
Examen de physique générale III – PHYS 114 – Dr. Avino 16 Janvier 2025

Exercice 1 (25 points)

Un disque de rayon Rd = 50 cm (épaisseur négligeable) a une den-
sité de charge surfacique σ = 1.28× 10−8 C/m2.

a) Donnez l’expression et la valeur de la charge totale du
disque Qd.

b) Donnez l’expression du potentiel électrique du disque Vd(x)
le long de son axe x̂. Donnez sa valeur au point D situé à
80 cm du disque sur l’axe x̂.

Un premier projectile P1 de charge Qp1 = 2 × 10−8 C et de masse m = 1.2 g (dimension négligeable) est lancé à
partir du point D, le long de x̂, vers le disque avec une vitesse initiale vi = 10 cm/s.

c) Donnez l’expression et la valeur de la vitesse vf de P1 à la position du disque. Donnez l’expression et la
valeur de la vitesse initiale vi,0 que P1 aurait dû avoir pour que sa vitesse soit nulle à la position du disque.

d) En prenant P1 à son point de départ D, donnez l’expression et la valeur du champ magnétique B⃗p1 (direc-
tion, sens et norme) produit par P1 au niveau du point A. Le point A est situé à une distance r = 80 cm
de D, r⃗ formant un angle de 10◦ avec v⃗i.

Un deuxième projectile P2 (on enlève P1 du problème) de charge totale Qp2 est lancé vers le disque à partir du
point D. P2 est composé d’une sphère pleine de rayon R1 = 1 cm et de densité de charge volumique ρ1, entourée
par une couche sphérique de rayon interne R1, de rayon externe R2 = 3R1, et de densité de charge volumique ρ2.

e) Donnez l’expression du champ électrique E⃗p2 produit uniquement par P2 en tout point (à l’intérieur et
à l’extérieur de P2). Donnez ensuite l’expression du champ électrique total E⃗tot au point A (direction et
sens). Veuillez noter que le point A est très proche du disque et justifiez vos éventuelles approximations.

À cause de l’impact de P2 sur le disque, une région circulaire de diamètre
Dp < Rd, centrée par rapport au disque, a une densité de charge surfacique
augmentée à σp.

f) En considérant cette modification, donnez l’expression du champ élec-
trique E⃗(x) du disque le long de son axe x̂.

Indications :

ε0 = 8.85 × 10−12 C2.N−1.m−2 ; µ0 = 4π × 10−7 T.m.A−1 ;

∫
x√

a+ x2
dx =

√
a+ x2

Négligez les effets d’induction/polarisation du champ électrique sur les distributions de charge du disque et des
projectiles.
Négligez l’effet de la pesanteur sur la trajectoire des projectiles.
L’énergie cinétique d’un objet de masse m qui se déplace avec vitesse v est donnée par Ec =

1
2mv2.
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Corrigé

a) (2 pts) La densité surfacique de charge est définie comme : σ = Qd/S. On a donc :

Qd = σS = σπR2
d (1)

Avec les valeurs fournies on trouve Qp ≃ 10−8 [C]

b) (4 pts) Différentes méthodes peuvent être utilisées pour trouver le potentiel :

1. Avoir noté le cas particulier du disque sur le formulaire, l’adapter de manière cohérente au problème et
justifier son utilisation.

2. Intégrer le potentiel produit par un anneau infinitésimal de charge dq sur toute la surface du disque (voir
Notes Fasoli - chapitre 3 - page 51, refait ci-dessous). L’intégrale était donnée en indication.

3. Calculer (ou reprendre du formulaire) le champ électrique produit par le disque (voir série 2 - exercice 2)
puis l’intégrer pour trouver V (x). Cette méthode est plus longue car elle nécessite deux intégrations.

En prenant la méthode 2, on a :

dV =
dq

4πε0

1

r
(2)

en sachant que dq = σ2πr′dr′ et que r =
√
x2 + r′2, il nous faut intégrer la forme suivante entre r′ = 0 et r′ = Rd :

dV (x) =
σ

2ε0

r′dr′√
x2 + r′2

(3)

Ce qui donne (en utilisant l’indication) :

V (x) =
σ

2ε0

∫ Rd

0

r′dr′√
x2 + r′2

=
σ

2ε0

[√
x2 + r′2

]Rd

0
=

σ

2ε0

(√
x2 +R2

d − |x|
)

(4)

Application numérique au point D : V (D) = 103.7 [V].

c) (5 pts) On applique ici la loi de conservation de l’énergie (voir Notes Fasoli - chapitre 3 - page 43) : l’éner-
gie cinétique initiale du projectile P1 est partiellement (voir totalement pour le 2e point) transférée en énergie
potentielle électrique. On a donc :

