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Corrigé des exercices - Série 2

Exercice 1

Soit un ruban plan et infini de largeur L = 2 cm (z = 0, 0 ≤ x ≤ L)
chargé avec une densité superficielle homogène σ = 1 µC/m2.
Trouvez le champ électrique (en N/C) créé dans le même plan et
à distance d = 1 m de ce ruban, i.e. sur la ligne droite définie par
z = 0 , x = L+ d.

Corrigé

Par symétrie de la distribution des charges, sur la ligne droite considérée le
champ électrique est selon x. De plus, comme le ruban est infiniment long
dans la direction y, le champ doit être le même pour tous les points de la
ligne droite. Il nous suffit donc de calculer la composante x du champ au
point (L+ d, 0, 0).

Le champ dE⃗ créé par une charge infinitésimale se trouvant au point (x, y, 0)
et ressenti au point (L+ d, 0, 0) s’écrit :

dE⃗ =
1

4πε0

σdxdy

r2
êr avec r =

√
(L+ d− x)2 + y2 (1)

Puisqu’on ne s’intéresse qu’à la composante x, on fait une projection sur
l’axe x :

dEx = dE⃗ · êx = ∥dE⃗∥L+ d− x

r
(2)

y

x

dxdy

r

L+ dx

y

L

d

Le principe de superposition nous dit que le champ total E créé par le ruban sur l’axe (x = L+d, z = 0)
est donné par la somme des champs infinitésimaux dEx :

E =

∫ L

0

∫ ∞

−∞

1

4πε0

σdx dy

r2
êr êx (3)

=

∫ L

0

∫ ∞

−∞

σ

4πε0

(L+ d− x)dx dy

r3
(4)

=

∫ L

0

∫ ∞

−∞

σ

4πε0

(L+ d− x)dx dy

((L+ d− x)2 + y2)3/2
(5)

1. crédit : Dr. J. Loizu, Prof. A. Fasoli
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Pour simplifier un peu l’écriture de cette intégrale, commençons par le changement de variable :

s = L+ d− x (6)
ds = −dx (7)

Ce qui conduit à :

E =
σ

4πε0

∫ L+d

d

∫ ∞

−∞

s ds dy

(s2 + y2)3/2
(8)

On effectue un deuxième changement de variable (u = y/s, du = dy/s) :∫ ∞

−∞

s dy

(s2 + y2)3/2
=

1

s

∫ ∞

−∞

du

(1 + u2)3/2
=

2

s
(9)

On a donc

E =

∫ L+d

d

σ

2πε0

ds

s
=

σ

2πε0
(ln (L+ d)− ln d) (10)

On trouve finalement :
E⃗ =

σ

2πε0
ln

(
1 +

L

d

)
êx (11)

Application numérique : E = 10−6

2π×8.8×10−12 ln(1 + 2/100) ≈ 358 N/C.

Note : Si la forme du champ créé par un fil infini était une donnée, ou calculée précédemment, on
pourrait considérer le ruban comme étant composé par des fils infinis de largeur dx et dont la densité
de charge linéaire est λ = σdx. Pour en déduire :

Ex =

∫ 0

L

σ dx

2πε0(L+ d− x)
=

σ

2πε0
[ln(L+ d− x)]0L = − σ

2πε0
(ln(d)− ln(L+ d)) =

σ

2πε0
ln(1 +

L

d
)

(12)
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Exercice 2

On considère un disque de rayon R portant une charge superficielle constante σ. Calculez le champ
électrique sur tout point de l’axe qui est perpendiculaire au disque et passe par son centre. Comment
se comporte le champ électrique très loin du disque ? Et très proche ?

Corrigé

Étant donnée la symétrie du problème, le champ
−→
E créé sur l’axe de symétrie du disque, est orienté

selon cet axe. Soit x la distance entre un point sur l’axe et le centre du cercle.

