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A. Questions 
 
1.  

a) Le fluide étant incompressible, le débit est identique en amont et en aval de la sphère. 
Comme le diamètre du tube est constant, la vitesse du fluide est la même au-dessous 
et au-dessus de la sphère. La symétrie de la distribution des vitesses fait que les 
pressions dues aux gradients de vitesse s'équilibrent (cf. figure 1). D'autre part, le fluide 
étant supposé non visqueux, les frottements sont négligés. La seule force qui s'exerce 
sur la sphère est donc son poids ; elle chute avec une accélération constante. 

 
 Fig. 1 : Écoulement vertical symétrique 
 Les surpressions créées en aval et en amont sont égales. 

  
  a : Écoulement ascendant b : Écoulement descendant 
 

 
 Fig. 2 : Écoulement vertical convergent 
 Étant donné que le tube est plus étroit en haut, la vitesse de l'écoulement du fluide y est plus 

élevée. En conséquence, la surpression créée en dessous de la sphère est supérieure à celle qui est 
créée en dessus. 

  
  a : Écoulement ascendant b : Écoulement descendant 
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b) Puisque la section du tube diminue, la vitesse du fluide est supérieure au-dessus qu'au-
dessous de la sphère. Il y aura donc une dépression qui tendra à aspirer la sphère vers 
le haut (cf. figure 2). Le résultat ne dépend absolument pas de la direction du fluide. 

 
c) Si on écarte légèrement la sphère de l'axe de l'écoulement, la section relative de ce côté 

du tube diminue, et donc la vitesse du fluide augmente par rapport à celle du côté 
opposé. Il se crée ainsi une dépression qui aspire la sphère vers la paroi, la faisant alors 
se coller contre la paroi. La situation de la question 1 est par conséquent un équilibre 
instable. 

 
2. Partant du cas où l'énergie mécanique se conserve le long de l'écoulement, on a : 
 

 𝑝𝑝 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ + ½𝜌𝜌 ⋅ 𝑣𝑣2 = constante (Équation de Bernoulli) 
 

 Étant donné que le fluide est incompressible, le débit est constant le long du conduit. Si 
de plus, le diamètre du tuyau est constant, la vitesse de l'écoulement ne varie pas non plus 
le long du parcours. Le terme ½𝜌𝜌 ⋅ 𝑣𝑣2est donc également constant. 

 
 Par ailleurs, le terme 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ est indépendant des frottements dus à la viscosité du fluide. 
 Il ne reste plus que le terme en pression 𝑝𝑝 pour traduire une variation de l'énergie 

mécanique ; sa variation est appelée perte de charge et notée 𝑝𝑝𝑐𝑐. 
 Le bilan énergétique s'écrit alors, en généralisant à un tuyau de diamètre variable : 
 

𝑝𝑝1 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ1 +
1
2
𝜌𝜌 ⋅ 𝑣𝑣12 = 𝑝𝑝2 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ2 +

1
2
𝜌𝜌 ⋅ 𝑣𝑣22 + 𝑝𝑝𝑐𝑐 

 

 où les indices 1 et 2 sont rattachés à deux points situés sur la même ligne d'écoulement 
(trajectoire d'une particule du fluide). 

 
3. Les coudes donnent lieu à de fortes pertes de charge dès que le débit devient important 

car ils génèrent des tourbillons. Ces derniers peuvent de plus entraîner des vibrations dans 
le circuit ainsi que du bruit. Il est donc toujours préférable d'adoucir au maximum les 
angles faits par une conduite.  

 
 
B. Problèmes 
 
Remarques générales pour la résolution des problèmes qui suivent : 
 
La démarche à appliquer est identique pour les cinq problèmes. On part de l’équation de 
Bernoulli (cf. polycopié chapitre 3.1). 
 

𝑝𝑝1 +
1
2
𝜌𝜌 ⋅ 𝑣𝑣12 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ1 = 𝑝𝑝2 +

1
2
𝜌𝜌 ⋅ 𝑣𝑣22 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ2 

 
Avec :  𝑝𝑝1,𝑝𝑝2 = pressions mesurées aux points 1 et 2 respectivement. 
 𝜌𝜌 = masse volumique de l'air. 
 𝑣𝑣1,𝑣𝑣2 = vitesses de l'air aux points 1 et 2 respectivement. 
 𝑔𝑔  = accélération de la pesanteur. 
 ℎ1,ℎ2 = hauteurs des points 1 et 2 respectivement. 
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On cherche à déterminer une différence de pression entre les points 1 et 2, c'est-à-dire : 
 

𝑝𝑝1 − 𝑝𝑝2 =
1
2
𝜌𝜌 ⋅ (𝑣𝑣22 − 𝑣𝑣12) + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ (ℎ2 − ℎ1) 

 

 
Pour se simplifier la vie, on fait encore une hypothèse : les hauteurs h1 et h2 sont égales. 
 