∆K +∆U = 0 =⇒m

2
(v2f − v2i ) +Qp1[V (0)− V (D)] = 0 (5)

vf =

√
v2i +

2Qp1

m
[V (D)− V (0)] = 3.75 [cm/s] (6)

Pour la seconde question, l’équation est la même mais on sait que vf = 0 et on cherche alors vi,0, donné par :

vi,0 =

√
2Qp1

m
[V (0)− V (D)] = 9.27 [cm/s] (7)

Méthode alternative : utiliser la 2e loi de Newton. En négligeant la pesanteur (hypothèse formulée en indication),
on peut écrire : F = ma = Qp1E(x). En développant E(x), on obtient une équation différentielle non-linéaire :

ẍ =
Qp1σ

2mε0

1− x√
R2

d − x2

 (8)
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On ne peut pas aller plus loin, il est dès lors impossible de résoudre cette équation analytiquement et d’arriver à
un résultat final correct avec cette méthode.

d) (6 pts) Le champ magnétique B⃗p1 est trouvé grâce à la loi de Biot-Savart :

B⃗p1 =
µ0

4π

Qp1v⃗i × r̂

r2
(9)

Le vecteur unitaire r̂ est explicité avec l’angle : r̂ = −cos(10)x̂+ sin(10)ŷ. Comme v⃗i = −vix̂, on voit que la seule
composante non nulle du produit vectoriel sera dirigée selon −ẑ.

B⃗p1 = −µ0

4π

Qp1visin(10)

r2
ẑ (10)

L’application numérique donne : B⃗p1 ≃ −5× 10−17ẑ [T]. La norme du vecteur est donc ||B⃗p1|| = 5× 10−17 [T]

e) (5 pts) Partie 1 : E⃗p2

La première partie de l’exercice nécessite, au vu de la géométrie du problème, d’utiliser la loi de Gauss à 3 reprises :
pour (i) r ≤ R1, pour (ii) R1 ≤ r ≤ R2 et pour (iii) r ≥ R2. Dans tous les cas, on intègre dE⃗ sur une sphère de
surface S = 4πr2.
Pour (i), la charge incluse est une fraction de la charge de la sphère interne. On a donc :∫

S
E⃗ · dS⃗ =

Qin

ϵ0
avec Qin = ρ1

4

3
πr3 =⇒ E(r ≤ R1) =

ρ1r

3ϵ0
(11)

Pour (ii), il faut prendre en compte toute la charge de la sphère interne à laquelle on ajoute une fraction de la
charge de la sphère externe :

Qin =
4π

3

[
ρ1R

3
1 + ρ2(r

3 −R3
1)
]

=⇒ E(R1 ≤ r ≤ R2) =
ρ1R

3
1 + ρ2(r

3 −R3
1)

3ε0r2
(12)

Enfin, pour (iii), on prend en compte la charge totale de P2 :

Qin = Qp2 =
4π

3

[
ρ1R

3
1 + ρ2(R

3
2 −R3

1)
]

=⇒ E(r ≥ R2) =
ρ1R

3
1 + ρ2(R

3
2 −R3

1)

3r2ε0
=

(ρ1 + 26ρ2)R
3
1

3r2ε0
(13)

N.B. : on utilise le fait que R2 = 3R1 dans la dernière égalité.

Partie 2 : E⃗tot

Le champ électrique total au point A est obtenu en prenant la somme du champ produit par P2 et par le disque.
Comme le point A est très proche du disque, on fait l’approximation du plan infini pour E⃗d. Le champ produit
par le disque vu au point A peut donc s’écrire comme :

E⃗d(A) ≃
σ

2ε0
x̂ (14)

Le champ produit par P2 en A correspond à celui trouvé dans le cas (iii). Le résultat a été trouvé en fonction de
r, il faut donc le projeter sur notre repère cartésien. Comme r̂ = −cos(10)x̂+ sin(10)ŷ, on obtient :

E⃗p2(A) =
(ρ1 + 26ρ2)R

3
1

3r2ε0
[−cos(10)x̂+ sin(10)ŷ] (15)

Le champ total est donc donné par la somme des deux contributions :

E⃗tot(A) = E⃗d(A) + E⃗Q2(A) =

[
σ

2ε0
− (ρ1 + 26ρ2)R

3
1

3r2ε0
cos(10)

]
x̂+

(ρ1 + 26ρ2)R
3
1

3r2ε0
sin(10)ŷ (16)

f) (3 pts) Le champ électrique total peut être calculé comme la superposition du champ électrique produit
par le disque, auquel on ajoute le champ électrique produit par la surface de charge augmentée. Dans les deux
cas, il s’agit de champ électrique produits par un disque, dont on peut connaître l’expression grâce à différentes
méthodes :
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1. Grâce au formulaire.

