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ON THE SPIN ANGULAR MOMENTUM OF MESONS
by F. J. BELINFANTE )

Instituut voor Theoretische Natuurkunde der Rijks-Universiteit, Leiden

Zusammenfassung

Eine allgemeine Definition fiir den Spindrehimpuls und die Spin-
momentdichte willkiirlicher Felder wird gegeben. Angewandt auf den Fall
des Meson-Feldes ergibt sich fiir das Gesamt-Spinmoment genau der Aus-
druck von Proca; jedoch trifft die Behauptung von Durandin
und Erschow, dass der Zeitmittelwert dieses Momentes bei Quanti-
sierung des Feldes verschwindet, nicht zu.

Resumo

Generala difino de la spin-movkvanta momanto kaj de la spinmomanta
denseco de arbitraj kampoj estas donata. Se tiu difino estas aplikata por
la mezona kampo, oni trovas por la entuta spinmomanto ekzakte la
esprimon de Proca; tamen la aserto de Durandin kaj Er-
schow, kelameznombra valoro de tiu momanto nuligas ¢e kvantizado
de la kampo, estas malprava.

§ 1. In the fourth paper of Yukawa and collaborators!) on
the interaction of elementary particles a statementof Durandin
and Erschow? hasbeen quoted, that the spin of the quantized
field of Proca quanta would have the value 0. As this statement
seems to be in contradiction with the fact that three directions of
polarization are possible fora Pro c a quantum with given momentum
and charge, I have investigated more in detail how the spin of
arbitrary fields generally should be defined and have applied the
results to the field of mesons 3) 4).

Let the field equations (first order differential equations) be derived
froma Lagrangian which is the integral over time and space
of a Lagrangian function L, scalar with respect to the
transformations of special relativity theory. We assume that L does
not explicitly contain cf = x0 = — %y, ¥ = #' = %;, y = 2% = %,
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z = %% = xzand that it depends on these coordinates (x) only as it is
a function of the field components *) g(x) and their first derivatives
Vi ¢(#), being linear in the latter. The field equations are given by

oL oL

oq Va o0Vg -

Let the “orbital” energy-momentum density tensor be defined in
the usual way by

0, (Va= 9/ox"). (1)

oL

t,'w = Re {tp.v}; tp.v = ?m V,_,,q - gp.vL~ (2)
It satisfies the continuity equation V*t,, = 0. The orbital angular
momentum density tensor is then defined by :
My = X2 1:p,]v = x/\tp.v - xp.t/\v- 3)
In general m will not satisfy a continuity equation, since
A% My = t[p.,\] (?& O)- (4)

Now, by an infinitesimal spatial rotationora Lorentz trans-
formation of the co-ordinates

3x” = %80, St = — Jw™, (5)

let the field components ¢ in a fixed point of the space-time manifold
be linearly transformed, say by

3¢ = 80" Sy 0p 4, (S,p Operating on g); (6)
so that the transformation of their gradients is given by

3(Vag) = Va(8q) + (dVa)g = 30 (VaSpw op — £ V)4 (7)
Putting

i = — o = Re{ ;TL@SM w43 D = M + Drs (8)
we find from the fact that the Lagrangian function L(g, Vq)
is a scalar field, with the help of (1)—(4) and (6)—(7):

AV i,\,“, = 0. %)
Further we shall put
®p.v =V f/\l.l.v; By = x[)«@)y]vi

. 10a
T}w = tp.v + O,u.v; Iy = X Ty]v =M + g)tp.w ( )

*) For brevity the indices, necessary to distinguish the different components of the
field, have been omitted where they are not essential.
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where fy,,according to Dr. Pod clanski is defined generally by

f)\;w = %(iv;u\ + i;u\v =+ iv?w.)i (100)
so that
h[l"‘] = ivp)u (11)
Then we can express (9), on account of (4), by stating that
Typ=1, (12)

is a symmetrical tensor. Since from the definition (106) (where
juur Was antisymmetric in v and y) follows

