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Instituut voor Theoretische Natuurkunde der Rijks-Universiteit, Leiden 

Zusammenfassung 

Eine allgemeine Definition fur den Spindrehimpuls und die Spin- 
momentdichte willktirlicher Felder wird gegeben. Angewandt auf den Fall 
des Meson-Feldes ergibt sich fur das Gesamt-Spinmoment genau der Aus- 
druck von P r o c a; jedoch trifft die Behauptung von D u r a n d i n 
und E r s c h o w, dass der Zeitmittelwert dieses Momentes bei Quanti- 
sierung dcs Feldes verschwindet, nicht zu. 

Resumo 

Generala difino de la spin-movkvanta momanto kaj de la spinmomanta 
denseco de arbitraj kampoj estas donata. Se tiu difino estas aplikata por 
la mezona kampo, oni trovas por la entuta spinmomanto ekzakte la 
esprimon de P r o c a; tamen la aserto de D u r a n d i n kaj E r- 
s c h o w, ke la meznombra valor0 de tiu momanto nuligas Pe kvantizado 
de la kampo, estas malprava. 

5 1. In the fourth paper of Y u k a w a and collaborators ‘) on 
the interaction of elementary particles a statement of D u r a n d i n 
and E r s c h o w 2) has been quoted, that the spin of the quantized 
field of Proca quanta would have the value 0. As this statement 
seems to be in contradiction with the fact that three directions of 
polarization are possible for a Pro c a quantum with given momentum 
and charge, I have investigated more in detail how the spin of 
arbitrary fields generally should be defined and have applied the 
results to the field of mesons “) “). 

Let the field equations (first order differential equations) be derived 
from a L a g r a n g i a n which is the integral over time and space 
of a Lagrangian function L, scalar with respect to the 
transformations of special relativity theory. We assume that L does 
not explicitly contain ct = x0 = - x0, x = x1 = x1, y = x2 = x,, 
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z = x3 = x3 and that it depends on these coordinates (x) only as it is 
a function of the field components *) p(x) and their first derivatives 
VA q(x), being linear in the latter. The field equations are given by 

aL-, aL 
a4 

- = 0, 
aw 

(vx = a/ad). 

Let the “orbital” energy-momentum density tensor be defined in 
the usual way by 

It satisfies the continuity equation V’ tllv = 0. The orbital angular 
momentum density tensor is then defined by 

M,+” = X[A tpp = XA t/w - xp t/b. (3) 
In general m will not satisfy a continuity equation, since 

V’m,u” = f&la, (# 0). (4) 
Now, by an infinitesimal spatial rotation or a L o r e n t z trans- 

formation of the co-ordinates 

6x” = XJW”, 8d” = - 8w”P, (5) 
let the field components q in a fixed point of the space-time manifold 
be linearly transformed, say by 

6q = 8~0p’ S,, 0fi q, (S, operating on q) ; (6) 

so that the transformation of their gradients is given by 

WQq) = WV + Wdq = MJ” (vAsp”o~ - &AV”k. (7) 
Putting 

f&v = - f,xv = Re k & %,A ofi q}; i+v = n-u,, + f+v 8 (a) 

we find from the fact that the L a g r a n g i a n function L(q, Vq) 
is a scalar field, with the help of (l)-(4) and (6)-(7) : 

V” i\c(y = 0. (9) 
Further we shall put 

0, = VA f&L”; %p” = qxql]“; 
Tpv = tl(v + 0,“; ii/w = X[A T,,v = m,+.w + %,w, (104 

*) For brevity the indices, necessary to distinguish t’he different components of the 
field, have been omitted where they are not essential. 
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where [M. according to Dr. P o d o 1 a n s k i is defined generally by 

[~m = ½(fvgg + Iv~ + ivy), (10b) 
so tha t  

l t ,.l = (11)  

Then we can express (9), on account of (4), by stating tha t  

T,. = r., (:2) 
is a symmetrical tensor. Since from the definition (I Oh) (where 
I.v~ was antisymmetric in v and I~) follows 