2. En dérivant le résultat de la question b).

3. En intégrant sur la surface du disque le champ dE(x) produit par un anneau infinitésimal (voir série 2 -
exercice 2).

On trouve (méthode 2) :

Etot = Ed + Ep = −∂V

∂x
− ∂Vp

∂x
=⇒ Etot =

σ

2ε0

1− x√
R2

d + x2

+
σp − σ

2ε0

1− x√
R2

p + x2

 (17)
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Exercice 2 (25 points)

Une résistance Rρ = 8 kΩ est composée d’un cube de longueur L, avec une résistivité ρ(x) = ρ0x
2 entre les deux

faces connectées au circuit, en x = 0 et x = L.

a) Donnez la longueur L du cube si ρ0 = 2× 105Ω/m.

Un générateur de tension qui fournit une tension V0 est
connecté à la résistance Rρ et à une deuxième résistance R2,
comme indiqué sur le dessin. La connexion entre R2 et Rρ est
faite à une position x variable entre 0 et L.

b) Donnez l’expression de la puissance dissipée P (x) par
la résistance totale équivalente Req(x).

Considérez pour la suite de l’exercice que la position x de la connexion entre Rρ et R2 est telle que leur résistance
équivalente vaut Req = 5 kΩ. Au temps t = 0 s, Req est connectée en série à un condensateur planaire déchargé
(q(t = 0 s) = 0C). Après t1 = 50ms, on mesure (sans perturber le système) une quantité de charge q1 = 0.5qmax

sur une plaque du condensateur, qmax étant la charge maximale pouvant être stockée sur la plaque du condensa-
teur avec le V0 fourni.

c) Donnez la valeur de la capacité C du condensateur. Si au début de la charge la capacité était déjà chargée
à 0.1 qmax, combien de temps aurait-il fallu attendre pour obtenir 0.5 qmax sur la plaque du condensateur ?

Le condensateur est maintenant chargé à qmax = 2×10−2 C. Vous ajoutez alors
un diélectrique de constante diélectrique K = 10 entre les plaques qui remplit
la moitié du volume du condensateur, en couvrant la moitié de la surface des
plaques, comme dans le dessin fourni.

d) Calculez la nouvelle capacité du condensateur Cd en sachant que la distance entre les plaques est d = 2mm.
Quelle est l’énergie totale dissipée dans la résistance Req, à partir du moment où la charge qmax est atteinte,
pour que le condensateur puisse atteindre sa nouvelle condition stationnaire ?

Le circuit discuté aux points précédents est modifié
comme dans le dessin ci-contre, en ajoutant la résistance
R2 = 20Ω, le condensateur C2 = 2µF, et les deux
générateurs de tension V1 = 60V et V2 = 30V.

e) Calculez toutes les valeurs des courants du circuit
dans l’état stationnaire et dessinez leur sens sur
le circuit (sur la feuille de réponse).

Indications :
ε0 = 8.85× 10−12C2.N−1.m−2
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Corrigé

a) (6 pts) La résistance infinitésimale d’un objet est proportionnelle à sa longueur dx et inversement propor-
tionnelle à sa section S(x) :

dR =
ρ(x)

S(x)
dx (18)

Au vu de l’énoncé, on a que S(x) = L2, et ρ(x) = ρ0x
2. La résistance totale d’un cube de côté L est donc :

Rρ =
1

L2

∫ L

0
dxρ0x

2 = ρ0
L

3
⇒ L =

3Rρ

ρ0
=

3

25
m = 12 cm (19)

b) (7 pts) Calculons d’abord la résistance Rρ(x) :

Rρ(x) =
1

L2

∫ x

0
ρ0y

2dy = ρ0
x3

3L2
, Rρ(L)−Rρ(x) =

ρ0
3
(L− x3/L2) (20)

Le circuit équivalent est donné par 2 résistances connectées en parallèle (R2 et Rρ(x)) et une autre en série
(Rρ(L)−Rρ(x)). La résistance équivalente est donc :

Req = série(Rρ(L)−Rρ(x), parallèle(R2, Rρ(x)))

= Rρ(L)−Rρ(x) +

(
1

R2
+

1

Rρ(x)

)−1

=
ρ0(3L

5R2 + L3ρ0x
3 − ρ0x

6)

3L2(3L2R2 + ρ0x3)

(21)

La puissance dissipée est ensuite :

P =
V 2
0

Req
(22)

c) (5 pts) En utilisant les lois constitutives de la capacité, on obtient que la tension VC(t) à ses bornes en
fonction du temps vaut :

VC(t) = V0

(
1− e−t/(RC)