P = — fours (13)

we find that ®,,, defined by (10a), satisfies a continuity equation
just ast,, did, so that also T, satisfies a continuity equation

VT, =0. (14)
From (12) and (14) again we conclude that
V¥ jaw = 0. (15)

In view of (9) {),, might be regarded as the tensor representing the
spin density of the field. On the other hand on account of (10a) and
(15) we may regard 3,,, as the spin angular momentum density of
the field, 8,,, being (unlike {y,,) the moment of a (spin) momentum
density ©,,. This spin energy-momentum tensor ®,, does not give
any contribution to the total energy and momentum, as from (10a)
and (13) follows

f@l‘odxl dxzdxa = O, SOf Tp.o =ft,u.o- (16)

Thus we have succeeded in defining a spin energy tensor @, (to
be added to the orbital energy tensor t,,,) which satisfies a continuity
equation, does not give any contribution to the total energy or
momentum, but gives a contribution to the angular momentum,
ensuring conservation of the ‘total angular momentum density
according to (15). The total spin angular momentum is then given by
the integral of the corresponding density components over space.
Integrating by parts we find on account of (11) and (13)

8;41' = [ (8uwo/¢) = [ (luwofc) = Re {/E: D Swop 9}
_oL 1 oL (17)
(;: o aV"q)'

o4
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Thus {u, as well as 38,,, may be used for the calculation of the
total spin angular momentum, just as t,, may be used instead of
T, for the calculation of the total energy and momentum (see (16)).
In fact the use of {,,, is often easier. It is interesting to remark that
x and V do not occur explicitly in the integrand tensor {j,,, so that
the total spin angular momentum does not depend on the point of
reference of the moment. Still 8),, can be regarded as a regular
angular momentum density (depending on the point of reference),
to be added to myy, in order to find the moment j,,, of the total
(= orbital 4 spin) energy-momentum tensor T, = T,,.

We shall now apply the definitions given by (8) and (10) to all
particles and quanta hitherto considered in the literature &) ) 7) 8) 9),
but for the present we shall suppose that the termsin the L a gra n-
gian function describing the interactions depend on the field
components only and not on their gradients.

Expressing the field quantities by means of undors ) of the first,
second, third, .... rank ¥}, ., the terms of the Lagran-
gian function depending on the derivatives of the field quantities
have the form of

iK¥tBTAW,)\ . (18)

Here ¥ is the adjoint (“Hermitean conjugate”) of ¥'; B and
') are given by

B =plpgd . and Th = e;y{) + e¥@ + ...

(the «{, 8 and y{"=B™ «{» being Dira c matrices operating on the
undor index %, of ¥); K is a real normalization factor and e, = J- 1.
Dirac electrons are described by undors of the first rank,
K emmer quanta $) by undors of the second rank. The quanta of
Kemmer’s case (a) are identical with Pauli-Weisskopf
quanta 5); together with the quanta of K em mer’s case (c) they
can be described bya Lagrangian function depending on the
gradients of the field by (18) with e, = — ¢,. The quanta of K e m-
mer’'s case (b) are identical with Proca? quanta? and with
the quanta of “spin = 1" of Dirac8 and Fierz?), together
with the quanta of K e m mer1’s case (d) they can be described by
taking e; = ¢, in (18). The Lagrangian function then has a
symmetrical form with respect to both undor indices. The Proca
field then is described by the part of ¥ symmetrical in the two
indices, and Kemmer’s case (d) by the antisymmetric part.
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The field equations holding for Dirac?®-Fierz? particles
and quanta of “spin > 1"’ cannot be derived from one single L a-
grangian. These fields are described by symmetrical undors of a
rank N > 2. Some of the field equations can be derived from a
Lagrangian function depending on the gradients of the field
according to (18); the choice of the signs e, = 4 1| is arbitrary

except for the condition that Z En 7 0. Further, this La g ran-

gian should be normalized in a suitable way, so that the right
orbital energy density (Hamiltonian function) follows from
it. The field equations following from this Lagrangian read

N
{iNmc/h + = ¥V} ¥ = 0, (interactions neglected). (19)
n=1

In addition to (19) other differential equations are assumed by
Dirac and Fierz, which, together with (19), can be summarized
by writing

{ime[h + YV ¥ = 0; (20)
#y is an arbitrary number < N, These additional equations cannot
be derived froma Lagrangian asthe undor ¥ was defined to
be symmetrical in its indices. (For the same reason (20) is indepen-
dent of the choice of #,). One might say that these equations are
introduced in order to make ¥ satisfy a Klein-Gordon
equation.