IA., = - - / , e ,  (13) 

we find tha t  ®~v, defined by (10a), satisfies a continuity equation 
just  as t ~  did, so tha t  also T~,v satisfies a continui ty equation 

V v Tt,v = 0. (14) 

F rom (12) and (14) again we conclude tha t  

In view of (9) i~,~ might  be regarded as the tensor representing the 
spin density of the field. On the other hand on account of (10a) and 
(15) we may  regard ~g~ as the spin angular momen tum density of 
the field, ~ being (unlike i ~ )  the moment  of a (spin) m o m e n t u m  
density ®g~. This spin energy-momentum tensor ®s~ does not give 
any contribution to the total  energy and momentum,  as from (10a) 
and (13) follows 

f ® g o d x l d x 2 d x  a = 0, s o f T g o  = f t t ,  o. (16) 

Thus we have  succeeded in defining a spin energy tensor ®~  (to 
be added to the orbital energy tensor it, u) which satisfies a continuity 
equation, does not give any contribution to the total  energy or 
momentum,  but  gives a contribution to the angular momentum,  
ensuring conservation of the to ta l  angular m o m e n t u m  density 
according to (15). The total  spin angular momen tum is then giverr by 
the integral of the corresponding density components  over space. 
In tegrat ing by parts we find on account of (11) and (13) 

~ m  = f (~,vo/C) = f ([t,~o/C) =--- Re  { f Y, p . So,v Iop q}; 
q 

8L 1 aL (17) 
-=-@= c awe) 
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-mm fpvo as well. as S,;, may be used for the calculation, of the 
total spin angular momentum, just as tpO may be used instead of 
T,, for the calculation of the total energy and momentum (see (16)). 
In fact the use of f,,, is often easier. It is interesting to remark that 
x and V do not occur explicitly in the integrand tensor fhpY, so that 
the total spin angular momentum does not depend on the point of 
reference of the moment. Still G,+,” can be regarded as a regular 
angular momentum density (depending on the point of reference), 
to be added to m,+ in order to find the moment l,+ of the total 
(= orbital + spin) energy-momentum tensor Tpv = Tvp. 

We shall now apply the definitions given by (8) and (10) to all 
particles and quanta hitherto considered in the literature “) “) ‘) *) s), 
but for the present we shall suppose that the terms in the L a g r a n- 
g i a n function describing the interactions depend on the field 
components only and not on their gradients. 

Expressing’the field quantities by means of undors 10) of the first, 
second, third, . . . . rank Yk,k,... , the. terms of the Lag r a n- 
g i a n function depending on the derivatives of the field quantities 
have the form of 

iK’3?tBI+vAY (18) 
Here Y? is the adjoint (“H c r m i t e an conjugate”) of ‘I!; B and 

rh are given by 

B = @‘)pf2). . . , . and PA = Ely;) + E# + . . . . 

(the p~j;‘), p(“) and yj;‘)=p(N xff) b eing D i r a c matrices operating on the 
undor index k, of Y) ; K is a real normalization factor and E, = f 1. 

D i r a c electrons are described by undors of the first rank, 
K e m m e r quanta *) by undors of the second rank. The quanta of 
K e m m e r’s case (a) are identical with P a u 1 i-W e i s s k o p f 
quanta “); together with the quanta of K e m m e r’s case (c) they 
can be described by a L a g r a n g i a n function depending on the 
gradients of the field by (18) with E, = - Ed. The quanta of K e m- 
m e r’s case (b) are identical with P r o c a 7) quanta 2) and with 
the quanta of “spin = 1” of D i r a c ‘J) and F i e r z 9) ; together 
with the quanta of K e m m e r’s case (d) they can be described by 
taking ~~ = ~~ in (18). The L a g r a n g i a n function then has a 
symmetrical form with respect to both undor indices. The P r o c a 
field then is described by the part of Y symmetrical in the two 
indices, and K e m m e r’s case (d) by the antisymmetric part. 
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The field equations holding for D i r a c *)-F i e r z 0) particles 
and quanta of “spin > 1” cannot be derived from one single L a- 
g r a n g i a n. These fields are described by symmetrical undors of a 
rank N > 2. Some of the field equations can be derived from a 
L a g r a n g i a n function depending on the, gradients of the field 
according to (18) ; the choice of the signs E,, = & 1 is arbitrary 