)
(23)

la charge présente sur une des faces vaut simplement q(t) = CVC(t), et l’on obtient qmax via :

qmax = lim
t→∞

q(t) = CV0 (24)

sachant qu’à t1, q(t1) = qmax/2, on a que :

CV0

2
= CV0

(
1− e−t1/(RC)

)
⇒ 1

2
= e−t1/(RC) ⇒ ln(2) =

t1
RC

⇒ C =
t1

R ln(2)
= 14.427 µF (25)

Dans le cas ou le chargeur est déjà chargé à q0 = 0.1qmax, il s’agit de trouver t0 tel que V (t0) = 0.1V0 et
de calculer ∆t = t1 − t0. Par la première condition, on obtient :

t0 = RC(ln(10)− ln(9)) (26)

on obtient donc :

∆t = t1 − t0 = 42.4 ms (27)
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Une méthode alternatif est de dériver l’équation de la charge du condensateur avec la bonne condition
initiale. Depuis la loi des maille de Kirchoff, on obtient :∫ q(t)

q0

dq′

q′ − V0C
= −

∫ t

0

dt′

RC
ln

(
q(t)− V0C

q0 − V0C

)
=

−t

RC
(28)

en isolant q(t) :

q(t) = V0C(1− e−t/(RC)) + q0e
−t/(RC) (29)

Avec la condition initiale q0 = 0.1qmax et q(t) = 0.5qmax, on trouve le temps cherché.
d) (4 pts) Le diélectrique placé ainsi est équivalent à diviser le condensateur en deux, branchés en parallèle.

On a donc :

Cd = C1 + C2 = ϵ0K
A1

d
+ ϵ0

A2

d
=

ϵ0A

2d
(1 +K) =

C

2
(1 +K) = 79.3 µF (30)

La puissance dissipée par la résistance a pour expression :

W =

∫ t3

t2

dtPJ(t) =

∫ t3

t2

dtVR(t)I(t) (31)

où VR(t) est la tension aux bornes de la résistance et I(t) est le courant dans le circuit (un seul, tout est
en série). En utilisant la loi des mailles on a que :

VR(t) = V0 − VC(t) (32)

En utilisant les lois constitutives du condensateur Cd et les conditions initiales, on obtient :

VR(t) = V0

(
C

Cd
e−t/(RCd)

)
(33)

Nous avons ici placé notre origine des temps à t2 = 0. Le courant vaut I(t) = VR(t)/R. On peut enfin
calculer l’intégrale au dessus, en prenant donc comme limites t2 = 0 et t3 = +∞ car c’est à ce moment
que le condensateur sera complètement chargé :

W =
V 2
0

R

(
C

Cd

)2 ∫ ∞

0
e−2t/(RCd)dt =

1

2
V 2
0

C2
d

C
(34)

e) (3 pts) Il s’agit de remplacer les condensateurs par des fils ouverts (pas de courant circule) et d’ajouter
(soustraire) les tensions dues aux générateurs. En fixant les sens des courants comme indiqué sur le schéma

ci-dessous, les équations des mailles et des nœuds donnent :

V2 − V1 +R2I2 = 0 (35)
V0 − I3Req − I2R2 = 0 (36)

I1 + I3 = I2 (37)
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D’où l’on tire :

I1 =
1

Req

(
(Req −R2)(V1 − V2)

R2
− V0

)
+

V1 − V2

R2
= 1.2 A (38)

I2 =
V1 − V2

R2
= 1.5 A (39)

I3 =
V0 − V1 + V2

Req
= 0.3 A (40)

On a bien toutes les valeurs positives, donc les sens des courants sont comme indiqués plus haut.
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Exercice 3 (25 points)

Un conducteur fixe dans l’espace (pas libre de se déplacer) est composé de trois secteurs de longueurs et masses
(Da = 8 cm, ma = 0.2 kg), (Db = 16 cm, mb = 0.4 kg), et (Dc = 10 cm, mc = 0.4 kg), comme indiqué sur la
figure, avec des voltages appliqués aux trois extrémités et maintenus constants Va = 200V et Vb = Vc = 50V (par
rapport à une terre commune).
Les trois secteurs ont des valeurs de résistance
Ra = 200Ω, Rb = 50Ω, et Rc = 300Ω. Les sec-
teurs b et c forment un angle de π/6 entre eux. Le
conducteur se trouve dans une région avec un champ
magnétique constant et uniforme B⃗ = 0.8êz T qui sort
du plan de la feuille.

a) Dessinez le circuit électrique équivalent.

b) Donnez l’expression et la valeur des courants Ia, Ib, Ic à travers Da, Db, et Dc respectivement.

c) Donnez l’expression et la valeur des forces F⃗a, F⃗b et F⃗c (norme, direction et sens) qui agissent sur chaque
secteur du conducteur. Sur un schéma, dessinez la direction des forces sur chaque secteur du conducteur.
Négligez le champ magnétique produit par le courant traversant le conducteur.

