− arcsin(b/a)
−vBa cos θdθ = −vBa

∫ arcsin(b/a)

− arcsin(b/a)
cos θdθ = −2vBb
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Methode 2:
On peut obtenir la force électromotrice induite également en considérant la variation du flux du champ ma-
gnétique mais le calcul est plus compliqué. Nous pouvons écrire:

ε = −dΦB

dt
= −B

dA

dt

A = 2(a2

2 arccos(a − d

a
) − (a − d)

√
(2a − d)d)

d = vt

En utilisant la formule donnée sur la première page:

d

dx
arccos(f(x)) = − f ′(x)√

1 − f(x)2

on obtient :
ε = −2vB

√
d(2a − d)

b):
Methode 1:
La force sur la bobines est donnée par:∫

C
IB × dl = I

∫
C

(0, 0, B) × (−a sin θdθ, a cos θdθ, 0) =

= I
∫

C
(a cos θBdθ, a sin θBdθ, 0) = IaB

∫ arcsin(b/a)

− arcsin(b/a)
(cos θdθ, sin θdθ, 0) = (2IBb, 0, 0)

donc la force qui doit être appliquée pour maintenir une vitesse constante est

F(d) = (−4vB2(d(2a − d))
R

, 0, 0)
Methode 2:
En l’absence d’autres forces dissipatives (et en l’absence d’éléments capables d’accumuler de l’énergie), la puis-
sance mécanique de la force F est ausi égale à la puissance dissipée dans la résistance R, donc Fv = RI2. Donc:

F = RI2

v
= 4vB2(d(2a − d))

R
Methode 3:

Considérons une bobine virtuelle dont la surface interne est la surface A. Le champ magnétique étant uniforme,
la force totale exercée sur cette bobine virtuellle est nulle. Donc:∫

C+C′
IB × dl = 0

e donc: ∫
C

IB × dl = −
∫

C′
IB × dl∫

C′
IB × dl = (−

∫ −b

b
IBdy, 0, 0) = (−2IBb, 0, 0)

et donc:
F = (2IBb, 0, 0)
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Questions à choix multiple
(une seule réponse correcte par question, 1 point/question)

Accélération de la pesanteur (gravité) g ∼= 9.8 m/s2 (à la surface de la Terre)
Permittivité du vide ε0 ∼= 8.85 × 10−12 F/m
Perméabilité du vide µ0 ∼= 1.26 × 10−6 H/m

Question 1

Une bille solide sphérique de volume VS est constituée d’un matériau de den-
sité ρS. La bille tombe dans un liquide de densité ρL, avec ρS > ρL. Supposons
que la force visqueuse soit proportionnelle au carré de la vitesse de la bille v,
c’est-à-dire que Fv = av2 avec a > 0. Déterminez la vitesse limite de la bille.

A. gVS (ρS − ρL) /a
B. 2gVS (ρS − ρL) /a

C.
√

gVS (ρS − ρL) /a

D. gVS (ρS + ρL) /a

E.
√

agVS (ρS + ρL)
F. agVS (ρS − ρL)
G.

√
2agVS (ρS − ρL)

H.
√

3agVS (ρS − ρL)

Question 2

Une pompe est connectée à un tuyau pour amener une quantité d’eau de 10
litres/s du rez-de-chaussée au premier étage. La séparation verticale entre les
deux étages est de 2.5 m. Calculez la puissance de la pompe, en supposant que
l’eau est un fluide non visqueux et incompressible de densité ρ ∼= 1000 kg/m3.

A. 2.5 W
B. 10 W
C. 20 W
D. 25 W
E. 98 W
F. 100 W
G. 245 W
H. 980 W

Question 3

Un cube solide de volume VS et de densité ρS est attaché à une extrémité
d’une corde, dont l’autre extrémité est attachée à un seau de poids négligeable
contenant de l’eau de densité ρL = ρS/10. En supposant que le système est en
équilibre, déterminer le volume d’eau VL dans le seau.

A. 8VS

B. 9VS

C. 10VS

D. 11VS

E. 12VS

F. 14VS

G. 16VS

H. 18VS
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Question 4

Un train de section S1 circule dans un tunnel étroit de section S0 à la
vitesse constante v. En supposant que l’air est un fluide idéal incompres-
sible de densité ρ et que la pression dans le tunnel est P0 loin de la zone
occupée par le train, trouver la pression P dans la zone entre la paroi du
train et la paroi du tunnel.