N 
except for the condition that E E,, # 0. Further, this L a g r a n- 

n=l 

g i a n should be normalized in a suitable way, so that the-right 
orbital energy density (H a m i 1 t o n i a n function) follows from 
it. The field equations following from this L a g r a n g i a n read 

{iNmc/A +~~r$)VA} Y = 0, (interactions neglected). (19) 

In addition to (19) other differential equations are assumed by 
D i r a c and F i e r z, which, together with (19), can be summarized 
by writing 

{&m/A + yj(‘“‘V”} Y = 0. > (20) 
n, is an arbitrary number 2 N. These additional equations cannot 
be derived from a L a g r a n g i a n as the undor Y? was defined to 
be symmetrical in its indices. (For the same reason (20) is indepen- 
dent of the choice of no). One might say that these equations are 
introduced in order to make Y? satisfy a K 1 e i n-G o r d o n 
equation. 

The other possibilities included in (18) have not yet been fully 
discussed in the literature. 

Now, the transformation of the undor Y is given by 

w = ~~~“spvop y, s&“,op = W&l * (21) 
Inserting (21) into (8) and (1 Ob) we find, on account of 

Bl?h = qB+, (24 

(where t again denotes the adjoint matrix), that 

it+ = Re {$ iK . Y+B rxr,rvY}. (23) 
The spin is now given by (17), its density tensor B+,, and the 

symmetrical energy tensor Tpy by (1 On). We remark that for undors 
of the first rank (D i r a c wave functions) our method of con- 
structing Tpy is equivalent with the method of symmetrizing the 
energy tensor for the D i r a c electron given by T e t r o d e rl) 
and Paulil?) . 
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It should be emphasized that the dependence of the spin of the 
field on the canonical variables is entirely independent of possible 
interactions between different kinds of particles and quanta as long 
as the terms in the L a g ran g i an function describing these inter- 
actions do not contain derivatives of the field components. - On the 
other hand we made use of the field equations (1) when we were 
deriving (9) and (12), so that the energy tensor TpV can only be 
written explicitly as a symmetrical tensor with the help of these field 
equations containing all interactions. As one of these equations may 
be the well known equation of M a x w e 1 l’s theory 

div d = 4xep, (24) 

which in quantum theory cannot be regarded as a q-number equation 
but only as a condition imposed on the. situation function 13), in 
quantum theory the equation Tpy = Tvp may be of the same kind. 

3 2. We shall now apply the definition (8)-( IO) of the spin angular 
momentum of a field to the case of the meson “) “) field, that is 14), an 
undor field of the second rank ?l? k,k* satisfying a wave equation lo) as 
given by (19) (N = 2)) which describes simultaneously> (1”) a 
P r o c a field 2, V’; z H’; (the symmetrical part of ‘YklR,, case (b) 
of K e m m e r 6)) ; (2”) a field consisting of a pseudo-scalar Y and a 

pseudo-fourvector s, W, (case (d) of K e mm e r), and (3”) a 
scalar S, which by quantization does not lead to a third type of 
quanta, as it can be expressed directly in terms of the other cano- 
nical variables (in this case these are the variables describing the 
heavy and the light particles interacting with the meson field). The 

components Y,s, W and S together form the antisymmetric part of 
Y k,k,. The spin angular momentum of this undor field can now be 
calculated from (17) and (21). 

The electric charge density of the mesons is given by 16) 

as the electric scalar potential 8 occurs in Lqes only in the combina- 
tion {(a/at) - (e/G%) !B}. From (18) we derive 10) 

ep = Yt pop. eY; pop = (KjZX) . Bl?. (26) 
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Comparing (25) with (26) and with (17), and putting 

g&,2) = Qh ; &), (@@’ = i@, etc.) 
n=l 

we find with the help of (21) and (22) 

%=Jiwtp,,.)r&].Y =/?l?pop i%$Y. 

