Cours de physique générale 111 — Dr Fabio Avino

Semestre Automne 20241

Corrigé des exercices - Série 2

Exercice 1

Soit un ruban plan et infini de largeur L =2 cm (2 = 0,0 < 2 < L)
chargé avec une densité superficielle homogéne o = 1 uC/m?.
Trouvez le champ électrique (en N/C) créé dans le méme plan et
& distance d = 1 m de ce ruban, i.e. sur la ligne droite définie par
z=0,z=L+d.

Corrigé

Par symétrie de la distribution des charges, sur la ligne droite considérée le
champ électrique est selon x. De plus, comme le ruban est infiniment long
dans la direction y, le champ doit étre le méme pour tous les points de la
ligne droite. Il nous suffit donc de calculer la composante x du champ au
point (L +d,0,0).

Le champ dE créé par une charge infinitésimale se trouvant au point (z,y,0)
et ressenti au point (L + d,0,0) s’écrit :

1 odzdy
dmeg 12

dE = é, avec 7 = /(L +d — x)2 + 12 (1)

Puisqu’on ne s’intéresse qu’a la composante x, on fait une projection sur
laxe T :

. o L+d—
A, = dF - ¢, = [dB| E 20 )

L+d

Le principe de superposition nous dit que le champ total E créé par le ruban sur axe (x = L+d, z = 0)

est donné par la somme des champs infinitésimaux dF,

o / / 1 odr dy 6 e,
4dmeg
B / / o (L+d—2x)dzdy
N 4reg r3

/ / (L+d—x)dxdy
dreg (L +d — x)2 + y2)3/2

1. crédit : Dr. J. Loizu, Prof. A. Fasoli




Pour simplifier un peu I’écriture de cette intégrale, commengons par le changement de variable :

s=L+d-x (6)
ds = —dx (7)
Ce qui conduit & :
/L+d / sdsdy @)
47‘(‘60 (s2 +y?) 3/2
On effectue un deuxiéme changement de variable (u = y/s,du = dy/s) :
/°° sdy B 1/00 du _2 ()
e AP s ) w2 s
On a donc L
o ds o
E = = = In(L+d)—1Ind 10
/d 2meg s 27r50(n( +d) —Ind) (10)
On trouve finalement :
E = In(1+=)é, 11
27['60 Il( + d) ¢ ( )
Application numeérique : £ = % In(1+2/100) ~ 358 N/C.

Note : Si la forme du champ créé par un fil infini était une donnée, ou calculée précédemment, on
pourrait considérer le ruban comme élant composé par des fils infinis de largeur dx et dont la densité
de charge linéaire est A = odx. Pour en déduire :

0 odz o 0 o o L
E, = = In(L+d—2x)|; =— In(d) —In(L +d)) = In(1+ —
v /L 2reg(L+d —x) 27meg [In(L+d —2)]; 27(50( n(d) —In(L +d)) 2meg n(l+ d)



Exercice 2

On considére un disque de rayon R portant une charge superficielle constante o. Calculez le champ
électrique sur tout point de ’axe qui est perpendiculaire au disque et passe par son centre. Comment
se comporte le champ électrique trés loin du disque ? Et trés proche 7

Corrigé

Etant donnée la symétrie du probléme, le champ E créé sur 'axe de symétrie du disque, est orienté
selon cet axe. Soit z la distance entre un point sur 'axe et le centre du cercle.

Un élément de surface dS crée en ce point un champ électrique :

1 odS .
—F €
471’80 d2 d

dE (M) = (13)

—
ou d = PM. Le champ résultant étant axial, il faut faire la somme des
composantes axiales des champs infinitésimaux.

o dScosf

B, = dE —
d dFE cosf PE—

(14)

Notons qu’en coordonnées cylindrique un petit élement de surface dans
le plan (r,¢) est donné par dS = drrd¢. Donc en intégrant sur la
surface du disque :

Ex:/% /R 1 drrdgb;cos@zi R’I“COQSQdT (15)
¢=0 Jr=0 47750 d 280 0 d

Pour résoudre cette intégrale, on peut procéder de deux maniéres différentes.
Méthode 1 : intégration selon r

Pour calculer l'integrale de 1’équation (15) par rapport a r, il faut d’abord expliciter toutes les dépen-
dances par rapport a cette variable : d = Vr? + 22 et cos = x/d = x/v/r? + 2. L’intégrale s’écrit

alors :

or B rdr

E, =

= 1
20 Jo (12 + 22)*? (16)