Un élément de surface dS crée en ce point un champ électrique :

d
−→
E(M) =

1

4πε0

σdS

d2
êd (13)

où d =
−−→
PM. Le champ résultant étant axial, il faut faire la somme des

composantes axiales des champs infinitésimaux.

dEx = dE cos θ =
σ

4πε0

dS cos θ

d2
(14)

Notons qu’en coordonnées cylindrique un petit élement de surface dans
le plan (r, ϕ) est donné par dS = dr r dϕ. Donc en intégrant sur la
surface du disque :

Ex =

∫ 2π

ϕ=0

∫ R

r=0

1

4πε0

dr r dϕσ cos θ

d2
=

σ

2ε0

∫ R

0

r cos θ

d2
dr (15)

Pour résoudre cette intégrale, on peut procéder de deux manières différentes.

Méthode 1 : intégration selon r

Pour calculer l’integrale de l’équation (15) par rapport à r, il faut d’abord expliciter toutes les dépen-
dances par rapport à cette variable : d =

√
r2 + x2 et cos θ = x/d = x/

√
r2 + x2. L’intégrale s’écrit

alors :

Ex =
σx

2ε0

∫ R

0

rdr

(r2 + x2)3/2
(16)

Le terme en
(
r2 + x2

)−3/2 de notre fonction à intégrer suggère que la fonction primitive pourrait être
de la forme

(
r2 + x2

)−1/2. On peut alors tenter de comparer la dérivée de cette fonction à l’intégrand :

d

dr

(
r2 + x2

)−1/2
= − r

(r2 + x2)3/2
(17)

C’est exactement notre intégrand, au signe près. On a donc :

Ex =
σx

2ε0

[
− 1√

r2 + x2

]R
0

=
σ

2ε0

(
1− x√

R2 + x2

)
=

σ

2ε0

1− 1√
1 + R2

x2

 (18)
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Méthode 2 : intégration selon θ

On peut aussi faire le calcul en intégrant selon θ. On opère le change-
ment de variable suivant :

r = x tan θ (19)

dr =
x

cos2 θ
dθ (20)

x = d cos θ (21)

Les bornes d’intégration r = [0;R] deviennent θ = [0; θ0] avec θ0 = arctan(R/x). En reprenant
l’expression de l’équation (15) on obtient :

Ex =
σ

2ε0

∫ θ0

0

x tan θ x dθ cos2 θ cos θ

cos2 θ x2
=

σ

2ε0

∫ θ0

0
sin θdθ =

σ

2ε0
(− cos θ)

∣∣∣θ0
0

(22)

Ex =
σ

2ε0
(1− cos θ0)=

σ

2ε0

(
1− x

(x2 +R2)1/2

)
(23)

Observons maintenant les limites de cette expression, lorsque l’on se place très proche ou très loin du
disque.
Très proche du disque :

x ≪ R : θ0 =
π

2
Ex =

σ

2ε0
(24)

Le champ ne dépend que de σ. Comme pour un plan infini, uniformément chargé, où le champ est
uniforme et de valeur σ

2ε0
, normal et symétrique par rapport au plan.

Très loin du disque :
Pour cela nous nous servirons du développement en série de Taylor d’une fonction f(x) à des positions
x proches de la position x0 :

f(x) ≈ f(x0 + x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + ...+
f (n)

n!
(x0)(x− x0)

n + ... (25)

En utilisant ce développement pour de petits θ0 et en ne gardant que les premiers termes :

x ≫ R : (26)

θ0 ≪ 1 donc cos θ0 ∼ 1− θ20
2

(27)

ou pour le resultat de la première version : (28)

R

x
≪ 1 donc

1− 1√
1 + R2

x2

 ∼ 1−
(
1− R2

2x2

)
=

R2

2x2
(29)

De plus, pour de petits θ0 : θ0 ∼ tan θ0 =
R
x , d’où :

Ex ∼ σ

2ε0

R2

2x2
=

πR2σ

4πε0x2
=

Q

4πε0x2
(30)
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où Q est la charge totale du disque. Le champ à grande distance est donc le même que celui d’une
charge ponctuelle Q.
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Exercice 3 : Expérience de Millikan