In vector notation, (26) and (28) take the form 

(27) 

(28) 

ep = (e/i%) . {(2i* , Z) - (Z* .7i) + y*w _ ppyj; (264 

“s = J {[z*, T] - [S, Z]} ax dy dz. Fw 

From (26~) and (25) we recognize that z*, - z*, Y* and - W* 
are the momenta conjugate to the canonical co-ordinates E’, 2, W 
and Y respectively. As the latter two do not occur in (2&r), we 
conclude that the antisymmetric part of YkXk, describes spinless 
quanta ‘(“singlet states” of the meson field). The P r o c a field 
2, 2, however, represented by the symmetrical part of Yklk,, 
possesses a spin angular momentum equal to the expression (28u) 
given already by P r o c a himself ‘). We may say that P r o c a 
quanta represent the “triplet states” of the meson field. 

The components z’,z, W and Y, which are represented by 

Y’ = (Ac/2K)2 . (pop)” Y, (29) 
are quantized following the method of P auli and Weiss- 
k o p f !). According to this method W and Y are expanded in series 

of scalar waves and zandz in series of longitudinal and transversal 
waves. The longitudinal waves are polarized in the direction 
--t 
5 = T/# of the momentum; but the transversal waves we split up 

into left hand and right hand circzclur polarized waves 16) character- 

ized by the complex “unity” vectors cT +*I defined by 

Further we follow exactly the scheme of P a u 1 i and W e i s s- 
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l<OF’f) ) ) 5 6 l5 17). The quantized meson field can then be written in 
a form analogous to that of the quantized electron field 18) : 

Y:,k, = IX {a; X&, + i b, 
7 p=-1 P,cL 

Here the X$##* are antisymmetric undors representing the waves 

of Y and W; the @i,$‘) are symmetrical undors representing the f 

waves of 2 and 2 polarized in the direction of%; the (@CL) and Xc% 

depend on the time and spatial co-ordirktes by a factor 
exp (i/h) $.t- Ept), where (E,/c)~ = (WZC)~ + fi2. The (i&y)’ 

and X& are charge-conjugated l*) to @&) and X& according 7 
to the scheme lo) 

a$&, = 6;(w2) a;,&; Xf,,* = sYW2’ x;, ) L t (32) 

where $(I) and ,JZt2) are matrices operating. on k, and 17, respectively, 
satisfying the commutation relations 

yj;“p, = _ ;E!“, $‘* ; jy$p* = $“,’ jp, = 1. (33) 

So the OG*p)E and the X P)g depend on the time and spatial co- i+ 

ordinates by a factor exp (-. i/&i) ($ .y-- Ept). 

The functions XG), @+‘J, X(2$ and @(xI*)g are each simulta- 

neously eigenfunctions of the operators flop = 61 a/at. ,FOp = -i&T, 

e, P . (g$)” and (SOP . POP) J”op/J’o’ belonging to the following eigen- -+{I> + -+ 
values : 

operator: eigenfunctions : 
&A xc& @&)a 

EP EP -EP -E, 

; ; 7; -;. 

e e -k--e) -6-e) (31) 

0 e . 2h2 0 - (-e) .2P 
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.So these functions form an orthogonal set. Moreover, it turns out 
that they are quasi-orthogonal in the sense of 

/xl% Pop XG:‘, = 0, imh 

/ xczt pop cD(;*r) = J-X(2? pop X(7)” = /xc% pop &,&L,e = 0; (35) 

fQtxpjt pop . . . . = 0; etc. 

If they are quasi-normalized by 

the a, b, c* and d* in (3 1) satisfy the commutation relations6) 6)15)17) 

a, a2 
P P’ 

- a;, a; = S$-3, ; 

c-b cz 
P P' 

- c;, c;, = 8&$; 
(37) 

so that a< a p ;, b: b+ , c: c, and dZ d, 
P,cL P.cL P P P,IL P# 

have the eigenvalues 

0, 1) 2, 3, . . . . . 
From.the L a g r a n g i a n function 

L = iKYtR {2imc/tz + I?$} Y + . . . ., (ITA = yj\” + yf’), (38) 

we derive the energy-momentum density tensor by (2). For the 
symmetrical tensor representing the current and density of the total 
(= orbital + p ) s in energy and momentum we find (neglecting all 
interactions) : 

T,, = - (mc/fi) . IPI? (~l')a;~) + c$)'l.f))Y = 
= - (mc/Fz) . KYtB(yt”yp + y;“y;‘)Y, 

so that the total energy density is given by ls) 

To0 = 2(mc/h) . KYfY. 