A. P0
B. P0 − ρv2

C. P0 + ρv2

D. P0 + 1
2ρv2

(
1

(1−S1/S0)2

)
E. P0 + 1

2ρv2
(

1
(1−S1/S0)2 − 1

)
F. P0 − 1

2ρv2
(

1
(1−S/S0)2 − 1

)
G. P0 − 1

2ρv2 (1 − (S1/S0)2)
H. P0 + 1

2ρv2 (1 − (S1/S0)2)

Question 5

Quatre charges identiques Q sont placées aux quatre coins d’un carré. Une
charge q est placée en son centre. Déterminer la valeur de q telle que toutes
les charges (les quatre charges Q et la charge q) soient en équilibre.

A. −Q
B. −Q/4
C. −(Q/4)(1 + 2

√
2)

D. −(Q/2)(1 + 2
√

2)
E. −Q(1 + 2

√
2)

F. (Q/2)(1 + 2
√

2)
G. (Q/4)(1 + 2

√
2)

H. Q(1 + 2
√

2)

Question 6

Un solénöıde de longueur a, de section A et de nombre de tours par unité de
longueur n est alimenté par un générateur qui maintient un courant I dans le
solénöıde. Une barre de matériau ferromagnétique de longueur b, de section
égale à celle du solénöıde et de perméabilité µr est partiellement introduite à
l’intérieur du solénöıde. La partie de la barre à l’intérieur du solénöıde a une
longueur c < b < a. Déterminer la force F nécessaire pour maintenir la barre
dans cette position.

A. (1/2)µ0n
2I2Aµr

B. (1/2)µ0n
2I2A(µr − 1)

C. (1/2)µ0n
2I2A

D. µ0n
2I2A(µr − 1)

E. (1/2)µ0n
2I2A(µr + 1)

F. µ0n
2I2A(µr + 1)

G. µ0n
2I2Aµr

H. 0
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Question 7

Deux voitures se rapprochent l’une de l’autre, toutes deux roulant à une vitesse
de 50 m/s. L’un des deux conducteurs commence à klaxonner à une fréquence
de 475 Hz. Quelle est la longueur d’onde du klaxon entendue par l’autre
conducteur, en supposant que la vitesse du son est de 343 m/s ?

A. 1.52 m
B. 1.23 m
C. 1.08 m
D. 0.54 m
E. 0.34 m
F. 0.27 m
G. 0.15 m
H. 0.12 m

Question 8

Un faisceau de lumière est incident sur une interface séparant deux milieux.
Lorsque l’angle d’incidence est de 10◦, l’angle de réfraction est de 18◦. Quel
est l’angle de réfraction approximatif lorsque l’angle d’incidence est de 30◦ ?

A. 18◦

B. 22◦

C. 33◦

D. 42◦

E. 54◦

F. 63◦

G. 72◦

H. 82◦

Question 9

Deux sources ponctuelles S1 et S2 en (a, 0) et (−a, 0) émettent des ondes
sphériques sinusöıdales avec le même vecteur d’onde k, la même amplitude A,
et la même phase ϕ. Quelle est l’intensité I de l’onde résultante en (x, 0) avec
x >> a ?

A. 2A
B. 4A2

C. (4A2/x2)
D. (4A2/x2) cos2(ka)
E. (4A2/x2) cos(ka)
F. (4A2/x3) cos2(ka)
G. (4A2/x3) sin2(ka)
H. (4A2/x4) sin2(ka)

Question 10

Considérons une lumière polarisée linéairement voyageant à travers une série
de trois polariseurs, chacun étant tourné dans le sens des aiguilles d’une montre
d’un angle π/4 par rapport à celui qui le précède. Le premier polariseur étant
tourné d’un angle π/4 dans le sens des aiguilles d’une montre par rapport
à la polarisation initiale. Trouver l’intensité de la lumière après le troisième
polariseur si l’intensité de la lumière avant le premier polariseur est égale à I0.

A. 0
B. I0/3
C. (I0)3/3
D. I0/6
E. (I0)3/6
F. I0/8
G. (I0)3/8
H. I0/9
I. (I0)3/9
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