Une goutte d’huile de rayon R = 2.76 µm et de densité ρ = 920 kg/m3 est chargée avec une charge
Q et maintenue en équilibre sous l’effet de son poids et d’un champ électrique uniforme dirigé vers le
bas et d’amplitude E = 1.65× 106 N/C.
Remarque : Robert Millikan a utilisé ce principe pour démontrer, en 1913, que la charge est quantifiée
et pour mesurer la charge fondamentale, aujourd’hui établie à |e| ≈ 1.6× 10−19 C (Figure).

a) Calculer la valeur et le signe de la charge Q. Exprimer le résultat en multiple de |e|.
b) La goutte est exposée à une source émettant des électrons. On observe que la goutte bouge vers

le haut avec une accélération constante a = 13 m/s2. Combien d’électrons ont-ils été capturés par
la goutte ? On néglige la viscosité de l’air.

Corrigé

a) L’équilibre entre le poids de la goutte P⃗ et la force électrique F⃗E qu’elle subit s’écrit :

P⃗ + F⃗E = 0⃗ (31)

QE = −ρ
4

3
πR3g (32)

ce qui nous donne Q ≈ −4.91× 10−19C ≈ −3|e|.
On remarque que le signe de la charge est négatif, Q < 0, ce qui est logique puisque la force
électrique

−→
F e = Q

−→
E doit être dirigée vers le haut pour pouvoir compenser le poids de la goutte.

b) La goutte possède maintenant N charges additionelles qui produisent une force résiduelle Fnet sur
la goutte, et donc l’accélération est vers le haut et est donnée par

a =
Fnet

m
=

N |e|E
ρ4
3πR

3
= 13 m/s2 (33)

On en déduit

N =
aρ4

3πR
3

|e|E
≈ 4 (34)
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Exercice 4

On considère un gaz formé de molécules de chlorure d’hydrogène (HCl) de
masse M = mH +mCl ≈ 6×10−26 kg. Chaque molécule peut être modélisée
comme un dipôle électrique avec une distance interatomique d = 1.3Å et
une charge δ = 0.2e.

a) Calculer le champ électrique créé par l’un de ces dipôles, sur son axe.
Montrer que loin du dipôle, ce champ électrique décroit comme le cube
de la distance au dipôle.

On néglige l’interaction entre les dipôles, et on applique un champ électrique
externe constant et d’amplitude E = 103 N/C.

b) Calculer l’amplitude |−→p | du dipôle électrique en Debye (1 D ≃ 3.34 ×
10−30 C·m).

c) Calculer la force totale qui s’exerce sur un dipôle.

d) Calculer le moment de force −→τ par rapport au centre de la molécule en
fonction de l’angle θ entre

−→
E et −→p .

e) Écrire l’équation du mouvement pour θ. Indication : utilisez le théorème
du moment cinétique, d

−→
LO
dt = −→τ , où

−→
LO est le moment cinétique d’un

corps par rapport à un point O.

f) Pour des petites valeurs de θ, en déduire la fréquence des oscillations des
molécules autour de θ = 0.

g) Que faudrait-il faire pour accélérer les molécules dans la direction du
champ

−→
E ?

Corrigé

a) Le champ créé par le dipôle est donné par la somme des champs créés par les deux charges
ponctuelles. Sur l’axe x, on a

Ex = − δ

4πε0 (x+ d/2)2
+

δ

4πε0 (x− d/2)2
(35)

Si on regarde loin du dipôle (x ≫ d), on peut simplifier cette expression par un développement
Taylor limité en petites d/x. Tout d’abord on peut écrire :

Ex = − δ

4πε0x2

[
1(

1 + d
2x

)2 − 1(
1− d

2x

)2
]

(36)

≈
x≫d

− δ

4πε0x2

[
1− 2

d

2x
−
(
1 + 2

d

2x

)]
(37)

On obtient finalement pour x ≫ d :