Le terme en (7’2 + :cQ)_g/ ? de notre fonction & intégrer suggére que la fonction primitive pourrait étre

de la forme (r2 + .7}2) -2, On peut alors tenter de comparer la dérivée de cette fonction & l'intégrand :

d , 5 n-1/2 r
${r+x) ETEEE (17)

C’est exactement notre intégrand, au signe prés. On a donc :
Em[lra<1 fv)a R a8)
Y20 | Vr21a2], 2e0 VR? + 22 2¢eq 14 R
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Méthode 2 : intégration selon 6

On peut aussi faire le calcul en intégrant selon 8. On opére le change-
ment de variable suivant :

r=ux tanf (19)
x
dr = ——dbf 20
"7 cos20 (20)
x =d cosf (21)
R
Les bornes d’intégration r = [0; R] deviennent 6 = [0;60y] avec §y = arctan(R/z). En reprenant
I'expression de I’équation (15) on obtient :
6o 2 0o
o x tan 0 x df cos” 6 cos 0 o o %o
B -7 — 7 [ singdd = 2 (= cosd 22
T 20 Jo cos? 0 x2 2e0 Jo St 250( cos 6) 0 (22)
g o xr
E,=—(1- Q)= — |1 — sy 23
v 250( cos o) 2e0 ( (22 + R?) '/2> (23)

Observons maintenant les limites de cette expression, lorsque I'on se place trés proche ou trés loin du
disque.
Tres proche du disque :

v g
R: 0:* Ezi
TS 0= 75 = %80

Le champ ne dépend que de o. Comme pour un plan infini, uniformément chargé, ou le champ est

uniforme et de valeur ﬁ, normal et symétrique par rapport au plan.

(24)

Trés loin du disque :
Pour cela nous nous servirons du développement en série de Taylor d’une fonction f(x) & des positions
x proches de la position xg :

"y (n)
f ;!0)(x—x0)2+...+fn!(wo)(x_xo)ner (25)

f(@) = f(zo + ) = f(xo) + f'(z0)(x — o) +

En utilisant ce développement pour de petits 6y et en ne gardant que les premiers termes :

r>R: (26)
92
6p <1 donc cosby~1-— ?O (27)
ou pour le resultat de la premiére version : (28)
R 1 R? R?
~“ <1 donc|l1l—-— | ~1—-—(1-"F ) =—"F (29)
x R? 212 212
1+ &
De plus, pour de petits 8y : 09 ~ tanfy = %, d’ou :
R? R?
B, o R®  7wR0 _ Q (30)

~ 2
2¢0 222 Amegr?  Amegx?



ou () est la charge totale du disque. Le champ & grande distance est donc le méme que celui d’une
charge ponctuelle Q.



Exercice 3 : Expérience de Millikan

Une goutte d’huile de rayon R = 2.76 ym et de densité p = 920 kg/m? est chargée avec une charge
@ et maintenue en équilibre sous 'effet de son poids et d’un champ électrique uniforme dirigé vers le
bas et d’amplitude E = 1.65 x 10° N/C.

Remarque : Robert Millikan a utilisé ce principe pour démontrer, en 1913, que la charge est quantifiée
et pour mesurer la charge fondamentale, aujourd’hui établie a |e| ~ 1.6 x 10719 C (Figure).

a)
b)

Calculer la valeur et le signe de la charge Q). Exprimer le résultat en multiple de |e|.

La goutte est exposée & une source émettant des électrons. On observe que la goutte bouge vers
le haut avec une accélération constante a = 13 m/s2. Combien d’électrons ont-ils été capturés par
la goutte 7 On néglige la viscosité de lair.

Corrigé

L’équilibre entre le poids de la goutte P et la force électrique Fg qu’elle subit s’écrit :

P+Fp=0 (31)
4 3
QE = —pgmR’g (32)
ce qui nous donne Q ~ —4.91 x 10719C ~ —3|e|.
On remarque que le signe de la charge est négatif, ) < 0, ce qui est logique puisque la force
électrique F . = QE doit étre dirigée vers le haut pour pouvoir compenser le poids de la goutte.

La goutte posséde maintenant N charges additionelles qui produisent une force résiduelle F,e; sur
la goutte, et donc 'accélération est vers le haut et est donnée par

F, Nle|E
_ o NAE 50 (33)
m psmR3
On en déduit -
ap3TR
N = 4 34



Exercice 4

On considére un gaz formé de molécules de chlorure d’hydrogéne (HCI) de
masse M = mpg +mc; ~ 6 x 10726 kg. Chaque molécule peut étre modélisée
comme un dipdle électrique avec une distance interatomique d = 1.3 A et
une charge § = 0.2e. d

a) Calculer le champ électrique créé par I'un de ces dipoles, sur son axe. CI ‘ i H

(=%

Montrer que loin du dipéle, ce champ électrique décroit comme le cube
de la distance au dipdle.

