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A. Questions 

 

1. Si la source est de forme allongée (source filiforme), les ondes acoustiques émises sont 

de forme cylindrique (à condition de négliger les pertes acoustiques aux extrémités); la 

source n'est rien d'autre que l'axe de ces cylindres. 

  

 
 Source filiforme de longueur l >> λ 

 

 Soit I1 l'intensité des ondes sonores mesurées à une distance R1 de l'autoroute. La 

puissance des ondes sonores traversant une surface cylindrique S1 de rayon R1 autour de 

l'autoroute se calcule comme : 
 

 𝑃sonore = 𝑆1 ⋅ 𝐼1 = 𝑙 ⋅ 2 ⋅ 𝜋 ⋅ 𝑅1 ⋅ 𝐼1[W] 
 

 Par le principe de la conservation de l'énergie, on sait que cette puissance est conservée 

sur un cylindre de rayon R2 > R1. On peut donc écrire : 
 

 𝑃sonore = 𝑙 ⋅ 2 ⋅ 𝜋 ⋅ 𝑅1 ⋅ 𝐼1 = 𝑙 ⋅ 2 ⋅ 𝜋 ⋅ 𝑅2 ⋅ 𝐼2 
 

 où I2 est l'intensité sonore à une distance R2. 

 

 Il vient alors que I2/I1 = R1/R2. Donc, dans le cas d'une source sonore linéaire, l'intensité 

sonore décroît de façon inversement proportionnelle à la distance. Exprimée en dB, cette 

atténuation donne : 
 

 𝛥𝐿 = 10 ⋅ log10(𝐼2/𝐼1) = 10 ⋅ log10(𝑅1/𝑅2) 
 

 À chaque doublement de la distance (R2 = 2·R1) correspond donc un affaiblissement de 

3 dB puisque : 
 

 𝛥𝐿 = 10 ⋅ log10 (
𝑅1

𝑅2
) = 10 ⋅ log10 (

1

2
) = – 3dB 

 

 Un trafic routier est assimilable à une source filiforme ; il s'atténue donc faiblement avec 

la distance (par comparaison à une source ponctuelle). 

 

2. L'observateur placé sur un talus dominant la route voit en principe les véhicules et reçoit 

de ce fait le son direct auquel s'ajoute éventuellement une part de son réfléchi. 

L'observateur placé en contrebas (et qui ne voit donc pas les véhicules) ne reçoit que le 

bruit diffracté qui est plus faible que le son direct. 

 

3. Un sol plat et réfléchissant agit comme un miroir pour les ondes sonores. Les auditeurs 

reçoivent donc en plus du son direct, le son réfléchi par le sol. L'augmentation de niveau 

sonore prévisible est d'au moins 3 dB (+ 6 dB si les ondes sont en phase, car la pression 

acoustique double dans ce cas, et donc l'intensité est multipliée par 4). 
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B. Problèmes 

 

Problème 1 : 

 

 

Premièrement, on doit se rendre compte qu'une autoroute peut 

être assimilée à une source sonore linéaire : 

 

 

 
 

a) Soit I1 l'intensité des ondes sonores mesurées à une distance R1 de l'autoroute, et I2 l'intensité 

mesurée à une distance R2. La question 1 a permis de dériver la formule suivante pour 

l'atténuation de l'intensité sonore (en dB) en fonction de la distance à une source sonore 

linéaire : 
 

𝛥𝐿 = 10 ⋅ log10(𝐼2/𝐼1) = 10 ⋅ log10(𝑅1/𝑅2) 

 

Dans notre cas, on a : R1 = 25 m et R2 = 1'000 m, d'où ΔL = 10·Log10 (25/1000) = -16 dB. 

 

À 1 km, le niveau sonore engendré par l'autoroute sera donc égal à 60 − 16 = 44 dB. Cette 

atténuation n'est qu'un effet géométrique, et est identique pour toutes les fréquences sonores. 

 

b) On doit tenir compte qu'une partie de la puissance des ondes sonores se dégrade en chaleur 

dans le milieu qu'elles traversent. Cette atténuation supplémentaire dans l'air dépend de 

l'humidité, de la distance parcourue et de la fréquence des ondes sonores. 

 

Par jour clair, cette atténuation supplémentaire par 100 m de distance vaut environ : 
 

0.16dB/100m à 500Hz

2dB/100m à  4′000Hz
 (Cf. annexe A 6.5) 

 

Dans notre cas, on aura donc pour une distance parcourue de R2 – R1 = 975 m, des atténuations 

supplémentaires de : 
 

9.75 ⋅ 0.16 = 1.56dB à  500Hz

9.75 ⋅ 2 = 19.5dB à  4′000Hz
 

 

Les fréquences hautes sont beaucoup plus atténuées. 

 

De même par temps de brouillard, on a : 
 

1.6dB/100m à  500Hz

3dB/100m à  4′000Hz
  (Cf. annexe A 6.5) 

 

D'où des atténuations supplémentaires de : 
 

9.75 ⋅ 1.6 = 15.6dB à  500Hz

9.75 ⋅ 3 = 29.3dB à  4′000Hz
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Problème 2 : 

 

On a la situation suivante : 

 
 

a) 

La hauteur effective de la personne au rez-de-chaussée est la hauteur du mur au-dessus de la 

ligne directe entre la source sonore et la personne : 

 

𝐻eff 1  = 6 𝑚 −  𝐻1
′ − 0.5 𝑚 

  

Avec le théorème de Thales (triangles semblables), on trouve la hauteur 𝐻1
′
 : 

 

𝐻1
′  =  (1.7 m –  0.5 m) ⋅  

7 𝑚

7 𝑚+20 𝑚
 = 0.31 𝑚   

 

Par conséquence, on trouve la hauteur effective  

Heff 1 = 5.19 m pour l'auditeur au rez-de-chaussée. 