(39) 

(40) 
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Integrating the (orbital) densities (2) over space we find the total 
energy and momentum : 

R =/!r+ popflop’Y, ,&/y+ pOP~$.Y (41) 

The electric charge is found by integrating (26) : 

e = jY+pOp e Y. (42) 

In (28), (41) and (42) ‘Y+ can now be replaced by Yrt and Y by 

v, as pop is commutative with COfi, ( 7i.b. e and c&), while 
(fic/21\‘)2 . (,zop)3 = :‘@. We insert (31) into the expressions for 

Is’, T, P, and ??, and make use of (34j, (35) and (36). Then the minus 
signs occurring in the latter two colums of (34) are “neutralized” by 
the minus signs in (36). (In the case of the D i r a c electron they 
are neutralized by the anti-commutativity of the J o r d a n-W i g n e r 
matrices). In this way we find, subtracting infinite zero-point terms: 

E= CE,(a:a,+ h bZ b+ 
5 P P p=-1 PG PJJ 

+ c; c7 +p=&,, LPI ; 
I , 

e = Z{e(a<a++ Tk b_l b, )-e(c:c++ i dZ L )I; 
d P P p=--1 POP P.P P P /A=--1 P,U PrP 

(43) 
&= C C 

7p=*1 
p.“{+$b;,b;, +d;pd+J-~i(Ep/2mc2+ 

,L , I 

+ mc2/2Ep) . (b;,D bTp -I$ -~ b; + Co dTp - d; -cc d7 ) + 
90 .o 

+$ (Ep/2nzc2 - mc2/2Ep) . [&I+, bwT 
90 + b7- d-;-J . 

. exp (- 2iE,t/A) - (bio d-tp + di,o b-i,p) . exp (2iE,t/h)]}. 

Averaging the expression for gwith respect to time the terms with 
db exp (- 2iEt/tl) and b*d* exp (2iEt/fi) vanish indeed; the re- 
maining terms, however, do not depend on the time and do not 
vanish, contrary to the statement of D u r a n d i n and E r- 

s c h o w “). From the first term of g(43) we conclude that we may 
regard b: b, 

PSI" P# 
as the number of positive and d: dZ as the 

r+ P,P 
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number of negative (triplet) mesons with energy E, (> 0), momen- 

tum;, and a spin angular momentum component in the direction 
of this momentum (longitudinal spin component) equal to l.Jz. The 
transversal component of the spin angular momentum of the triplet 
meson is not brought in diagonal form in our representation by 
longitudinal and circular waves. 

In the present paper the superposition of K e m m e r’s cases (b) 
and (d) was considered, as this combination seems to be appropriate 
for a description of nuclear forces 14). 

It is interesting to remark that by an expression like (28~) the 

spin angular momentum SMnZW of the Max w e llian field is 
given. Taking as a L a g r a n g i a n function for this field 

4xL Maxro = (Q” - E2)/2 - (ji .723 + Gi/c8i) - (5. rot Z), (4.4) 

we find 

gMaxw = (1/47x) . f [E:, 2X-J dx dy dz. 

The common expression for the angular momentum 

‘(45) 

&am = 
-%-z-h 

(l/47=) . / [r, W, 811 dx dy dz 
turns out to be the tot& angular momentum of this field 20). 

I am much indebted to Prof. K r a m e r s, who drew my atten- 
tion to the formulae given by (6)-(9) of this paper, for his interest 
in these investigations. I wish to thank Dr. P o d o 1 a n s k i, to 
whom I owe the generalization (lob) of the formula (23), for inter- 
esting discussions on the first section of this paper. 
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