On néglige 'interaction entre les dipdles, et on applique un champ électrique
externe constant et d’amplitude £ = 103 N/C.

b) Calculer Pamplitude | 7| du dipole électrique en Debye (1 D ~ 3.34 x
10730 Com).
c) Calculer la force totale qui s’exerce sur un dipole.

d) Calculer le moment de forc% 7 par rapport au centre de la molécule en
%
et p.

fonction de 'angle 6 entre P “~ '\.
e) Ecrire 'équation du mouvement pour 0. Indication : utilisez le théoréme «— " ./__.?_9 / 2
N N
L. dLo . .. ,
du moment cmetlo{ue, WO. = ?, oul Lo est le moment cinétique d’un — -\. s
corps par rapport & un point O. -

f) Pour des petites valeurs de 6, en déduire la fréquence des oscillations des
molécules autour de 6 = 0.

g) Que faudrait-il faire pour accélérer les molécules dans la direction du
champ E ?

Corrigé

a) Le champ créé par le dipole est donné par la somme des champs créés par les deux charges
ponctuelles. Sur I'axe x, on a

0 o
E,=- 5 + 5 (35)
dmeg (x +d/2)°  Amweg (v — d/2)

Si on regarde loin du dipole (z > d), on peut simplifier cette expression par un développement
Taylor limité en petites d/z. Tout d’abord on peut écrire :

) 1 1
By =— 2 2~ 2 (36)
o (04 27 - )
o d d
N — 1-2——(142— 37
o>d  Amegr? 2z < * 2:6):| (87)

On obtient finalement pour x > d :




b) [P =¢d=06d=02-1.6x10"19.1.3 x 1071°C/m = 4.16 x 1073° C/m.
Ce qui correspond a peu prés a 1.24 D.

c) Puisque B = const , ? = 0 puisque le centre de masse n’est soumis & aucune force,
%
F=(F 9)E =0 (39)

d) Considérons le plan cartésien zy z. Dans ce référentiel le vec-
teur unitaire 7 a une direction sortante de la feuille. Si 0 est
I’angle entre B et ? le moment de force 7 par rapport au x 0
centre de la molécule (point O) est calculé comme :

P =F xE =—|F| E-sinbe, (40)

L’effet du champ électrique est d’aligner le vecteur 5) dans
la direction du champ électrique lui-méme.

i (\\7'
i (26 en+ Lo s mer [ 26 e (41) é‘)
= 2er myg 5 €y 267~ moy 5 € O 0
— ZMééz ./

d2

oll é, et ég sont des vecteurs unitaires polaires, et M = mg + mgy.
Donc, par le théoréeme du moment cinétique,

dz .
ZMG = —pEsinf (42)

6 =—-0%sind (43)

_ dpE 40F
avec 0 =/ 12 =/ J1d-

f) Sif <« 1, alors sinf ~ 6, et on tombe sur I’équation du mouvement d’un oscillateur harmonique.
On peut donc identifier directement {2 comme la fréquence des oscillations.

Q

4F 4-0.2-1.6x10719.10%1
=4 = = — ~4.04 GHz. 44
Md \/6 x 1072613 x 1010 s ’ (44)
g) Pour accélérer le dipole et donc avoir une force non nulle il faut imposer un gradient de champ

électrique. Par exemple : E,(x) avec E! > 0.



Exercice 5
On mesure un champ électrique décrit par ﬁ(az, y,z2) = (ay+0b)é,, aveca =5 N/(C.m) et b=1N/C.

Déterminez la charge a l'intérieur d’'un cube de c6té [ = 1 cm, dont une face est en y = 0 et une en
y =1L

Corrigé

Le champ électrique est strictement dans la direction y.

Donc, en se référant au diagramme ci-contre, il n’y a pas de -

flux & travers la face supérieure, inférieure, avant ou arriére

du cube. Seules faces en y = 0 et en y = [ sont sujettes & un E
flux de champ électrique. Calculons ce flux et utilisons la loi -
de Gauss pour trouver la charge contenue dans le volume du ! ¥

cube. . g

%
1l est important de se rappeler que lorsqu’on considére dA dans le calcul intégral du flux, ce vecteur
doit étre orienté vers l'extérieur du volume.

fﬁdA / ﬁd+/BdA

= / bey dAey +/ al + b ey (dAéy) (45)
Y= y=l

= —bl* + al® + bl?

