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Exercise sheet #11

Problem 1. For a bar magnet (a short circular cylinder of radius a and length L with a “frozen-in”
uniform magnetization M parallel to its axis), make careful sketches of M,B, and H, assuming L is
about 2a. Compare with your results in Problem 3 from Exercise sheet 7.

Solution: B is the same as the field of a short solenoid; H = 1
µ0
B−M.

Problem 2. A coaxial cable consists of two very long cylindrical tubes, separated by linear insulating
material of magnetic susceptibility χm. A current I flows down the inner conductor and returns along
the outer one; in each case, the current distributes itself uniformly over the surface (See figure below).
Find the magnetic field in the region between the tubes. As a check, calculate the magnetization and
the bound currents, and confirm that (together, of course, with the free currents) they generate the
correct field.

Proof. Using Ampere’s law for H, considering a loop of radius a < s < b centered at the small cylinder:∮
H · dl = Ifenc = I, so H =

I

2πs
ϕ̂.

B = µ0 (1 + χm)H = µ0 (1 + χm)
I

2πs
ϕ̂.

M = χmH =
χmI

2πs
ϕ̂.

Jb = ∇×M =
1

s

∂

∂s

(
s
χmI

2πs

)
ẑ = 0

Kb = M× n̂ =

{
χmI
2πa ẑ, at s = a

−χmI
2πb ẑ, at s = b

Total enclosed current, for an amperian loop between the cylinders:

I +
χmI

2πa
2πa = (1 + χm) I, so

∮
B · dl = µ0Ienc = µ0 (1 + χm) I ⇒ B =

µ0 (1 + χm) I

2πs
ϕ̂.✓

Problem 3. How would you go about demagnetizing a permanent magnet at point c in the hysteresis
loop pictured below? That is, how could you restore it to its original state, with M = 0 at I = 0 ?

Solution: Place the object in a region of zero magnetic field, and heat it above the Curie point—or
simply drop it on a hard surface. If it’s delicate (a watch, say), place it between the poles of an
electromagnet, and magnetize it back and forth many times; each time you reverse the direction,
reduce the field slightly.
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Problem 4. In the figure below a conducting rod is pulled to the right at speed v while maintaining
contact with two rails. A magnetic field points into the page. From the reasoning in lecture, we know
that an induced emf will cause a current to flow in the counterclockwise direction around the loop.
Now, the magnetic force quB is perpendicular to the velocity u of the moving charges, so it can’t do
work on them. However, the magnetic force f in the equation E ≡ 1

q

∫
f · ds certainly looks like it is

doing work. What’s going on here? Is the magnetic force doing work or not? If not, then what is?
There is definitely something doing work because the wire will heat up.

Proof. The figure below outlines the situation described:

For simplicity, we assume that the mobile charges are positive; this doesn’t affect the result. The
important point to realize is that there are two components to a given charge’s velocity u, namely the
horizontal component ux = v due to the motion of the rod, and the vertical component uy due to the
current along the rod. This means that the magnetic force FB points up and to the left, perpendicular
to u, as shown. Its magnitude is FB = quB, and its two components have magnitudes FB,x = quyB
and FB,y = quxB = qvB. The latter of these is what we called f in the equation for E ≡ 1

q

∫
f · ds .

Assuming that the current is steady and the charge isn’t accelerating, the total force on it equals zero.
So if you are applying the force to the rod, then your force is given by Fyou = FB,x, and the resistive
force on the charges is given by FR = FB,y. (All of these quantities are magnitudes, so they are defined
to be positive.)

Which forces do work? As mentioned in the problem, the magnetic force does no work because FB is
perpendicular to u. But if you wish, you can break this zero work into two equal and opposite pieces.
The vertical component of FB does work at a rate FB,yuy = (quxB)uy. And the horizontal component
does work at a rate −FB,xux = − (quyB)ux. These two rates are equal and opposite, as they must be.
You also do work, because there is a component of u in the direction in which you are pulling. The rate
at which you do work is Fyou ux. And due to the balancing of all the forces, this positive rate is equal
and opposite to the negative rate at which FB,x does work. The resistive force also does work, and
the rate is −FRuy. This negative rate is equal and opposite to the positive rate at which FB,y does work.

We see that the magnetic force does zero net work, while the positive work you do is canceled by the
negative work the resistive force does. While it is true that a component of FB does positive work
(the vertical component, which we called f ), the other component of FB does an equal and opposite
amount of negative work. So it would hardly be accurate to say that the magnetic force does work.

This setup is essentially the same as the setup in which you push a block up a frictionless inclined plane
at constant speed u, by applying a horizontal force, as shown in the figure below. This figure is the
same as the case of the rod on rails with the forces relabeled. The normal force replaces the magnetic
force, and gravity replaces the resistive force. The vertical component of the normal force does positive
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work, but the horizontal component does an equal and opposite amount of negative work. You are
the entity pumping energy into the system (which shows up as gravitational potential energy), just as
you were the entity pumping energy into the above circuit (which showed up as heat). Although the
vertical component of the normal force is the only force actually lifting the block upward, the entire
normal force does zero net work. Conversely, you are not lifting the block upward, but you do in fact
do positive work.

Problem 5. A long straight stationary wire is parallel to the y axis and passes through the point
z = h on the z axis. A current I flows in this wire, returning by a remote conductor whose field we may
neglect. Lying in the xy plane is a square loop with two of its sides, of length b, parallel to the long
wire. This loop slides with constant speed v in the x̂ direction. Find the magnitude of the electromotive
force induced in the loop at the moment when the center of the loop crosses the y axis. does an equal
and opposite amount of negative work. So it would hardly be accurate to say that the magnetic force
does work.

Solution: In the figure below the y axis points into the page. We’ve arbitrarily chosen the current in
the wire to flow in the negative y direction (out of the page), but the sign doesn’t matter since all we
care about is the magnitude of the emf. At the leading edge of the square loop, the magnitude of B
is µ0I/2πr, where r =

√
h2 + (b/2)2. Only the z component matters in the flux, and this brings in a

factor of (b/2)/r. So

Bz =
µ0I

2πr

b/2

r
=

µ0Ib

4π (h2 + b2/4)
.

At the trailing edge, Bz has the opposite sign. If the loop moves a small distance vdt, there is additional
positive flux through a thin rectangle with area b(vdt) at the leading edge, and also less negative flux
through a similar rectangle at the trailing edge. Both of these effects cause the upward flux to increase.
Therefore,

E =
dΦ

dt
= 2

b(vdt)Bz

dt
= 2bvBz =

µ0Ib
2v

2π (h2 + b2/4)
.

The flux is increasing upward. So for our choice of direction of the current in the wire, the induced emf
is clockwise when viewed from above, because that creates a downward field inside the loop which op-
poses the change in flux. For h = 0 (or in general for h ≪ b)E reduces to 2µ0Iv/π. This is independent
of b because the field at the leading and trailing edges decreases with b, while the length of the thin
rectangles at these edges increases with b. You can show that our result for E has the correct units,
either by working them out explicitly, or by noting that E has the units of B (which are the same as
µ0I/2πr ) times length squared divided by time, which correctly gives flux per time.
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