The other possibilities included in (18) have not yet been fully
discussed in the literature.

Now, the transformation of the undor ¥ is given by

Y = 3" Spop ¥, Spunier = 30T (21)
Inserting (21) into (8) and (10b) we find, on account of
BT, = I'{B', (22)
(where 1 again denotes the adjoint matrix), that
fyw = Re {}iK . ¥1BT, I, T, ¥} (23)

The spin is now given by (17), its density tensor 8),, and the
symmetrical energy tensor T, by (10a). We remark that for undors
of the first rank (Dirac wave functions) our method of con-
structing T, is equivalent with the method of symmetrizing the
energy tensor for the Dirac electron given by Tetrodel?)
and Pauli?®).
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It should be emphasized that the dependence of the spin of the
field on the canonical variables is entirely independent of possible
interactions between different kinds of particles and quanta as long
asthe termsin the Lagrangian function describing these inter-
actions do not contain derivatives of the field components. — On the
other hand we made use of the field equations (1) when we were
deriving (9) and (12), so that the energy tensor T, can only be
written explicitly as a symmetrical tensor with the help of these field
equations containing all interactions. As one of these equations may
be the well known equationof M a x well's theory

—
div € = 4mep, (24)

which in quantum theery cannot be regarded as a g-number equation
but only as a condition imposed on ‘the- situation function 13), in
quantum theory the equation T, = T, may be of the same kind.

§2. We shall now apply the definition (8)—(10) of the spin angular
momentum of a field to the case of the meson 3) %) field, that is 1), an
undor field of the second rank ¥, ,, satisfying a wave equation %) as
given by (19) (N = 2), which describes simultaneously (1°) a

—> —
Proca field 4, V; E, I? ; (the symmetrical part of ¥, , , case ()
of Kemmer $); (2°) a field consisting of a-pseudo-scalar Y and a

pseudo-fourvector B, W, (case (d) of Kemmer), and (3°) a
scalar S, which by quantization does not lead to a third type of
quanta, as it can be expressed directly in terms of the other cano-
nical variables (in this case these are the variables describing the
heavy and the light particles interacting with the meson field). The

components Y, E, W and S together form the antisymmetric part of
¥'.,- The spin angular momentum of this undor field can now be
calculated from (17) and (21).
The electric charge density of the mesons is given by %)
QLmes:

= (¢fih). =

— o™ .4 25
ep R “m)ﬁ q (25)

as the electric scalar potential 8 occurs in L™ only in the combina-
tion {(0/0¢) — (e/ith)B}. From (18) we derive 1)

o =¥ p,. ¥ p, = (KJfic). BI®. (26)
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Comparing (25) with (26) and with (17), and putting
8‘{,’:/2} =}k ”Elcf,’;), (@ a{™ = i, etc.) (27)
we find with the help of (21) and (22)

— —
8 =[ih¥p,, .} T, Ty . ¥ = [ ¥tp,, S Y. (28)
In vector notation, (26) and (28) take the form

—

oo = (efih) . {(A* . E) — (E* . 4) + YW — W*Y}; (26a)
$— [{(B* A —[A* Epdxdyds. (28a)

. - -
From (26a) and (25) we recognize that A*, — E*, Y* and — W*
- —
are the momenta conjugate to the canonical co-ordinates E, A, W
and Y respectively. As the latter two do not occur in (28a), we
conclude that the antisymmetric part of ¥,, describes spinless
quanta *(“singlet states” of the meson field). The Proca field

Z f, however, represented by the symmetrical part of ¥, ,
possesses a spin angular momentum equal to the expression (28a)
given already by Proca himself?). We may say that Proca
quanta represent the “triplet states’ of the meson field.