= al®

Par la loi de Gauss : al® = Qg—’;b@, et donc Qeupe = c0al® ~ 8.8 x 10712.5 x 1076C ~ 4.4 x 10717C.



Exercice 6

Une sphére de densité de charge uniforme p = 107* C/m? et rayon R = 0.1 m contient deux zones
sphériques sans charge a l'intérieur avec un rayon R/2 comme indiqué sur la figure.

Déterminer l'expression du champ électrique le long de l'axe x (—R < x < R ) et I’évaluer en A
(x = R), O(z =0), B(x = —R). Indication : ey = 8.854 - 1072 C? /Nm?

Corrigé

L’exercice peut étre résolu en considérant un systéme équivalent pour lequel on obtient la méme
distribution de charges et le méme champ électrique. En fait, en utilisant le principe de superposition,
le systéme est équivalent & une sphére chargée positivement de charge @), de rayon R et de densité
de charge uniforme p et deux sphéres chargées négativement (S; a gauche et Sy a droite) de densité
de charge uniforme pg, = ps, = —p de rayon R/2 situées en xg, = —R/2 et xg, = R/2. La charge
négative totale de chaque sphére négative est : Q1 = Q2 = —p%T[‘(R/2)3.

So

(a) (b)

On commence par calculer le champ électrique créé par une sphére uniformément chargée, en utilisant
la loi de Gauss f EdS = Qint/c0. On considére séparément le champ a Uintérieur et a extérieur de
la sphére. Dans les deux cas, on définit une surface de Gauss sphérique de rayon r, concentrique avec
la sphére chargée.

Intérieur (r < R) :

10



Notre surface de Gauss n’englobe qu’une partie de la charge présente dans la sphére. On a

4m
Qint = ?7‘30 (46)
, L 4
Qint Gauss j{ EdS = 4nr?E(r) = —r°p 47
€0 sphere 360
por
B(r) — 48
(=4 )

Si l'on convertit ce résultat en coordonnées cartésiennes (en notant que r est toujours positif en
coordonées cylindrique, alors que z peut-étre positif ou négatif), on a :

— a droite du centre E(x > xg) = % =4
— a gauche E(z < xp) = —% =4

L’expression est identique, la différence de signe est portée par x.

Extérieur (r > R) :
Le volume a l'intérieur de notre surface de Gauss contient la méme charge ) = %TR?),O indépendem-
ment de r. On a alors

(49)

=— 50
Amegr? (50)
Le champ électrique a l'extérieur de la sphére est donc identique & celui produit par une charge

ponctuelle. A nouveau on convertit ce résultat en coordonnées cartésiennes, et on a :
— a droite E(x > R) =

T 4dmegx?

— a gauche E(x < R) =

" 4repa?

Remarquons enfin que si la sphére n’est pas centrée en zéro mais en xg # 0, on a sur l'axe x :
E(|z] < o) = 22220 ot B(|z| > R) = +—2

3e0 dmeo(z—20)2 "

Somme des trois sphéres
Voyons maintenant la somme des contributions des sphéres Sp, S1 et Ss.

— 0<z<R
L’ensemble du volume de la sphére S donne une contribution £ =

Q1 _ Q1
dreo(z—251)2 ~ dmeo(z+R/2)2°
Quant & la sphére So la situation est similaire a celle de la sphére Sy mais S est centrée dans

g2 = R/2. On a donc : Fy = psy(—Tw2) _ —pla—R/2) Finalement, le champ électrique total

3e0 3e0
pour 0 <z < R est:
pT Q1 plz — R/2)
E = = — 51
(Osz<k) = 350 + dreg(z + R/2)? 30 (51)
— —R<z<0
De méme, pour la sphére S; : By = _p(%fﬂ), et avec la sphére Ss on a Fy = —477&0(5?7_2]%/2)2.
On a donc pour le champ total :
pr  p(z+ R/2) Q2
E =-— - - 52
(—R<w<0) 360 360 47‘(‘60(1‘ — R/2)2 ( )

11



Le champ électrique a la forme indiquée dans le graphique suivant.
En utilisant les formules obtenues, au point A le champ électrique
est By (R) = 0.1673 MV /m, et au point B le champ électrique est
E,;(R) = —0.1673 MV/m. En O, comme on le sait, la sphére Sy
ne contribue pas, tandis que la contribution de la sphére Sy et S
s’annulent.

12
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