Considérez le conducteur précédemment introduit sans le secteur c (avec les secteurs a et b uniquement). Chaque
secteur est modélisé comme sa résistance (Ra, Rb) en série avec une inductance (La, Lb), respectivement.

d) Dessinez le circuit électrique équivalent.

e) Donnez l’expression et la valeur de l’inductance totale Ltot du conducteur, si après 3 s de l’application
de Va et Vb (avec un courant initial nul) le courant qui circule est de I(tm = 3 s) = Im = 0.2A. Donnez
l’expression et la valeur du courant stationnaire Is.

À un temps t0, le courant dans le conducteur est considéré
stationnaire, et le conducteur est laissé libre de se déplacer.

f) Donnez l’expression et la direction de la vitesse vf du
conducteur au temps tf = t0 + 5 s.

À partir du temps tf , la vitesse du conducteur vf est considérée constante. Le conducteur se trouve alors à
une distance D = 3mm du centre O d’une spire rectangulaire de cotés DL = 3mm et DH = 2mm, placée dans
le plan xy, dont le long côté (DL) est parallèle au conducteur. Voir dessin (notez que le dessin n’est pas à l’échelle).

g) Donnez l’expression de la force électromotrice ε(t) induite dans la spire rectangulaire. Dessinez le sens du
courant induit. Négligez les effets d’auto-induction de la spire et justifiez vos éventuelles approximations.

Indications : Négligez la pesanteur dans ce problème.
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Corrigé

a) (2.5 pts) Pas de boucles fermées dans la partie exposée du circuit → pas d’effets d’induction → schéma
classique valable. Deux exemples de variantes,

D’autres variantes sont acceptées tant que les lois de Kirchoff rendent les même équations.

b) (5 pts) Deux approches possibles. Approche 1 : écrire les lois de
Kirchoff (conservation du courant et loi des mailles), puis résoudre le
système algébrique. Approche 2 : Réaliser que Vb = Vc = Vgnd, donc
que la baisse de tension à travers Rb et Rc est la même, et simplifier
le circuit comme dans la figure indiqué, avec 1/Req = 1/Ra + 1/Rb.
La résistance totale Rtot = Ra + Req, est soumise à une baisse de
tension totale de ∆Vtot = Va − V0, et le courant

I = Ia =
∆Vtot

Rtot
=

21

34
≈ 0.62 A. (41)

La baisse de tension à travers Ra est ∆Va = RaI = ∆Vtot
1

1+Req/Ra

(diviseur de tension !), donc la baisse de tension restante sur la ré-
sistance parallèle et ∆Veq = ∆Vtot − ∆Va = ∆Vtot

1
1+Ra/Req

, et on
obtient

Ib =
∆Veq

Rb
=

9

17
≈ 0.53 A, Ic =

∆Veq

Rc
=

3

34
≈ 0.088 A. (42)

c) (4.5 pts) Les charges portant le courant dans chaque secteur sont soumises à la force de Lorentz. Pour
chaque segment γ = a, b, c, elle s’écrit par unité de longueur

f⃗γ = qv⃗γ︸︷︷︸
j⃗γ

×B⃗ (43)

et s’intègre, où la densité de courant linéique j⃗ = I⃗, uniforme dans chaque conducteur, est substituée

F⃗γ =

∫
secteur γ

j⃗γ × B⃗ dl = Dγ I⃗γ × B⃗, (44)

et avec

B⃗ = Bêz, I⃗a = −Iaêx, I⃗b = −Ibêx, I⃗c = Ic(− cos(θ)êx + sin(θ)êy) (45)
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donne

F⃗a = DaIB(−êx × êz) = DaIBêy = (0,
84

2125
, 0) ≈ (0, 0.04, 0) (46)

F⃗b = DbIbB(−êx × êz) = DbIbBêy = (0,
144

2125
, 0) ≈ (0, 0.07, 0) (47)

F⃗c = DcIcB((− cos(θ)êx + sin(θ)êy)× êz) = DcIcBêy = DcIcB (sin(θ)êx + cos(θ)êy) = (48)

(
3

850
,
3
√
3

850
, 0) ≈ (0.0035, 0.0061, 0) (49)

Note : on accepte aussi la valeur numérique
∣∣∣F⃗c

∣∣∣ = 3
425 ≈ 0.00706.

Sur le dessin, il est important de noter que la force de Lorentz est toujours normale au conducteur.

— d) (3 pts) Similairement à la question a),

l’autre variante avec les branchements à la terre commune est aussi correcte.