À partir de cette hypothèse, qui sera justifiée pour chacun des problèmes où ce résultat est 
utilisé, on a finalement : 

𝛥𝛥𝛥𝛥 = 𝑝𝑝1 − 𝑝𝑝2 =
1
2
𝜌𝜌 ⋅ (𝑣𝑣22 − 𝑣𝑣12) 

 

On voit ici que l'on a 𝛥𝛥𝛥𝛥 > 0 si 𝑣𝑣2 > 𝑣𝑣1; ainsi on définira par la suite les points 1 et 2 selon cette 
convention : 
 
point 1 : vitesse de l'air minimale. 
point 2 : vitesse de l'air maximale. 
 
 
Problème 1 : 
 
On a la situation suivante : 

 
a) Au niveau du toit on sait que la vitesse du vent est 40% plus élevée que la vitesse du vent 
loin du bâtiment 𝑣𝑣∞; d'où  𝑣𝑣2 = (1 + 0,4) ⋅ 𝑣𝑣∞ = 1,4 ⋅ 𝑣𝑣∞. 
 
Dans le bâtiment on considère que l'air est quasi immobile d'où 𝑣𝑣1 = 0. 
 

On a ainsi : 𝛥𝛥𝛥𝛥 = 1
2
𝜌𝜌 ⋅ 𝑣𝑣22 > 0 

 

La force qui s'exerce sur le toit est dirigée vers le haut et vaut (avec S = surface du toit) : 
 

𝐹𝐹 = 𝑆𝑆 ⋅ 𝛥𝛥𝛥𝛥 
 

Donc : 𝐹𝐹 = 𝑆𝑆 ⋅
1

2
⋅ 𝜌𝜌 ⋅ 𝑣𝑣2

2 = 500m2 ⋅ 881,4Pa = 440′700N 
 
Avec :  𝑆𝑆 = 500m2       (cf. polycopié page 2.3) 
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 𝑣𝑣 = 140km/h = 38,9m/s 
 

 𝜌𝜌(18 °C,730 torr) = 1,2929 kg/m3 ⋅ 730
760

⋅ 273
273+18

= 1,165 kg/m3  (cf. annexe 2.1) 
 
 

b) Cette force est égale et opposée à la force de gravitation qui s'exerce sur une masse m de 
 

𝑚𝑚 =
𝐹𝐹
𝑔𝑔

=
440′700N
9,81 m/s2

= 44,9 tonnes, soit 𝑚𝑚surfacique = 44,9 ⋅
103

500
= 89,8 kg/m2. 

 
 

Cette force d'aspiration vers le haut est donc loin d'être négligeable si l'on sait que le poids d'un 
toit varie entre 40 et 300 kg/m2. 
 
L'hypothèse h1 = h2 est vérifiée puisqu'une différence de hauteur de 1 m conduit à un terme 
supplémentaire 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ = 11,4 Pa tout à fait négligeable par rapport à 𝛥𝛥𝛥𝛥 = 881,4 Pa. 
 
 
Problème 2 : 
 

a) On a la situation suivante : (en coupe). 

 
 

En admettant que le point 1 est situé juste à l'extrémité extérieure du tuyau, on a : p1 = patm = 
1,013·105 Pa. Notre problème est de déterminer la pression p2. 
 
En utilisant l'équation de Bernoulli, on peut écrire : 
 

𝑝𝑝2 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ2 +
1
2
⋅ 𝜌𝜌 ⋅ 𝑣𝑣22 = 𝑝𝑝1 + 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ ℎ1 +

1
2
⋅ 𝜌𝜌 ⋅ 𝑣𝑣12

 

 

Comme h2 = h1 on a alors : 𝑝𝑝2 = 𝑝𝑝1 −
1
2
⋅ 𝜌𝜌 ⋅ (𝑣𝑣22 − 𝑣𝑣12) 

 
v1 est connu et vaut : 𝑣𝑣1 = 2,5m/s. 
 