 

b)  

La personne au deuxième étage est située à une hauteur de 2.9 m + 2.9 m + 1.7 m = 7.5 m. Ce 

qui donne une hauteur effective Heff 2 = 3.69 m, car : 

 

𝐻eff 2  = 6 𝑚 −  (7.5 m –  0.5 m) ⋅  
7 𝑚

7 𝑚+20 𝑚
− 0.5 𝑚 = 3.69 𝑚  

 

 

RAPPEL THALES : 

 

H ’
2

H’
1

6m
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c) 

À partir des hauteurs effectives Heff 1 et Heff 2, on calcule dans les deux cas les fréquences 

caractéristiques : 

𝑓𝑐 =
𝑎⋅𝑐

2⋅𝐻eff
2 [Hz]   (cf. annexe A 6.6) 

 
 

où dans notre cas :  a = 7 m et  c = 340 m/s. 

 

 

On trouve ainsi : 𝑓𝑐1 ≈ 44 𝐻𝑧 et 𝑓𝑐2 ≈ 87.4 𝐻𝑧 

 

On peut alors dresser le tableau d'atténuation du son en fonction de la fréquence pour les deux 

étages (cf. annexe A 6.6) : 

 

Rez-de-chaussée :                           fc1 

fréquence [Hz] 11 22 44 88 176 352 704 1'408 >1'408 

atténuation [dB] −8 −9 −11 −13 −16 −19 −21 −24 −24 

 

Deuxième étage :                                       fc2 

fréquence [Hz] 11 21,9 43,7 87,4 174,8 349,6 699,2 1'398 >2'797 

atténuation [dB] −7 −8 −9 −11 −13 −16 −19 −21 −24 

 

 

On remarque que les fréquences basses sont beaucoup moins bien atténuées par le mur anti-

bruit. Ceci provient du phénomène de diffraction des ondes sonores : pour des ondes de 

longueurs d'onde comparables aux dimensions de l'obstacle, il y a diffraction, c'est-à-dire que 

ces ondes sonores contournent l'obstacle : 
 

 

 

On remarque aussi que les fréquences caractéristiques 

sont différentes pour chaque étage. Ainsi la protection 

anti-bruit n'est pas aussi efficace au deuxième étage 

qu'au rez-de-chaussée. 

 

 

 

Problème 3 : 

 

 

 

Des ondes stationnaires peuvent apparaître entre le plafond et le plancher, qui sont distants d'une 

hauteur h. On sait qu'une onde stationnaire apparaît si la longueur de l'espace où elle se 

manifeste est un multiple entier de sa demi-longueur d'onde. Ceci se traduit donc par la relation: 

 

ℎ = 𝑛 ⋅ 𝜆/2 

 
 

où h = 2,65 m ; n = 1, 2, 3, 4, … ; λ = longueur d'onde de l'onde stationnaire [m]. 
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Pour calculer les fréquences correspondant à ces longueurs d'onde, on utilise la relation λ· f = 

c, où λ = longueur d'onde [m] ; f = fréquence [s–1] = [Hz] ; c = vitesse des ondes sonores = 340 

m/s. En combinant ces deux précédentes relations, on trouve donc les fréquences des ondes 

stationnaires : 
 

𝑓ondes stationnaires =
𝑛 ⋅ 𝑐

2 ⋅ ℎ
= 𝑛 ⋅ 64.15 Hz       où n = 1, 2, 3, 4, ... 

 
 

Dessinons les ondes stationnaires avec n = 1 puis n = 2. Il faut premièrement se rendre compte 

qu'il y a deux grandeurs qui caractérisent l'onde acoustique : la vitesse acoustique (=vitesse des 

molécules d'air induite par l'onde sonore) ainsi que la pression acoustique p. 
 

Premièrement on dessine les nœuds et les ventres de la vitesse acoustique. Comme les 

molécules d'air situées juste contre le plafond ou contre le plancher sont en quelque sorte 

« bloquées » dans leur mouvement, on a des nœuds pour la vitesse acoustique en ces points. 
 

Deuxièmement, on doit dessiner les nœuds et les ventres de la pression acoustique. C'est moins 

évident, mais si l'on se rappelle le principe de conservation de l'énergie, on s'en tire bien… Il 

faut donc se rappeler que l'énergie totale s'écrit E = Epotentielle + Ecinétique. L'énergie cinétique est 

proportionnelle à v2 (vitesse acoustique dans notre cas) et l'énergie potentielle est 

proportionnelle à p2 (pression acoustique). L'énergie E étant uniformément répartie dans 

l'espace compris entre le plancher et le plafond, E = constante. Pour un nœud de la vitesse 

acoustique on observera donc un ventre de la pression acoustique et réciproquement. On a donc 

les situations suivantes : 
 

 