Ex =
δd

2πε0x3
(38)
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b) |−→p | = qd = δd = 0.2 · 1.6× 10−19 · 1.3× 10−10C/m = 4.16× 10−30 C/m.
Ce qui correspond à peu près à 1.24 D.

c) Puisque
−→
E = const ,

−→
F = 0 puisque le centre de masse n’est soumis à aucune force,

−→
F = (−→p ·

−→
▽)

−→
E = 0 (39)

d) Considérons le plan cartésien x y z. Dans ce référentiel le vec-
teur unitaire −→z a une direction sortante de la feuille. Si θ est
l’angle entre

−→
E et −→p le moment de force −→τ par rapport au

centre de la molécule (point O) est calculé comme :

−→τ = −→p ×
−→
E = −|−→p | · E · sin θêz (40)

L’effet du champ électrique est d’aligner le vecteur −→p dans
la direction du champ électrique lui-même.

e)

−→
LO =

∑
i

r⃗i ×miv⃗i

=
d

2
êr ×mH

(
d

2
θ̇

)
êθ +

d

2
êr ×mCl

(
d

2
θ̇

)
êθ

=
d2

4
Mθ̇êz

(41)

où êr et êθ sont des vecteurs unitaires polaires, et M = mH +mCl.
Donc, par le théorème du moment cinétique,

d2

4
Mθ̈ = −pE sin θ (42)

θ̈ = −Ω2 sin θ (43)

avec Ω =
√

4pE
Md2

=
√

4δE
Md .

f) Si θ ≪ 1, alors sin θ ≈ θ, et on tombe sur l’équation du mouvement d’un oscillateur harmonique.
On peut donc identifier directement Ω comme la fréquence des oscillations.

Ω =

√
4δE

Md
=

√
4 · 0.2 · 1.6× 10−19 · 103
6× 10−26 · 1.3× 10−10

1

s
≃ 4.04 GHz. (44)

g) Pour accélérer le dipôle et donc avoir une force non nulle il faut imposer un gradient de champ
électrique. Par exemple : Ex(x) avec E′

x > 0.
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Exercice 5

On mesure un champ électrique décrit par
−→
E(x, y, z) = (ay+ b)êy, avec a = 5 N/(C.m) et b = 1 N/C.

Déterminez la charge à l’intérieur d’un cube de côté l = 1 cm, dont une face est en y = 0 et une en
y = l.

Corrigé

Le champ électrique est strictement dans la direction y.
Donc, en se référant au diagramme ci-contre, il n’y a pas de
flux à travers la face supérieure, inférieure, avant ou arrière
du cube. Seules faces en y = 0 et en y = l sont sujettes à un
flux de champ électrique. Calculons ce flux et utilisons la loi
de Gauss pour trouver la charge contenue dans le volume du
cube.

Il est important de se rappeler que lorsqu’on considère
−→
dA dans le calcul intégral du flux, ce vecteur

doit être orienté vers l’extérieur du volume.

Φ =

∮ −→
E ·

−→
dA =

∫
y=0

−→
E ·

−→
dA +

∫
y=l

−→
E ·

−→
dA

=

∫
y=0

bêy · (−dAêy) +

∫
y=l

(al + b)êy · (dAêy)

= −bl2 + al3 + bl2

= al3

(45)

Par la loi de Gauss : al3 = Qcube
ε0

, et donc Qcube = ε0al
3 ≈ 8.8× 10−12 · 5× 10−6C ≈ 4.4× 10−17C.
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Exercice 6

Une sphère de densité de charge uniforme ρ = 10−4 C/m3 et rayon R = 0.1 m contient deux zones
sphériques sans charge à l’intérieur avec un rayon R/2 comme indiqué sur la figure.