Que vaut v2? Pour déterminer v2, calculons le débit volumique D passant au travers de la 
conduite : 
 

Au point 1 : 𝐷𝐷1 = 𝑆𝑆1 ⋅ 𝑣𝑣1 Au point 2 : 𝐷𝐷2 = 𝑆𝑆2 ⋅ 𝑣𝑣2 
 

Or comme nous travaillons avec un fluide incompressible (l'eau), le débit volumique est 
identique en tout point, donc D1 = D2 et l'on écrit : 
 

𝑣𝑣2 =
𝑆𝑆1
𝑆𝑆2
⋅ 𝑣𝑣1 

 
On obtient finalement : 𝑝𝑝2 = 𝑝𝑝1 −

1
2
⋅ 𝜌𝜌 ⋅ 𝑣𝑣12 ⋅ ��

𝑆𝑆1
𝑆𝑆2
�
2
− 1� 

 

avec : p1 = patm = 1,013·105 Pa 



Physique du Bâtiment - Corrigé série 1.11 - A. Schüler 
page 5 

 𝜌𝜌 = 𝜌𝜌eau= 1'000 kg/m3 (Annexe A 4.1) 
 v1 = 2,5 m/s 
 𝑆𝑆1

𝑆𝑆2
= 4 

On trouve : p2 = 5,4 ·104 Pa 
 
La pression p2 est donc inférieure de moitié à la pression atmosphérique. Il se produit ainsi une 
aspiration au niveau du petit tuyau soudé à la hauteur de l'étranglement. 
 
b) La pression minimale que l'on peut atteindre par ce système correspond à la pression de 
vapeur saturante à la température de l'eau. En effet à cette pression, on observerait une 
vaporisation de l'eau au point 2. D'après l'annexe A 2.2, pour des températures de l'ordre de 
20°C, cette pression minimale est de l'ordre de 2'000 à 2'500 Pa. 
 
 
 
Problème 3 : 

 
Pour ce problème, on considère que le grenier est 
directement sous la toiture et que celle-ci n'est pas 
étanche à l'air. On peut, par conséquent, poser 
raisonnablement l'hypothèse que, négligeant les 
pertes de charge, la pression juste au-dessus du toit 
est la même que celle dans le grenier : p2 = p'2 
 
La différence de pression entre l'intérieur de la 
maison et le grenier vaut donc : 
 

𝑝𝑝1 − 𝑝𝑝2′ = 𝛥𝛥𝛥𝛥 = 1 2⁄ ⋅ 𝜌𝜌 ⋅ 𝑣𝑣22 (1) 
 
D'autre part la force maximale que peut exercer la trappe, avant que celle-ci ne se soulève, 
équivaut à son poids : 
 

𝐹𝐹max = 𝑚𝑚 ⋅ 𝑔𝑔 = 4,4 ⋅ 9,81 = 43,164N 
 
Comme :  𝐹𝐹max = 𝑆𝑆 ⋅ 𝛥𝛥𝑝𝑝max, avec : 𝑆𝑆 = 0,56 ⋅ 0,77 = 0,4312 m2(surface de la trappe) 
 
On a : 𝛥𝛥𝑝𝑝max = 𝐹𝐹max 𝑆𝑆⁄ = 43,164 0,4312⁄ = 100 Pa 
 
D'où on en déduit grâce à l'équation (1) : 
 

𝑣𝑣2max = �
2 ⋅ 𝛥𝛥𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌
= �

200
1,2

≈ 13m/s = 47km/h 
 
Par conséquent, si le vent souffle à une vitesse supérieure à 47 km/h, la trappe risque fort de se 
soulever. 
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Problème 4 (facultatif) 
 
On a la situation suivante autour du profil des ailes : 
 
 
 
𝑣𝑣∞ = 108km/h = 30m/s 
 
𝑣𝑣2 = 1,35𝑣𝑣∞ = 40,5m/s 
 
𝑣𝑣1 = 0,85𝑣𝑣∞ = 25,5m/s 
 
 
 
Avec la formule donnée dans les remarques générales on obtient : 
 

𝛥𝛥𝛥𝛥 =
1
2
𝜌𝜌 ⋅ (𝑣𝑣22 − 𝑣𝑣12) =  

1
2
⋅ 1,2 kg/m3 ⋅ �(40,5 𝑚𝑚

𝑠𝑠
)2 − (25.5 

𝑚𝑚
𝑠𝑠

)2� =  594 Pa 
 
 
La force dirigée vers le haut est donc égale à : 
 
𝐹𝐹 = 𝑆𝑆 ⋅ 𝛥𝛥𝛥𝛥 = 30 ⋅ 594 = 17′820N 
 
Au moment du décollage, la force F compense exactement la force de gravitation qui s'exerce 
sur l'avion donc : 𝐹𝐹 = 𝑚𝑚 ⋅ 𝑔𝑔 
 
On calcule alors facilement la masse de l'avion : 𝑚𝑚 = 𝐹𝐹 𝑔𝑔⁄ = 1′816,5kg. 
 
L'épaisseur de l'aile (~20 à 30 cm) donne lieu à un terme supplémentaire : 
𝜌𝜌 ⋅ 𝑔𝑔 ⋅ 𝛥𝛥ℎ = 1,2 ⋅ 𝑔𝑔 ⋅ 0,25 ≈ 3 Pa, ce qui est négligeable par rapport à 𝛥𝛥𝛥𝛥 = 594 Pa. 
 


