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A. Questions

1. Si la source est de forme allongée (source filiforme), les ondes acoustiques €émises sont
de forme cylindrique (a condition de négliger les pertes acoustiques aux extrémités); la
source n'est rien d'autre que 1'axe de ces cylindres.
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Soit I; l'intensité des ondes sonores mesurées a une distance R; de l'autoroute. La
puissance des ondes sonores traversant une surface cylindrique S; de rayon R autour de
['autoroute se calcule comme :

Ponore =S1-I1 =1-2-m- Ry - 1[W]

Par le principe de la conservation de 1'énergie, on sait que cette puissance est conservée
sur un cylindre de rayon R2 > Ri. On peut donc écrire :

Porore =1-2m-Ry-I1=1-2-w-Ry- I,

ou 7 est 'intensité sonore a une distance Ro.

11 vient alors que Io/I1 = Ri/Rz. Donc, dans le cas d'une source sonore linéaire, l'intensité
sonore décroit de fagon inversement proportionnelle a la distance. Exprimée en dB, cette
atténuation donne :

AL =10 - log1o(I2/11) = 10 - log10(R1/R>)

A chaque doublement de la distance (R2 = 2-R1) correspond donc un affaiblissement de
3 dB puisque :

AL = 10 - logy, (2—2) =10 - logy, (%) = _3dB

Un trafic routier est assimilable a une source filiforme ; il s'atténue donc faiblement avec
la distance (par comparaison a une source ponctuelle).

2. L'observateur placé sur un talus dominant la route voit en principe les véhicules et regoit
de ce fait le son direct auquel s'ajoute éventuellement une part de son réfléchi.
L'observateur placé en contrebas (et qui ne voit donc pas les véhicules) ne regoit que le
bruit diffracté qui est plus faible que le son direct.

3. Un sol plat et réfléchissant agit comme un miroir pour les ondes sonores. Les auditeurs
recoivent donc en plus du son direct, le son réfléchi par le sol. L'augmentation de niveau
sonore prévisible est d'au moins 3 dB (+ 6 dB si les ondes sont en phase, car la pression
acoustique double dans ce cas, et donc l'intensité est multipliée par 4).
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B. Problémes

Probléme 1 :

7
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Premierement, on doit se rendre compte qu'une autoroute peut ( = e \ k
étre assimilée a une source sonore linéaire : ‘o \

=

a) Soit I; I'intensité des ondes sonores mesurées a une distance R de 1'autoroute, et I> I'intensité
mesurée a une distance Ro. La question 1 a permis de dériver la formule suivante pour
l'atténuation de l'intensité sonore (en dB) en fonction de la distance a une source sonore
linéaire :

AL =10 -logy1o(I2/11) = 10 - log10(R1/R2)

Dans notre cas, on a : Ry =25 m et R, = 1'000 m, d'ou AL = 10-Logjo (25/1000) = -16 dB.

A 1 km, le niveau sonore engendré par l'autoroute sera donc égal a 60 — 16 = 44 dB. Cette
atténuation n'est qu'un effet géométrique, et est identique pour toutes les fréquences sonores.

b) On doit tenir compte qu'une partie de la puissance des ondes sonores se dégrade en chaleur
dans le milieu qu'elles traversent. Cette atténuation supplémentaire dans l'air dépend de
I'humidité, de la distance parcourue et de la fréquence des ondes sonores.

Par jour clair, cette atténuation supplémentaire par 100 m de distance vaut environ :

0.16dB/100m a 500Hz

2dB/100m & 4'000Hz (Cf. annexe A 6.5)

Dans notre cas, on aura donc pour une distance parcourue de R> — Ry =975 m, des atténuations
supplémentaires de :

9.75-0.16 = 1.56dB a 500Hz
9.75-2 = 19.5dB a 4'000Hz

Les fréquences hautes sont beaucoup plus atténuées.