— e) (4 pts) Simplifier le circuit avec Rtot = Ra+Rb et Ltot = La+Lb,
écrire la loi de la maille pour les baisses de tension à travers les
résistances et inductances ∆VR = ∆VL = ∆Vtot, en utilisant les lois
caractéristiques pour les résistances et les inductances, RtotI(t) +
Ltotİ(t) = ∆Vtot et le résoudre avec la condition initiale I(0) = 0
pour obtenir

I(t) =
∆Vtot

Rtot

(
1− exp

(
− t

Ltot
Rtot

))
. (50)

Étant donné le courant Im = 0.2 A à l’instant tm = 3 s, on peut inverser la relation et trouver

Ltot = La + Lb =
tmRtot

− ln
(
1− ImRtot

∆Vtot

) ≈ 1849.73 H (51)
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Le courant stationnaire (İ = 0 =⇒ ∆VL = 0, et donc seules les résistances "contribuent")

Is = lim
t→∞

I(t) =
∆Vtot

Rtot
= 0.6 A (52)

— f) (3 pts) On considère la force sur le conducteur entier, de masse M = ma +mb = 0.6 kg et de longueur
Dtot = Da +Db = 24 cm, traversé par un courant I⃗s = −Isêx (de la droite vers la gauche).
La force s’exerçant sur le conducteur entier est encore la force de Lorentz

F⃗ = F⃗a + F⃗b = (Da +Db)I⃗s × B⃗ = DtotIsBêy. (53)

On écrit la loi de Newton décrivant la trajectoire du centre de masse

M ˙⃗v(t) = F⃗ , (54)

qui projeté sur les coordonnées (êx, êy, êz),

v̇x = 0 (55)

v̇y =
DtotIsB

M
(56)

v̇z = 0, (57)

avec les conditions initiales v⃗(t0) = 0⃗ s’intègre une fois

vx(t) = 0 (58)

vy(t) =
DtotIsB(t− t0)

M
(59)

vz(t) = 0. (60)

Au bout de tf − t0 = ∆t = 5 s, le conducteur atteint une vitesse :

vf = vy(tf ) =
DtotIsB∆t

M
, (61)

alignée le long de l’axe êy

— g) (3 pts) La longueur Dtot du fil est beaucoup plus grande que les dimensions DL et DH de la bobine,
ainsi que la distance D(t) que l’on sait petite, on peut donc faire l’approximation du fil infini. Le champ
magnétique généré par le fil a une symétrie cylindrique autour de l’axe êx. Dans le plan (êx, êy) et à une
distance radiale D(t) du fil,

B⃗1 = − µ0Is
2πD(t)

êz. (62)

Puisque le fil est en mouvement, D = D(t) = D0 − vf (t − tf ) varie dans le temps (avec D(0) = 3 mm),
et donc B⃗1 = B⃗1(t) varie aussi. Le champ B⃗0 = B0êz arrière plan est constant, donc ne contribue pas à la
variation temporelle du flux magnétique dans la bobine. La variation du flux magnétique dans la bobine
induit une force électromotrice (une tension dans la bobine), qui met en mouvement des charges dans la
bobine, et ce courant induit un champ magnétique de direction opposée à B⃗1 :
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Il reste à calculer la force électromotrice. En notant d⃗σ = dxdyêz,

ε = −
dΦB⃗1

dt
(63)

= − d

dt

∫ ∫
bobine

B⃗1 · d⃗σ (64)

= DL
µ0Is
2π

d

dt

∫ D(t)+DH/2

D(t)−DH/2

1

y
dy (65)

= DL
µ0Is
2π

d

dt
ln

(
D(t) + DH

2

D(t)− DH
2

)
(66)

= DL
µ0Is
2π

dD(t)

dt

d

dD
ln

(
D + DH

2

D − DH
2

)
(67)

= DL
µ0Is
2π

vf

(
1

D(t)− DH
2

− 1

D(t) + DH
2

)
. (68)
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Exercice 4 (25 points)

Le champ magnétique associé à une onde électromagnétique qui se propage dans la direction x̂ est composé de
deux longueurs d’ondes telles que λ1 = 2λ2, avec des fréquences angulaires ω1 et ω2.

a) Calculez le rapport entre ω1 et ω2.

Les deux harmoniques ω1, ω2 contribuent au spectre de l’onde avec des coefficients B1 et B2 selon l’expression :

B⃗(x, t) = [B1 sin(k1x− ω1t) +B2 sin(k2x− ω2t)]ẑ (69)

b) Donnez l’expression du champ électrique E⃗ de l’onde et du vecteur de Poynting S⃗ associé (norme, direction,
et sens de propagation) en fonction de B1, B2, k1, ω1.