The components Z, E, W and Y, which are represented by
¥ = (he2K)? . (pop)* ¥, (29)

are quantized following the method of Pauli and Weiss-
k o p £8). According to this method W and Y are expanded in series

- —
of scalar waves and 4 and E in series of longitudinal and transversal
waves. The longitudinal waves are polarized in the direction

— —_
c_"; = p/p of the momentum ; but the transversal waves we split up

into left hand and right hand circular polarized waves %) character-

—_
ized by the complex “unity”’ vectors c_j.‘ defined by

- . > -, >, - —> >
CL", =c:)’L; (CE» -CE»)=8F[1./; [c—i; c~g]=$€c—€>;
? ? 4 4 P ?
- > > = —
[ el =decs; ch=—ckt. (u=—101; e= 41). (30)

Further we follow exactly the scheme of Pauli and Weiss-
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k o p £5) 8 15) 17} The quantized meson field can then be written in
a form analogous to that of the quantized electron field 8):

— 1 — - 1 -
Wi, =2 {a., sz. + 2 b, oM+l X}Jj}f + x4 (fol’y:m}. (31)
—P> |4 p=—1 p,u ? p=—1 D,

Here the X}f},z are antisymmetric undors representing the waves
of Y and W; the (DS:’;;{:) are symmetrical undors representing the
waves ofz_‘l> and??> polarized in the direction of_c>%; the ®®# and X®
depend on the time and spatial co-ordinates by a factor
exp (i/) (p.7— E,f), where (E,jc)2= (mc)*+ p2 The Ope
and X@f are charge-conjugated 8) to (I)@:) and X@g according
to the scheme )

Ofy, = EVER D, 5 XE,, = EVER X7y, | (32)

where £ and £@ are matrices operating on %, and %, respectively,
satisfying the commutation relations

YPIEM = — £ 00 SIEMT — g” g — |, (33)

So the ®®#e and the X®¢ depend on the time and spatial co-
- —
ordinates by a factor exp (—-1/&) (p . ¥ — Ept).
The functions X‘_’;), (D(_;'“’, X®e and ®@ME are each simulta-

neously eigenfunctions of the operators #,, = i 0/ot. cj_jop = —ih?,
- - = >

e, e. (82 and (S, P.s) Porl )% belonging to the following eigen-

values:

operator; eigenfunctions:
xX® OFw X e DBme
o E, E, —E, —E,
> - — — —
oo p p —p —?
e e e —(—e —(—e) (39)
e 83 0 e.2n2 0 - — (—e) . 2h?
2 B o2 — . —
(8. PYFIP 0 uh . plp 0 —ph.p/p
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-

So these functions form an orthogonal set. Moreover, it turns out
that they are quasi-orthogonal in the sense of

JXBt oy XP1 =0, ()
[ X o, EH = [ X o XPIE — [ XE! o @FHE=0; (35)
fd)‘;’:f‘” Pop -+ .. = 0; etc.

If they are quasi-normalized by

fX(?)f Pop X — _jX(7;')£T Pop X — 8(_> -—)') (36)
_.>.

[OPHT o QP = — [OPRIET, DPHE = § L, §(p— ? ).

the a, b, ¢* and d* in (31) satisfy the commutation relations ) 6)15)17)
a,al —aja 8(_> _>')‘
A S
b, bi —bl b, =8, 8p—p
G P T P P = e SO — P
" . 8-—)- -
C,C, —C, Ch= —9);
0o, — e =3 —9P)
e

* * _— . ’
T A P A

so that aja,, b3 b, , cic, and d5 d. have the eigenvalues
) b P P P P Pt
0,1, 2 3 »