Déterminer l’expression du champ électrique le long de l’axe x (−R ≤ x ≤ R ) et l’évaluer en A
(x = R), O(x = 0), B(x = −R). Indication : ε0 = 8.854 · 10−12 C2/Nm2

Corrigé

L’exercice peut être résolu en considérant un système équivalent pour lequel on obtient la même
distribution de charges et le même champ électrique. En fait, en utilisant le principe de superposition,
le système est équivalent à une sphère chargée positivement de charge Q, de rayon R et de densité
de charge uniforme ρ et deux sphères chargées négativement (S1 à gauche et S2 à droite) de densité
de charge uniforme ρS1 = ρS2 = −ρ de rayon R/2 situées en xS1 = −R/2 et xS2 = R/2. La charge
négative totale de chaque sphère négative est : Q1 = Q2 = −ρ4

3π(R/2)3.

(a) (b)

On commence par calculer le champ électrique créé par une sphère uniformément chargée, en utilisant
la loi de Gauss

∫
EdS = Qint/ε0. On considère séparément le champ à l’intérieur et à l’extérieur de

la sphère. Dans les deux cas, on définit une surface de Gauss sphérique de rayon r, concentrique avec
la sphère chargée.

Intérieur (r < R) :
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Notre surface de Gauss n’englobe qu’une partie de la charge présente dans la sphère. On a

Qint =
4π

3
r3ρ (46)

Qint

ε0

Gauss
=

∮
sphere

E⃗d⃗S = 4πr2E(r) =
4π

3ε0
r3ρ (47)

E(r) =
ρr

3ε0
(48)

Si l’on convertit ce résultat en coordonnées cartésiennes (en notant que r est toujours positif en
coordonées cylindrique, alors que x peut-être positif ou négatif), on a :

— à droite du centre E(x > x0) =
ρ|x|
3ε0

= ρx
3ε0

— à gauche E(x < x0) = −ρ|x|
3ε0

= ρx
3ε0

L’expression est identique, la différence de signe est portée par x.

Extérieur (r > R) :
Le volume à l’intérieur de notre surface de Gauss contient la même charge Q = 4π

3 R3ρ indépendem-
ment de r. On a alors

4πr2E(r) =
Q

ε0
(49)

E(r) =
Q

4πε0r2
(50)

Le champ électrique à l’extérieur de la sphère est donc identique à celui produit par une charge
ponctuelle. À nouveau on convertit ce résultat en coordonnées cartésiennes, et on a :

— à droite E(x > R) = Q
4πε0x2

— à gauche E(x < R) = − Q
4πε0x2

Remarquons enfin que si la sphère n’est pas centrée en zéro mais en x0 ̸= 0, on a sur l’axe x :
E(|x| < x0) =

ρ(x−x0)
3ε0

, et E(|x| > R) = ± Q
4πε0(x−x0)2

.

Somme des trois sphères
Voyons maintenant la somme des contributions des sphères S0, S1 et S2.

— 0 ≤ x ≤ R
L’ensemble du volume de la sphère S1 donne une contribution E1 =

Q1

4πε0(x−xs1)2
= Q1

4πε0(x+R/2)2
.

Quant à la sphère S2 la situation est similaire à celle de la sphère S0 mais S2 est centrée dans
xs2 = R/2. On a donc : E2 =

ρS2
(x−xs2)

3ε0
= −ρ(x−R/2)

3ε0
. Finalement, le champ électrique total

pour 0 ≤ x ≤ R est :

E(0≤x≤R) =
ρx

3ε0
+

Q1

4πε0(x+R/2)2
− ρ(x−R/2)

3ε0
(51)

— −R ≤ x ≤ 0
De même, pour la sphère S1 : E1 = −ρ(x+R/2)

3ε0
, et avec la sphère S2 on a E2 = − Q2

4πε0(x−R/2)2
.

On a donc pour le champ total :

E(−R≤x≤0) =
ρx

3ε0
− ρ(x+R/2)

3ε0
− Q2

4πε0(x−R/2)2
(52)
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Le champ électrique a la forme indiquée dans le graphique suivant.
En utilisant les formules obtenues, au point A le champ électrique
est Ex(R) = 0.1673 MV/m, et au point B le champ électrique est
Ex(R) = −0.1673 MV/m. En O, comme on le sait, la sphère S0

ne contribue pas, tandis que la contribution de la sphère S1 et S2

s’annulent.
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