Vous mesurez ω1 = 6π × 106 rad/s. Après 1/4 de la période T1 de l’harmonique B1 depuis t = 0 s, l’amplitude
totale du champ magnétique à la position xA = 150m est B = 4× 10−7 T.

c) Déterminez les valeurs de B1 et B2 en sachant que B2 = 3B1.

d) Démontrez qu’à la position xA le champ magnétique atteint sa valeur maximale quand la condition
cos(ω1t) = 3/4 est satisfaite. Utilisez l’identité cos(2x) = 2 cos2 x− 1.

Des scientifiques placent en xA un détecteur de forme circulaire avec son axe le long de x̂, qui peut absorber toute
l’énergie de l’harmonique ω1 de l’onde électromagnétique. Ils pensent qu’un détecteur avec une base de rayon
R = 1m est suffisant pour récolter une énergie de 10−2 J pendant un intervalle de temps ∆t = 100T1.

e) Dans le cas où l’onde électromagnétique est plane, vérifiez avec des calculs si les scientifiques ont raison ou
pas.

Indications :
µ0 = 4π × 10−7Tm

A
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Corrigé

a) (4 pts) Le rapport entre ω1 et ω2 peut être calculé en passant par la fréquence

λ =
c

f

2π

ω
=

1

f
ω =

2πc

λ
⇒ ω1

ω2
=

2πc
λ1

2πc
λ2

=
λ2

λ1
= 0.5 (70)

b) (9 pts) Pour calculer le champ électrique E⃗ associé on passe par l’équation de Faraday (loi d’induction de
Maxwell) :

∇⃗ × E⃗ = −∂B⃗

∂t
. (71)

Le champ électrique E⃗ est dans la direction y, soit E⃗ = Ey(x, t)ŷ, et que le champ magnétique B⃗ est dans
la direction z.
La dérivée temporelle de B⃗ est :

∂B⃗

∂t
= [−B1ω1 cos(k1x− ω1t)−B2ω2 cos(k2x− ω2t)] ẑ. (72)

Le rotationnel de E⃗ s’écrit dans la direction z pour une onde plane dans x :

∇⃗ × E⃗ =
∂Ey

∂x
ẑ. (73)

En utilisant ∇⃗ × E⃗ = −∂B⃗
∂t , on obtient :

∂Ey

∂x
= − [−B1ω1 cos(k1x− ω1t)−B2ω2 cos(k2x− ω2t)] . (74)

On intégre par rapport à x :

Ey(x, t) = cB1 sin(k1x− ω1t) + cB2 sin(k2x− ω2t) = cB1 sin(k1x− ω1t) + cB2 sin(2k1x− 2ω1t), (75)

Avec k2 et ω2 substitués. où nous avons utilisé la relation de dispersion ω = ck dans le vide.

Le vecteur de Poynting est donné par :

S⃗ =
1

µ0
E⃗ × B⃗. (76)

Pour E⃗ = Eyŷ et B⃗ = Bz ẑ, le produit vectoriel E⃗ × B⃗ donne :

S⃗ =
1

µ0
[(cB1 sin(k1x− ω1t) + cB2 sin(k2x− ω2t)) ŷ × (B1 sin(k1x− ω1t) +B2 sin(k2x− ω2t)) ẑ] . (77)

Le produit vectoriel ŷ × ẑ pointe dans la direction x, et la norme du vecteur de Poynting devient :

S(x, t) =
c

µ0

[
B2

1 sin
2(k1x− ω1t) + 2B1B2 sin(k1x− ω1t) sin(k2x− ω2t) +B2

2 sin
2(k2x− ω2t)

]
. (78)

c) (7 pts)
— À la position xA = 150m et au temps t = T1

4 , l’intensité du champ magnétique est :

B(xA, t = T1/4) = 4× 10−7T. (79)

— B2 = 3B1 (relation entre les amplitudes des deux harmoniques).
— La longueur d’onde et les pulsations vérifient : λ1 = 2λ2 =⇒ k2 = 2k1 et ω2 = 2ω1.
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L’expression générale du champ magnétique est :

B(x, t) = B1 sin(k1x− ω1t) +B2 sin(k2x− ω2t). (80)

Au temps t = T1
4 , la période de l’harmonique B1 est T1 =

2π
ω1

. On a alors :

ω1t = ω1
T1

4
=

π

2
. (81)

L’expression devient :

B(xA, t = T1/4) = B1 sin
(
k1xA − π

2

)
+B2 sin(k2xA − π). (82)

En utilisant les identités trigonométriques :

sin
(
θ − π

2

)
= − cos(θ), sin(θ − π) = − sin(θ), (83)

on obtient :

B(xA, t = T1/4) = −B1 cos(k1xA)−B2 sin(k2xA) = −B1 cos(k1xA)− 3B1 sin(2k1xA). (84)

En utilisant B2 = 3B1 et k2 = 2k1.
Application numérique :
Données
— λ1 = 2λ2, où λ1 et λ2 sont les longueurs d’onde respectives,
— ω1 = 6π × 106 rad/s.