From-the Lagrangian function
L = iKY'B 2ime/h + D'V Y + ..., M=y + v?), (39)

we derive the energy-momentum density tensor by (2). For the
symmetrical tensor representing the current and density of the total
(= orbital 4 spin) energy and momentum we find (neglecting 2ll
interactions):
T = — (mcfh) . KU (aPaf@ + alV2P)¥ = (39)
)
— (mefh) . KEB(yy? + y(Iy2),

so that the total energy density is given by 19)

To® = 2(mefh) . K¥TY. (40)
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Integrating the (orbital) densities (2) over space we find the total
energy and momentum:

B=¥ Byl P=[¥ew ¥ (4]
The electric charge is found by integrating (26):
e = /W, e ¥ (42)
n (28), (41) and (42) ¥* can now be replaced by ¥ and ¥ by
-

V', as p,, is commutative with £/, P, e and (S,,p , while
(c|2K)? . (50p)® = 2op- We insert (31) into the expressions for
F, (7’ r, and g and make use of (34, (35) and (36). Then the minus
signs occurring in the latter two colums of (34) are “neutralized’’ by
the minus signs in (36). (In the case of the Dirac electron they
are neutralized by the anti-commutativity of the Jordan-Wigner
matrices). In this way we find, subtracting infinite zero-point terms:

FH=XE, (a_,a_.+Zb b +c c +Zd* d., );

2 p=—1 P Dp p=—1 Py Ppt
P—3% @t b b Tdt d
rj - —p’ﬁ(a—;a?_'_:_l _;.,U- _P»,[L—i_c—‘) C.. "};"_—1 ' _;,y,),
1 1
e =2%{e(ala,+ T bl b, )—e(cic, + = di d, )},
- PP p=-—1 P Pp P =—1 bu Pp
? (43)
S—3% h{_c>_°.(b b, +d* d, )— cB(E,/2mc? +
—,;;L=i1“ P b Do b P Ik
2[2E,). (b5 b, —b3 b, d> d, —d5 d.
+me2E,) - ( P pu b, p,o+ po b b p.o)+
—>
(ad 2mc? — mc?[2FE b . b, d .
1)( ol 2mc mc?[2E,) . [(d_;'# _po—{— s, 4.2)
.exp(—2E /iy — (s d 5 +d3 b ). 1E ¢ 7) ]
exp (—2E ) —(b3 d 3 +d3 b3 ). exp iEN]

Averaging the expression for :S)with respect to time the terms with
db exp (— 2iEt/h) and b*d* exp (2/Et/h) vanish indeed; the re-
maining terms, however, do not depend on the time and do not
vanish, contrary to the statement of Durandin and Er-

—
schow?). From the first term of & (43) we conclude that we may

regard b3 b, as the number of positive and d5 d3i as the
Pt b P b
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number of negative (triplet) mesons with energy E, (> 0), momen-

tum;, and a spin angular momentum component in the direction
of this momentum (longitudinal spin component) equal to p/. The
transversal component of the spin angular momentum of the triplet
meson is not brought in diagonal form in our representation by
longitudinal and circular waves.

In the present paper the superposition of K em m e r’s cases (b)
and (d) was considered, as this combination seems to be appropriate
for a description of nuclear forces 4).

It is interesting to remark that by an expression like (284) the

—
spin angular momentum &, of the Maxwellian field is
given. Takingasa Lagrangian function for this field

— —> —

AL pgare = (92 — 63/2 — (€ . VB -+ 8%/c8t) — (§ . rot M), (44)
we find ’ '
Srtere = (1/47c) . [ TG, U] dx dy dz. (45)

The common expression for the angular momentum

Totaxe = (1/4n0) . [ T7, (6, DY) d dy d

turns out to be the fofal angular momentum of this field 29).

I am much indebted to Prof. Kramers, who drew my atten-
tion to the formulae given by (6)—(9) of this paper, for his interest
in these investigations. I wish to thank Dr. Podolanski, to
whom I owe the generalization (108) of the formula (23), for inter-
esting discussions on the first section of this paper.

Received 8th July, 1939.
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