De méme par temps de brouillard, on a :

1.6dB/100m a 500Hz

3dB/100m a 4’000Hz (Cf. annexe A 6.5)

D'ou des atténuations supplémentaires de :

9.75-1.6 = 15.6dB 4 500Hz
9.75 -3 = 29.3dB a 4'000Hz
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Probléme 2 :
On a la situation suivante :
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La hauteur effective de la personne au rez-de-chaussée est la hauteur du mur au-dessus de la
ligne directe entre la source sonore et la personne :

Heffl =6m— H{—05m

Avec le théoreme de Thales (triangles semblables), on trouve la hauteur Hj :

H = (1.7m-05m) - —2— =031m

7m+20m

Par conséquence, on trouve la hauteur effective
Hefr1 = 5.19 m pour l'auditeur au rez-de-chaussée.

b)
La personne au deuxie¢me étage est située a une hauteurde 2.9 m+2.9m+1.7m="7.5 m. Ce
qui donne une hauteur effective Hetr2 = 3.69 m, car :

7m
7m+20m

Hy, =6m— (7.5m- 0.5m) - —05m=3.69m
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A partir des hauteurs effectives Hesr 1 et Hefr2, on calcule dans les deux cas les fréquences

caractéristiques :
a

fe =55 [Hz] (cf. annexe A 6.6)
Heff

oudansnotrecas: a=7met ¢ =340 m/s.

On trouve ainsi : f,; * 44 Hz et f., =~ 87.4 Hz

On peut alors dresser le tableau d'atténuation du son en fonction de la fréquence pour les deux
¢tages (cf. annexe A 6.6) :

Rez-de-chaussée : fe1

fréquence [Hz] 11 22 44 88 176 352 704 1'408 >1'408
atténuation [dB] -8 -9 -11 -13 -16 -19 21 24 —24
Deuxiéme étage : fe2

fréquence [Hz] 11 219 43,7 874 1748 349,6 699,2 1'398 >2'797
atténuation [dB] 7 -8 -9 -1 -13 -16 -19 21 —24

On remarque que les fréquences basses sont beaucoup moins bien atténuées par le mur anti-
bruit. Ceci provient du phénomene de diffraction des ondes sonores : pour des ondes de
longueurs d'onde comparables aux dimensions de l'obstacle, il y a diffraction, c'est-a-dire que
ces ondes sonores contournent 1'obstacle :

On remarque aussi que les fréquences caractéristiques
sont différentes pour chaque étage. Ainsi la protection
anti-bruit n'est pas aussi efficace au deuxieme étage
qu'au rez-de-chaussée.

Probléme 3 :

Des ondes stationnaires peuvent apparaitre entre le plafond et le plancher, qui sont distants d'une
hauteur h. On sait qu'une onde stationnaire apparait si la longueur de l'espace ou elle se
manifeste est un multiple entier de sa demi-longueur d'onde. Ceci se traduit donc par la relation:

h=n-1/2

oth=2,65m;n=1,2,3,4, ... ;A= longueur d'onde de l'onde stationnaire [m].
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Pour calculer les fréquences correspondant a ces longueurs d'onde, on utilise la relation A f =
¢, ou A = longueur d'onde [m] ; f = fréquence [s"'] = [Hz] ; ¢ = vitesse des ondes sonores = 340
m/s. En combinant ces deux précédentes relations, on trouve donc les fréquences des ondes
stationnaires :

S

- C
fondes stationnaires — ﬂ =n-64.15Hz oun= 1’ 2’ 3> 4’

Dessinons les ondes stationnaires avec n = 1 puis n = 2. Il faut premiérement se rendre compte
qu'il y a deux grandeurs qui caractérisent I'onde acoustique : la vitesse acoustique (=vitesse des
molécules d'air induite par I'onde sonore) ainsi que la pression acoustique p.

Premic¢rement on dessine les nceuds et les ventres de la vitesse acoustique. Comme les
molécules d'air situées juste contre le plafond ou contre le plancher sont en quelque sorte
« bloquées » dans leur mouvement, on a des nceuds pour la vitesse acoustique en ces points.

Deuxieémement, on doit dessiner les nceuds et les ventres de la pression acoustique. C'est moins
¢vident, mais si 1'on se rappelle le principe de conservation de I'énergie, on s'en tire bien... Il
faut donc se rappeler que 1'énergie totale s'écrit E = Epotenticlle + Ecinstique. L'énergie cinétique est
proportionnelle a v? (vitesse acoustique dans notre cas) et I'énergie potentielle est
proportionnelle a p? (pression acoustique). L'énergie E étant uniformément répartie dans
l'espace compris entre le plancher et le plafond, E = constante. Pour un nceud de la vitesse
acoustique on observera donc un ventre de la pression acoustique et réciproquement. On a donc
les situations suivantes :

”o ho_
h= h=2 > A

f=6415[Hz]  f=128,3 [Hz]

vitesse pression vitesse pression
acoustique acoustique acoustique acoustique

x : localisation des noeuds

— . localisation des ventres