ω2 = 2× 6π × 106 = 12π × 106 rad/s. (85)

Les vecteurs d’onde k1 et k2 s’obtiennent via k = ω
c :

k1 =
ω1

c
=

6π × 106

3× 108
= 2π × 10−2 m−1, , k2 =

ω2

c
=

12π × 106

3× 108
= 4π × 10−2 m−1. (86)

Nous savons que xA = 150m et k1 =
2π
λ1

. Précédemment, nous avons trouvé :

λ1 = 2λ2 =⇒ k1 = 2π × 10−2m−1. (87)

k1xA = (2π × 10−2)(150) = 3π. (88)

cos(3π) = −1, sin(6π) = 0 (car 6π est un multiple de 2π). (89)

Substituons ces valeurs dans l’expression du champ magnétique :

B(xA, t = T1/4) = −B1(−1)− 3B1(0) = B1 = 4× 10−7T. (90)

d’après les données du problème. Puisque B2 = 3B1, on a :

B2 = 3× 4× 10−7 = 1, 2× 10−6T. (91)
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d) (3 pts)
Pour trouver les instants où le champ atteint un maximum, nous devons dériver cette expression par
rapport au temps t et poser la dérivée à zéro :

dB(t)

dt
= −B1ω1 cos(k1x− ω1t)−B2ω2 cos(k2x− ω2t) = 0. (92)

On utilise :

λ1 = 2λ2 =⇒ k1 =
2π

λ1
, k2 =

2π

λ2
= 2k1. ω2 = 2ω1 (93)

En substituant ces relations dans l’expression de la dérivée du champ magnétique, on obtient :

dB(t)

dt
= −B1ω1 cos(k1x− ω1t)−B2(2ω1) cos(2k1x− 2ω1t) (94)

On simplifie en divisant par ω1 et on utilise B2 = 3B1 :

−B1 cos(k1x− ω1t)− 6B1 cos(2k1x− 2ω1t) = 0. (95)

Comme B1 ̸= 0, on obtient la condition suivante :

cos(k1x− ω1t) + 6 cos(2k1x− 2ω1t) = 0. (96)

On utilise l’identité trigonométrique fourni cos(2x) = 2 cos2(x)− 1 pour simplifier cos(2k1x− 2ω1t).

cos(k1x− ω1t) + 6
[
2 cos2(k1x− ω1t)− 1

]
= 0. (97)

On réorganise l’équation :

12 cos2(k1x− ω1t) + cos(k1x− ω1t)− 6 = 0. (98)

En posant u = cos(k1x− ω1t), on obtient une équation quadratique :

12u2 + u− 6 = 0. (99)

Les solutions sont donc :

u =
−b±

√
∆

2a
=

−1± 17

2(12)
. ⇒ u1 =

−1 + 17

24
=

16

24
=

2

3
, u2 =

−1− 17

24
=

−18

24
= −3

4
. (100)

Puisque u = cos(k1x− ω1t), on choisit la solution physique cos(k1x− ω1t) = 3
4 , ce qui correspond à la

condition initiale recherchée.

e) (2 pts)
— Rayon du détecteur : R = 10m,
— Temps : ∆t = 100T1,
— Énergie absorbée : E = 10−12 J,
— Champ magnétique maximal : B1 = 4× 10−7T.
La puissance surfacique moyenne de l’onde est donnée par :

⟨S⟩ = E0B0

2µ0
, (101)

où E0 = cB0. La puissance totale interceptée par le détecteur est alors :

⟨P ⟩ = ⟨S⟩ ·A =
cB2

0

2µ0
· (πR2). (102)
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L’énergie absorbée pendant ∆t est :

Eabs = ⟨P ⟩∆t. (103)

Application numérique : les données sont les suivantes :

µ0 = 4π × 10−7H/m, c = 3× 108m/s, B1 = 4× 10−7T, R = 10m, ∆t = 100T1 =
100

6π × 106
s.

(104)

En substituant ces valeurs dans l’expression de E, on obtient :

E =
3× 108 m/s

4π × 10−7H/m
· (4× 10−7)2T

2
· π(10m)2 · 100 · 2π

6π × 106
s. ≈ 0.2 J. (105)

L’énergie collectée par le détecteur (E ≈ 0.0318 J) est supérieure a celle mesurée par les scientifiques.
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